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Mixed sequences

We are given a sequence (xk) and

C1, . . . ,Cn classes of
subsequences which are

1 incompatible, no subsequence belongs to two classes at the
same time

2 hereditary, if a subsequence belongs to Ci , any further
subsequence belongs as well.

3 analytic, when the set of subsequences is viewed inside 2N.

The main question

In how many ways can these classes of subsequences can be mixed
in the sequence (xk) ?

For expositional ease, we will consider a very particular case.
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Mixed sequences of `p-sequences

A p-sequence is a sequence (xk) equivalent to the canonical basis
of `p.

Now consider ~p = (p1, . . . ,pn), |~p|= n.

Definition

A sequence (xk) is ~p-saturated if every subsequence contains a
pi -sequence for some i .

Definition

A sequence (xk) is a ~p-sequence if it is ~p-saturated and it cannot
be writen as a finite union of ~q-saturated sequences for |~q|< n.

The basis of `1⊕ `2 is not a (1,2)-sequence.
The basis of `1(`2) is a (1,2)-sequence.

Remark: Any ~p-saturated sequence is the union of ~q-saturated
sequences for ~q ⊂~p.
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Equimixed sequences

~p = (p1, . . . ,pn), |~p|= n.

Definition 3

Two ~p-sequences (xk) and (yk) are equimixed

if there is a bijection
ε : N−→ N such that

(xk)k∈A contains a pi -subsequence
⇔

(yε(k))k∈A contains a pi -sequence.
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Existence of finite basis

~p = (p1, . . . ,pn).

Theorem

There is a finite list of ~p-sequences x1,. . .,xN(n) such that

1 every ~p-sequence contains a ~p-subsequence equimixed with
one xi,

2 the ~p-sequences xi are not equimixed with each other.

N(2) = 2 (1 up to permutation)
N(3) = 27 (5 up to permutation)
N(4) = 3732 (163 up to permutation)
N(5) =??
log(N(n))∼ 9n · slow(n)
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Special subsequences

~p = (p1, . . . ,pn), |~p|= n.

Theorem

Every ~p-sequence contains a ~q-subsequence with |~q|= 2.

Theorem

Fix ~q ⊂~p.

Every ~p-sequence contains a~r -subsequencewith ~q ⊂~r and
|~r | ≤ J(|~q|).

J(n) is the number of 2×n matrices with entries 1,−1,0 such that

1 the lower row is nonzero

2 the first nonzero element of each row is −1

3 the number of −1 entries in the lower row is the same as in
the upper row, or one more.
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The machinery

Three steps

1 Descriptive set theory

2 Ramsey theory

3 finite combinatorics



Step 1: Descriptive set theory

STEP 1. Given an arbitrary ~p-sequence,

we get a subsequence
indicated in the n-adic tree (xt)t∈T , T = {1, . . . ,n}<ω such that:

(xt)t∈B is a pi -sequence whenever B ⊂ T is an [i ]-chain.

S. Todorcevic, Analytic gaps, Fund. Math. 1996

STEP 2. After Step 1, we need to control what happens in
subsets of T other than [i ]-chains. A new partition theorem for
trees, finer than Milliken, is needed.

STEP 3. The output of the previous procedure are finite
combinatorial objects that rule the behavior of ~p-sequences.
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Construction of pathological

Gâteaux-differentiable functions

Robert Deville (joint work with M. Ivanov and S. Lajara)



Definition 1 X, Y Banach spaces. F : X → Y has the jump property
if F is Gâteaux differentiable at every point of X and if ∃α > 0 such
that

‖F ′(x)− F ′(y)‖L(X,Y ) ≥ α whenever x, y ∈ X and x (= y.

We say that (X,Y ) has the jump property if there is a Lipschitz,
bounded function F : X → Y with the jump property.

Deville-Hajek :

- If (X,Y ) has property (∗), then L(X,Y ) is nonseparable.

- (X,R) never has the jump property.

- ("1,R2) has the jump property.

- if 1 ≤ p, q < +∞, ("p, "q) has the jump property if and only if p ≤ q.



Theorem 2 Let X and Y be Banach spaces. Suppose that there
exist a total, bounded, biorthogonal system {en, e∗n}n ⊂ X × X∗ and
an unconditional basic sequence {fn}n ⊂ Y such that, for each h ∈ X,

the series (
∞∑

n=1
e∗n(h)(f2n−1 + f2n)) converges. Then (X,Y ) has the

jump property.

Let us notice, that under the above assumptions, if

T (h) =
∞∑

n=1
e∗n(h)f2n−1 and S(h) =

∞∑

n=1
e∗n(h)f2n

then, according to the uniform boundedness principle, T and S are
bounded linear operators from X into Y .



Lemma 3 Let X and Y be Banach spaces, and let {e∗n}n ⊂ X∗ and
{fn}n ⊂ Y be sequences satsfying the hypothesis of the theorem.
Then, for every a = {an}n ∈ "∞, if

Ta(h) =
∞∑

n=1
ane

∗
n(h)f2n−1 and Sa(h) =

∞∑

n=1
ane

∗
n(h)f2n

Then Ta, Sa ∈ L(X,Y ), and ∃C > c > 0 such that

c‖a‖∞ ≤ ‖Ta‖ ≤ C‖a‖∞ and c‖a‖∞ ≤ ‖Sa‖ ≤ C‖a‖∞ whenever a ∈ "∞.

In particular, L(X,Y ) ⊃ "∞.



Lemma 4 For each p = (a, b) ∈ R2 with a < b and each ε > 0 there
exists a C∞ function ϕ = ϕp,ε : R2 −→ R2 such that:

(i) ‖ϕ(s, t)‖ ≤ ε for all (s, t) ∈ R2,

(ii)
∥∥∥∂ϕ∂s(s, t)

∥∥∥ ≤ ε for all (s, t) ∈ R2,

(iii)
∥∥∥∂ϕ∂t (s, t)

∥∥∥ ≤ 1 for all (s, t) ∈ R2, and

(iv) ϕ(s, t) = 0 whenver s < a,

(v)
∥∥∥∂ϕ∂t (s, t)

∥∥∥ = 1 whenever s ≥ b.

(Here, ‖ · ‖ denotes an arbitrary norm on R2.)



Proof when ‖ · ‖ is the Euclidean norm. If β : R −→ R is C∞ such
that

- 0 ≤ β(s) ≤ 1

- β(s) = 0 for s ≤ a and β(s) = 1 if s ≥ b,

then the function

ϕ(s, t) =
β(s)

n
(sin(nt), cos(nt))

satisfies the required properties whenever n > ε−1.



Lemma 5 Let {Fk}k be a sequence of mappings between the Banach
spaces X and Y such that :

1. The series
∞∑

k=1
Fk converges pointwise to a function F : X −→ Y .

2. For all h ∈ X, the series
∞∑

k=1
F ′
k(x)(h) converges uniformly with

respect to x ∈ X.

Then F is Gâteaux differentiable and Lipschitz on all of X, and, for
every x, h ∈ X, we have

F ′(x)(h) =
∞∑

k=1
F ′
k(x)(h).



Step 1: Construction of F . Let us write P = {(a, b) ∈ Q2 : a < b}
and let k /→ (nk, pk) be a bijection from N into N×P such that nk (= k

for all k ∈ N. Assume
∑

εk << 1 and set ϕk = ϕpk,εk. Define

sk(x) =
(
e∗nk(x), e

∗
k(x)

)
, x ∈ X,

ik(s, t) = tf2k−1 + sf2k, (s, t) ∈ R2

and

Fk = ik ◦ ϕk ◦ sk.

Fk ∈ C∞(X,Y ), and ‖Fk(x)‖ ≤ εk for all x ∈ X. Since the series
∞∑

k=1
εk

converges, the formula

F (x) =
∞∑

k=1
Fk(x)

defines a continuous, bounded function from X into Y .



Step 2. If h ∈ X, then the series
∞∑

k=1
F ′
k(x)(h) converges uniformly

with respect to x.

Hence, F is Gâteaux differentiable and Lipschitz on all of X, and

F ′(x)(h) =
∞∑

k=1
F ′
k(x)(h) whenever x, h ∈ X.

Step 3: F has the jump property. Fix x, y ∈ X, x (= y. Pick n ∈ N
such that e∗n(x) (= e∗n(y). We can assume that e∗n(x) < e∗n(y). Now,
let k ∈ N such that nk = n and e∗n(x) < ak < bk < e∗n(y). We get
F ′
k(x)(ek) = 0 and ‖F ′

k(y)(ek)‖ = 1, and thus,

‖F ′
k(x)(ek)− F ′

k(y)(ek)‖ = 1.

Moreover, ‖F ′
m(x)(ek)‖ ≤ εm and ‖F ′

m(y)(ek)‖ ≤ εm for all m (= k.
Therefore,

‖F ′(x)− F ′(y)‖ ≥ ‖F ′(x)(ek)− F ′(y)(ek)‖ ≥ 1− 2
∑

εm > 0.



Example 6 (Bayart) If X is a separable Banach space, then (X, c0)
has the jump property.

Proof : There is a Markushevich basis {en, e∗n}n ⊂ X × X∗, such
that ‖e∗n‖ = 1 for all n ∈ N. In particular, for every h ∈ X we have
lim
n

e∗n(h) = 0, that is, {e∗n(h)}n ∈ c0, and if we denote by {fn}n the
unit vector basis of c0, then

∥∥∥∥∥∥

∞∑

n=1
e∗n(h)f2n−1

∥∥∥∥∥∥
≤ ‖h‖ and

∥∥∥∥∥∥

∞∑

n=1
e∗n(h)f2n

∥∥∥∥∥∥
≤ ‖h‖.

Since {fn}n is unconditional, according to the theorem, (X, c0) has
the jump property.



Corollary 7 Let X be a Banach space with an Schauder basis {en}n,
Y be a Banach space and U ∈ L(X,Y ) such that {U(en)}n is a sub-
symmetric basic sequence in Y . Then (X,Y ) has the jump property.

In particular, if X has a subsymmetric basis, then (X,X) has the
jump property.

Example 8 If q ≥ p ≥ 1, then ("p, "q) has the jump property.

More generally, let M and N be two Orlicz functions such that
N(t) ≤ k1M(k2t), for some constants k1, k2 and all t in a neighbour-
hood of zero. If hM and hN are the corresponging Orlicz sequence
spaces, then (hM, hN) has the jump property.

Proof : if q ≥ p ≥ 1, then U : "p → "q is continuous.



Corollary 9 Let X be a Banach space with an Schauder basis {en}n,
Y be a Banach space and U ∈ L(X,Y ) such that :
{U(en)}n is an unconditional basic sequence in Y , and
Y is isomorphic to Y ⊕ Y .
Then (X,Y ) has the jump property.

Example 10 If p ≥ q ≥ 1 and p (= 1, then (Lp([0,1]), Lq([0,1])) has
the jump property.

Proof : If p ≥ q > 1, the inclusion U : Lp([0,1]) −→ Lq([0,1]) is
continuous if p ≥ q, and the Haar system is an unconditional basis of
Lq([0,1]).

Remark 11
(
L2([0,1]), Lp([0,1])

)
also has the jump property for ev-

ery p ≥ 1. (It is not clear whether there exist couples (p, q) such that
(Lp([0,1]), Lq([0,1])) fails to have the jump property. The question
is open in particular whenever p = q = 1.



Corollary 12 If X is a Banach space with an unconditional basis,
and X is isomorphic to X ⊕X, then (X,X) has the jump property.

Example 13 If T is the Tsirelson’s space, then (T , T ) has the jump
property. Notice that Tsirelson’s space does not have any subsym-
metric Schauder basis.

Example 14 If J is the James space, then (J, J) has the jump prop-
erty. Indeed,

(
J, "2

)
has the jump property. Since "2 is isomorphic to

a subspace of J, (J, J) also enjoys this property. Notice that J does
not have any unconditional Schauder basis.

Example 15 The space X constructed by Argyros and Kaydon such
that every T ∈ L(X) is of the form λI + K, is a separable infinite
dimensional Banach space such that L(X) is separable. Hence (X,X)
fails the jump property.



The set of functions satisfying the jump property.

Let G(X,Y ) be the space of bounded and Lipschitz functions from
X to Y which are Gâteaux-differentiable at each point of X, endowed
with its natural norm ‖f‖ := sup{f(x); x ∈ X}+sup{‖f ′(x)‖; x ∈ X}.

Denote G∗(X,Y ) := {f ∈ G(X,Y ); f has the jump property}.

Bayart : if X is a separable Banach space, then G∗(X, c0) is space-
able, i. e. G∗(X, c0) ∪ {0} contains a closed infinite dimensional sub-
space of G(X, c0).

Proposition 16 Let X and Y be Banach spaces, and {en}n be a
Schauder basis of X such that {U(en)}n is a subsymmetric basic
sequence in Y . Then G∗(X,Y ) is lineable, i. e. G∗(X,Y )∪{0} contains
an infinite dimensional subspace of G(X,Y ).

Problem : Is G∗(X,Y ) spaceable?
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Terminology1

The results presented here are joint work with Christian Rosendal,
from the University of Illinois at Chicago.

In this talk all Banach spaces are separable, infinite dimensional, and,
for expositional ease, assumed to be complex.

1The author acknowledges the support of FAPESP, processes 2008/11471-6,
2010/05182-1, 2010/17493-1
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Introduction: Mazur’s rotations problem

Definition
Isom(X) is the group of linear surjective isometries on a Banach
space X.
The group Isom(X) acts transitively on the unit sphere SX of X if
for all x , y in SX , there exists T in Isom(X ) so that Tx = y.

It is clear that Isom(H) acts transitively on any Hilbert space H.
Conversely if Isom(X) acts transitively on a Banach space X , must it be
isomorphic? isometric to a Hilbert space?
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Introduction: Mazur’s rotations problem

Conversely if Isom(X) acts transitively on a Banach space X , must it be
isomorphic? isometric to a Hilbert space?

Answer
if dim X < +∞: YES to both
if dim X = +∞ é separável: ???
if dim X = +∞ é não separável: NO to both

Idea of the case dim X < +∞: X = Rn with inner product < ., . > such
that ‖x0‖ =

√
< x0, x0 > for some x0, and assume Isom(X , ‖.‖) acts

transitively. Define

[x , y ] =
∫

T∈Isom(X ,‖.‖)
< Tx ,Ty > dT ,

This a new inner product for which the T still are isometries, and
‖x‖ =

√
[x , x ], since holds for x0 and by transitivity.
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Introduction: Mazur’s rotations problem

So we have the next unsolved problem which appears in Banach’s
book ”Théorie des opérateurs linéaires”.

Problem (Mazur’s rotations problem, 1932)
If X is separable and Isom(X ) acts transitively on SX , must X be
isomorphic? isometric to the Hilbert space?

It is not even known whether X isomorphic to `2 and Isom(X ) acts
transitively implies that X is isometric to `2.
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Mazur’s rotations problem: isometric versus bounded
representations of groups

If G is a group of isometries on (X , ‖.‖) and ‖|.‖| is another norm on X ,
then G becomes a bounded group of isomorphisms on (X , ‖|.‖|).
Conversely:

Observation
If G is a bounded group of isomorphisms on (X , ‖.‖), then the formula
‖|x‖| = supg∈G‖gx‖ defines a G-invariant equivalent norm on X.

So there is no difference between bounded representations or
isometric representations of groups on a Banach space, up to
equivalent renorming.

However if ‖.‖ was a Hilbert norm on X , the new norm ‖|.‖| has no
reason to be a Hilbert norm.
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Observation: Mazur and Dixmier

Fact
Let ‖.‖ be an equivalent norm on `2 such that G = Isom(`2, ‖.‖) acts
transitively on (`2, ‖.‖). Assume

G is unitarizable: exists A ∈ GL(`2) such that AgA−1 is unitary for
all g ∈ G .

Then
‖.‖ is a Hilbert norm.

Proof: we may assume ‖Ax0‖2 = ‖x0‖ = 1 for some fixed x0. Then we
define < x , y >:=< Ax ,Ay >2 and claim that < x , x >= ‖x‖2 for all x .
Indeed this holds for x = x0. For any other x such that ‖x‖ = 1 let
g ∈ G be such that x0 = gx , then

√
< x , x > = ‖Ax‖2 = ‖AgA−1Ax‖2 = ‖Agx‖2 = ‖Ax0‖2 = 1.
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Observation: Mazur and Dixmier

So one part of Mazur’s problem is related to the question of which
bounded representations on the Hilbert space are unitarizable, i.e.
which bounded subgroups of GL(`2) are unitarizable.

Theorem (Day-Dixmier, 1950)
Any bounded representation of an amenable group on the Hilbert
space is unitarizable.

By Ehrenpreis and Mautner (1955) this does not extend to all
(countable) groups.

Question (Dixmier’s unitarizability problem)
If all bounded representations of G on `2 are unitarisable, is G
amenable?
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Introduction: principles of renorming theory

General objective of renorming theory: replace the norm by a better
one (i.e. an equivalent one with more properties).

In general, one tends to look for an equivalent norm which make the
unit ball

smoother, more differentiable, more convex, more rotund...
more symmetric: i.e. the norm induces more isometries.

Let us concentrate on the second aspect.
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Introduction: transitive and maximal norms

In 1964, Pełczyński and Rolewicz looked at Mazur’s rotations problem
and defined properties of a given norm ‖.‖ which may be interpreted
as saying that ‖.‖ induces many isometries. In what follows O‖.‖(x)
represents the orbit of the point x of X , under the action of the group
Isom(X , ‖.‖), i.e. O‖.‖(x) = {Tx ,T ∈ Isom(X , ‖.‖)}.

Definition
Let X be a Banach space and ‖.‖ an equivalent norm on X. Then ‖.‖
is

(i) transitive if ∀x ∈ SX , O‖.‖(x) = SX .
(ii) quasi transitive if ∀x ∈ SX , O‖.‖(x) is dense in SX .
(iii) maximal if there exists no equivalent norm ‖|.‖| on X such that

Isom(X , ‖.‖) ⊆ Isom(X , ‖|.‖|) with proper inclusion.

Of course (i)⇒ (ii), and also (ii)⇒ (iii) (Rolewicz).
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Introduction: transitive and maximal norms

Definition
Let X be a Banach space and ‖.‖ an equivalent norm on X. Then ‖.‖
is

(i) transitive if ∀x ∈ SX , O‖.‖(x) = SX .
(ii) quasi transitive if ∀x ∈ SX , O‖.‖(x) is dense in SX .
(iii) maximal if there exists no equivalent norm ‖|.‖| on X such that

Isom(X , ‖.‖) ⊆ Isom(X , ‖|.‖|) with proper inclusion.

Examples of (i): `2, of (ii): Lp(0,1), of (iii): `p.

Note that (iii) means that Isom(X , ‖.‖) is a maximal bounded subgroup
of GL(X ).

Indeed if G were a bigger bounded subgroup then ‖|x‖| = supg∈G ‖gx‖
would define an equivalent norm for which
Isom(X , ‖.‖) ⊆ Isom(X , ‖|.‖|) with proper inclusion.
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Introduction: transitive and maximal norms

Definition
Let X be a Banach space and ‖.‖ an equivalent norm on X. Then ‖.‖
is

(i) transitive if ∀x ∈ SX , O‖.‖(x) = SX .
(ii) quasi transitive if ∀x ∈ SX , O‖.‖(x) is dense in SX .
(iii) maximal if there exists no equivalent norm ‖|.‖| on X such that

Isom(X , ‖.‖) ⊆ Isom(X , ‖|.‖|) with proper inclusion.

Classical problems of renorming theory in Banach spaces have the
following form: given a Banach space X , does X admit an equivalent
norm with property (i),(ii) or (iii)? Three more accessible problems
stand out.

23 / 72



Introduction: transitive and maximal norms

Question (Wood, 1982)
Does every Banach space admit an equivalent maximal norm?

Question (Deville-Godefroy-Zizler, 1993)
Does every superreflexive Banach space admit an equivalent
quasi-transitive or even transitive norm?

Question
Let 1 < p < +∞. Does Lp([0,1]) admit an equivalent transitive norm?
Does `p admit an equivalent quasi transitive norm?
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The main result

Theorem (F. - Rosendal, 2011)
There exists a separable uniformly convex Banach space X without an
equivalent maximal norm. Equivalently GL(X ) does not have a
maximal bounded subgroup.
In particular, X is a counterexample to the questions of Wood and
Deville-Godefroy-Zizler.

Our main result is actually about ”small” subgroups of isometries on
any separable reflexive space.

25 / 72



Contents

1 Introduction: Mazur’s rotation problem, transitive and maximal
norms

2 Main result: Isometry groups on HI spaces

3 Main result: Renorming theory and ergodic decompositions

4 Open problems: about `p, `2...

26 / 72



The main result: HI spaces

By Gowers and Maurey, every operator on a complex HI space is of
the form λId + S, λ scalar, S strictly singular. For isometries we have:

Theorem (Rabiger-Ricker, 1998)
Any isometry on a complex HI space is of the form λId + K , K
compact.

But actually this is much more general:

Lemma
a) if an isometry on any space X has the form λId + S, then S is
compact (actually belongs to F(X )).
b) if moreover X does not contain unconditional basic sequences, then
S has finite range.
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Proof
a) if T = Id + S is an isometry then its image T̃ in the Banach

algebra L(X )/F(X ) generates a bounded group and has
spectrum {1}, therefore by Gelfand’s theorem T̃ is a multiple of
the unit, i.e. T = Id + K , K ∈ F(X ).

b) By Fredholm theory the spectrum is a finite sequence or an infinite
sequence of eigenvalues tending to 1 together with the value 1.
In the former case, use Gelfand’s theorem to see that T − Id has
finite range. In the latter case, pick a sequence eiθn of eigenvalues
tending fast enough to 1, then show that the associated sequence
xn of eigenvectors is unconditional, a contradiction. Indeed for
well-chosen k

∥∥∥ n∑
j=1

ajxj

∥∥∥ =
∥∥∥∑

j

ajeikθj xj

∥∥∥ ' ∥∥∥∑
j

±ajxj

∥∥∥,
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The main result: HI spaces

So this applies to HI spaces, and we obtain:

Corollary
If X is HI, then every isometry T on X has the form λId + F. It follows
that T acts nearly trivially on X:
there exists a decomposition X = F ⊕ H, with dim F < +∞, T (F ) = F,
T|H = λIdH for some λ.

Note that this result holds for any equivalent renorming of X , and is the
least we can get from an isomorphic property.

So on the one hand Isom(X ) is closed in GL(X ); on the other hand all
isometries are of the form λId + F , F ∈ F(X ). So why do we not get,
as limits of those, isometries of the form λId + K , K /∈ F(X )?
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The main result: HI spaces

One answer would be that the whole isometry group acts trivially apart
on a finite-dimensional subspace, i.e. the decomposition F ⊕ H would
be the same for all T ∈ Isom(X ) on a HI space X . Then we would be
done! Indeed:

Observation
If Isom(X ) acts nearly trivially on X, i.e. there exists a decomposition

X = F ⊕ H,

isometry invariant, where F is finite dimensional, and every T in
Isom(X ) acts as a multiplie of the identity on H, then the norm is not
maximal.

Indeed decompose the finite codimensional part H = F ′ ⊕ H ′ and
renorm to increase the ”real” action of the isometry group to F ⊕ F ′

instead of F ...
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The main result: HI spaces

One answer would be that the whole isometry group acts trivially apart
on a finite-dimensional subspace, i.e. the decomposition F ⊕ H would
be the same for all T ∈ Isom(X ) on a HI space X . Then we would be
done! Indeed:

Observation
If Isom(X ) acts nearly trivially on X, i.e. there exists a decomposition

X = F ⊕ H,

isometry invariant, where F is finite dimensional, and every T in
Isom(X ) acts as a multiplie of the identity on H, then the norm is not
maximal.

So if Isom(X , ‖.‖) acts nearly trivially for any norm ‖.‖ on X , then X
admits no maximal norm.
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The main theorem

Theorem
If X is HI separable reflexive without a Schauder basis, then Isom(X )
acts nearly trivially on X: there exists a decomposition

X = F ⊕ H,

isometry invariant, where F is finite dimensional, and every T in
Isom(X ) acts as a multiple of the identity on H. It follows that X does
not admit a maximal norm.
Moreover there exists such a space, superreflexive.

Much more generally:

Theorem
If X is separable reflexive and G a group of isometries of the form
Id + F which is SOT-closed in GL(X ), then G acts nearly trivially or X
has a complemented subspace with a Schauder basis.
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Theorem
If X is HI separable reflexive without a Schauder basis, then Isom(X )
acts nearly trivially on X: there exists a decomposition

X = F ⊕ H,

isometry invariant, where F is finite dimensional, and every T in
Isom(X ) acts as a multiple of the identity on H.
Moreover there exists such a space, superreflexive.

Theorem
If X is separable reflexive and G a group of isometries of the form
Id + F which is SOT-closed in GL(X ), then G acts nearly trivially or X
has a complemented subspace with a Schauder basis.

For the proof, we shall first look at topologies on isometry groups.
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Principles of representation theory - topologies

If X is a Banach space then we shall look at the norm topology or the
pointwise convergence topology (SOT) on GL(X ).

A continuous representation of a topological group G on a Banach
space X is an a homomorphism π of G into GL(X ) such that for all
x ∈ X the map g 7→ g.x is continuous.
In other words π is SOT-continuous.

Lemma (classical from descriptive set theory)
If X is separable, then Isom(X ) is a Polish group (i.e. separable
completely metrizable) for the SOT.

Indeed Isom(X ) is SOT-closed in GL(X ) (but not in L(X )).
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Principles of representation theory - topologies

Lemma
If X is HI and has separable dual, then Isom(X ) is norm separable,
therefore the norm and pointwise convergence topologies coincide on
Isom(X ).

Proof: Isom(X ) is a Polish group both for the norm and SOT, so use a
theorem of Pettis.

A more general version of this is:

Lemma
If X is a Banach space with separable dual, and G is a SOT-closed
subgroup of isometries of the form Id + F, then the norm and
pointwise convergence topologies coincide on G.
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The main result: HI spaces

Going back to HI spaces what does it mean that the norm and strong
operator topology coincide? Two cases come to mind:

1 the action is limited to a finite-dimensional space,
2 the isometry group is ”essentially” discrete in the SOT-topology.

Theorem
If X is HI with separable dual, then there exists a decomposition

X = F ⊕ H,

isometry invariant, where F is finite dimensional, and Isom+(H) is
(countable) discrete (here Isom+(H) is the closed subgroup of
isometries of the form Id + F).

We where not able to rule out that Isom+(H) is infinite discrete,
although we conjecture that this never happens. This is where we shall
need to assume that X has no Schauder basis.
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Renorming theory: LUR norms

Objective: find an equivalent norm on a space X which is smoother,
more differentiable, more convex, more rotund..., and relate the
existence of such a norm to isomorphic properties of X .

For example, as we all know, are equivalent for a Banach space:
(i) X admits an equivalent uniformly convex norm,
(ii) X is superreflexive.

Definition
A norm ‖.‖ is locally uniformly convex (LUR) if

∀x0 ∈ SX∀ε > 0∃δ > 0∀x ∈ SX (‖x − x0‖ ≥ ε⇒
∥∥x + x0

2
∥∥ ≤ 1− δ).
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Renorming theory: LUR norms

Can we relate isomorphic properties of X to the existence of an
equivalent LUR norm? Not really:

Theorem (Kadec, 61)
Every separable space X admits an LUR renorming.

Can we combine both directions of renorming theory, i.e. renorm with
a smoother norm without diminishing the isometry group? The
following is due to Bader, Furman, Gelander, Monod, 07.

Fact
If (X , ‖.‖) is superreflexive then there exists an equivalent uniformly
convex norm ‖|.‖| on X such that Isom(X , ‖.‖) ⊂ Isom(X , ‖|.‖|).

Indeed let G = Isom(X , ‖.‖). Let |.|uc be an equivalent uniformly
convex norm on X . Then define ‖|x‖| = supg∈G |gx |uc .
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Renorming theory: LUR norms

In the LUR case we have a result of G. Lancien.

Theorem (Lancien, 93)
If (X , ‖.‖) is separable with the RNP then there exists an equivalent
LUR norm ‖|.‖| on X such that Isom(X , ‖.‖) ⊂ Isom(X , ‖|.‖|).

Can this be improved to all separable spaces X? No:

Example
The space L1 cannot be renormed with an LUR norm ‖|.‖| such that
Isom(L1, ‖.‖L1) ⊂ Isom(L1, ‖|.‖|).

Proof: The usual norm on L1 is quasi transitive. A new LUR norm with
as many isometries would also be quasi transitive, so would have to be
a multiple of ‖.‖L1 . But ‖.‖L1 is not LUR.
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Renorming theory: LUR norms

We may now use this towards our problem.

Theorem (Lancien, 93)
Let X have the RNP and separable dual. Then for every bounded
subgroup G of GL(X ) there exists a G-invariant equivalent norm on X
which is LUR and dual LUR.

Therefore to deduce from isomorphic properties of X that the isometry
group G acts nearly trivially, we may assume that the norm is LUR with
dual LUR norm.

This will allow us to use (or even reprove) Alaoglu-Birkhoff and Jacobs
- de Leeuw - Glicksberg decompositions associated to group
representations.
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Alaoglu-Birkhoff and Jacobs - de Leeuw - Glicksberg
theorems

Alaoglu - Birkhoff theorem (1940) and Jacobs - de Leeuw - Glicksberg
theorems (1960s) from ergodic theory relate, for reflexive X :

isometric representations of groups on X , or representations of
semi-groups as semi-groups of contractions on X , to
decompositions of X as direct sums of closed subspaces,
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Theorem
Let X be a separable reflexive space and G ⊂ GL(X ) be bounded.
Then X admits the G-invariant decompositions:

(a) (Alaoglu - Birkhoff type decomposition)

X = HG ⊕ (HG∗)⊥,

where HG = {x ∈ X : Gx = {x}}, HG∗ = {φ ∈ X ∗ : Gφ = {φ}},
and moreover H⊥G∗ = {x ∈ X : 0 ∈ conv(Gx)}.

(b) (Jacobs - de Leeuw - Glicksberg type decomposition)

X = KG ⊕ (KG∗)⊥,

where KG = {x ∈ X : Gx is compact},
KG∗ = {φ ∈ X ∗ : Gφ is compact}, and furthermore
K⊥G∗ = {x ∈ X : x furtive, i.e. ∃Tn ∈ G : Tnx →w 0}.
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Existing proofs were about isometric representations on X
reflexive, strictly convex with dual strictly convex norm. Lancien’s
result and our observation show that in the separable case, we
may remove the strict convexity hypotheses and work with
bounded representations.

Then we may even assume that the norm is LUR with dual LUR
norm and give an alternate proof of these decompositions. The
point is that the duality map taking a point to its support functional
will be an homeomorphism....

However these authors also obtain results for bounded
semigroups of operators and we don’t.

We obtain dual characterizations of the subspaces as opposed to
internal, as well as estimates of the projection constants.
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Theorem
Let X be a separable reflexive space and G ⊂ GL(X ) be bounded.
Then X admits the G-invariant decompositions:
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Conclusion of the proof of the main theorem

Theorem
Let X be separable, reflexive Banach space and G be a group of
isometries on X of the form Id + F. Then

a) G acts nearly trivially or X has a complemented subspace with a
FDD.

b) if G is SOT-closed in GL(X ) then G acts nearly trivially or X has a
complemented subspace with a Schauder basis.

Proof of a): for each finitely generated subgroup L =< T1, . . . ,Tn > of
G, the Alaoglu-Birkhoff decomposition is

X = H⊥L∗ ⊕ HL = FL ⊕ HL,

where HL = ∩n
i=1ker(Id − Ti) is finite-codimensional and FL finite

dimensional.
So either G acts nearly trivially, or we may find a sequence Tn ∈ G
such that F<T1,...,Tn> is a strictly increasing sequence of
finite-dimensional subspaces giving a FDD.
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Conclusion of the proof of the main theorem

Theorem
Let X be a separable, reflexive Banach space and G be a group of
isometries on X of the form Id + F. Then

a) G acts nearly trivially or X has a complemented subspace with a
FDD.

b) if G is SOT-closed in GL(X ) then G acts nearly trivially or X has a
complemented subspace with a Schauder basis.

Proof of b) (sketch): By Jacobs - de Leeuw - Glicksberg

X = K⊥G∗ ⊕ KG.

First case: if K⊥G∗ is finite dimensional then it is trivial. Therefore G is
almost periodic, i.e. all orbits are relatively compact, i.e. G is
SOT-compact. Since both topology coincide, G is norm compact, and
this implies that G acts nearly trivially (Shiga 55).

67 / 72



Conclusion of the proof of the main theorem

Theorem
Let X be separable, reflexive Banach space and G be a group of
isometries on X of the form Id + F. Then

a) G acts nearly trivially or X has a complemented subspace with a
FDD.

b) if G is SOT-closed in GL(X ) then G acts nearly trivially or X has a
complemented subspace with a Schauder basis.

Proof of b) (sketch): Second case: If Y = K⊥G∗ is infinite dimensional
then using the fact that no non-trivial G-orbit on Y is relatively compact
and some group theory, find U and a sequence Tn ∈ G such that the
Alaoglu-Birkhoff decompositions associated to T−1

n UTn are sufficiently
”disjoint”, build from this a complemented subspace with an FDD with
uniform dimension codimHU , then refine to a Schauder basis.
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Conclusion

Theorem
There exists a separable, uniformly convex, HI space X, without a
Schauder basis . Therefore there exists a separable, uniformly convex
space X for which the isometry group acts nearly trivially for any
equivalent renorming. In particular X does not have an equivalent
maximal norm.
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Open problems

Question
Show that Lp does not admit an equivalent transitive norm, for p 6= 2.
Show that `p does not admit an equivalent quasi transitive norm, for
1 < p 6= 2.

It also remains open whether the isometry group must always act
nearly trivially on any (reflexive) HI space. Or on the contrary:

Question
Find a SOT-closed group of isometries of the form Id + F which is
infinite discrete on a HI space? on the Hilbert space? on some
separable Banach space?
Find whether such a group may act quasi transitively?
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Definition (Namioka, Reynov, Stegall; 1979-87)
A compact space is said to be a Radon-Nikodým compact (or RNC for
short) if and only if it is homeomorphic to a weak∗ compact subset of a
dual Banach space with the Radon-Nikodým property.

Theorem
Let X be a Banach space. X ∗ has the Radon-Nikodým property iff one
of the following equivalent conditions hold:

X is Asplund, i.e., e.g., dual spaces of separable subspaces of X
are separable,
(BX∗ ,w∗) is fragmented by the (dual) norm metric i.e., for every
ε > 0, for every closed F ⊆ BX∗ there is an open U such that

diam(U ∩ F ) < ε and F ∩ U 6= ∅.

Theorem (Namioka, 87)
K is an RNC iff K is compact and there is a lower semi-continuous
(l.s.c.) metric on K 2 which fragments K .
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Theorem (Namioka, 87)

A closed subspace of an RNC space is RNC,
The product of countably many RNC spaces is RNC,
An RNC space is sequentially compact,
An RNC space contains a metrizable dense Gδ-subset,
If K is an RNC space, then the unit ball of the dual C(K )∗ of C(K )
is RNC relative to the weak∗ topology.

Theorem (Orihuela, Schachermayer, Valdivia, 1991)
If a compact Hausdorff space is RNC and Corson compact, then it is
Eberlein compact.
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Question (Namioka, 87)
Are continuous images of RNC spaces RNCs?

Theorem (A. Avilés, P.K.)
There is a continuous image of RNC which is not RNC.

Piotr Koszmider (Polish Academy of Sciences) RN compacta Luminy, 12 4 / 12



Question (Namioka, 87)
Are continuous images of RNC spaces RNCs?

Theorem (A. Avilés, P.K.)
There is a continuous image of RNC which is not RNC.

Piotr Koszmider (Polish Academy of Sciences) RN compacta Luminy, 12 4 / 12



Definition

Let K be a class of compact spaces and B be a class of Banach
spaces. We say that K and B are associated if and only the following
two implications hold:

if K ∈ K, then C(K ) ∈ B.
If X ∈ B, then BX∗ ∈ K.

Proposition
The class of Banach spaces of density < κ is associated with the
class of compact spaces of weight < κ,
The class of WCG Banach spaces is associated with the class of
Eberlein compacta, (Amir, Lindenstrauss)
The class of Asplund generated Banach spaces is associated with
the class of RN compacta, (Fabian, Stegall)
The class of subspaces of Asplund generated Banach spaces is
associated with the class of continuous images of RN compacta,
(Fabian)
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Proposition
Suppose C(K ) ∼ C(L), then

1 L is RNC iff K is RNC.
2 L is a continuous image of an RNC iff K is a continuous image of

an RNC.

Theorem (Argyros, mid 90ties)
If K is a totally disconnected continuous image of a RNC, then it is a
RNC.

Theorem (Mazurkiewicz, Sierpiński, Milutin, Bessaga,
Pełczyński; 1920-60)
If a C(K ) space is separable, then it is isomorphic to C(∆) or to
C([0, α]) for some countable ordinal.

Theorem (P.K., 2004)
There is K such that C(K ) is not isomorphic to any C(L) for L which is
totally disconnected.
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Theorem (A. Avilés, P. K)
Let L be a continuous image of a RN-compactum which is not
RN-compactum. The space C(L) is not isomorphic to any C(K ) where
K is totally disconnected and L is sequentially compact, has many
nontrival projections and the hyperplanes of C(L) are isomorphic to the
entire space.
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First step of the construction:

We shall call a basic space a compact
scattered space K which can be written as K =

⋃
n∈N An ∪ B ∪ {∞}

satisfying the following properties

1 All points of A =
⋃

n An are isolated in K .
2 For every x ∈ B there exists a countable infinite set Cx ⊂ A such

that Cx = Cx ∪ {x} and moreover, Cx is open in K .
3 There exists a function ψ : B → NN such that: Given any family
{X n

m : m,n ∈ N} of subsets of A with An =
⋃

m X n
m for every n,

there exists x ∈ B such that Cx ∩ X n
ψ(x)(n) is infinite for all n.
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Second step of the construction: L = (A×∆) ∪ B ∪ {∞}
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Third step of the construction:

For x ∈ B we construct gx : L \ {x} → ∆ such that gx (y) = 0 whenever
y 6∈ Cx ×∆, y 6= x ,

L0 = {[u, v ] ∈ L×∆B : gx (u) = vx for all x ∈ B \ {u}}

fx : L \ {x} → [0,1], fx = q ◦ gx , where q : ∆→ [0,1] is the standard
continuous surjection

L1 = {[u, v ] ∈ L× [0,1]B : fx (u) = vx for all x ∈ B \ {u}}

π : L0 → L1 π[u, v ] = [u,q(vx )x∈B].
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Lemma
Let L =

⋃
n∈N ∆n ∪ {x} be the one point compactification of the

discrete union
⋃

n∈N ∆n; d-standard metric on L.

There is a continuous g : L \ {x} → ∆ such that
There is an l.s.c. metric on L(g) which fragments L(g) and
extends d,
There is no l.s.c. metric on L(q ◦ g) which extends d.
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Questions on Boolean C(K )s

Definition
Let L be a compact space. C(L) is called Boolean if and only if
C(L) ∼ C(K ) for K totally disconnected (i.e., induced by a Boolean
algebra).

1 Classify C(K ) spaces with respect to isomorphisms.
2 Which C(K ) spaces are Boolean?
3 If C(K ) is WCG, is C(K ) Boolean?
4 Is there an absolute example of a non Boolean C(K ) of density
ω1?

5 If K is the ball of a nonseparable Hilbert space with the weak
topology, is C(K ) Boolean?
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Background

We will consider real-valued Lipschitz functions f : X → R

Main Question

What can we say about the set of points where f is Fréchet
differentiable/ where f is non-differentiable?

1 For separable X , the dual X ∗ must be separable as otherwise there
is an equivalent norm on X which is everywhere Fréchet
non-differentiable

2 If X ∗ is separable, then every Lipschitz function is differentiable on a
dense subset of X [Preiss, 1990]

3 Finite-dimensional analogue: Rademacher theorem
◮ almost everywhere
◮ ? inf-dim analogue for Lebesgue null sets
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Finite-dimensional case, Rademacher’s Theorem

Theorem (Rademacher)

If f : Rn → R is a Lipschitz function, then f is differentiable almost
everywhere in R

n.
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Finite-dimensional case, Rademacher’s Theorem

Theorem (Rademacher)

If f : Rn → R is a Lipschitz function, then f is differentiable almost
everywhere in R

n.

Sharpness of the result, n = 1

n = 1, f : R → R

For every E ⊆ R of measure 0 there is a Lipschitz function which fails to
have a derivative at any point of E .
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Theorem (Rademacher)

If f : Rn → R is a Lipschitz function, then f is differentiable almost
everywhere in R

n.

Sharpness of the result, n = 1

n = 1, f : R → R

For every E ⊆ R of measure 0 there is a Lipschitz function which fails to
have a derivative at any point of E .

Sharpness of the result, n ≥ 2

n ≥ 2, f : Rn → R

[Preiss, 1990] [Doré, M., 2009, 2010, 2011] [Dymond, M., 2012]
There are Lebesgue null subsets E of Rn, n ≥ 2 with the property that
every Lipschitz function f : Rn → R has a point of differentiability in E .
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Finite-dimensional case, Rademacher’s Theorem

Theorem (Rademacher)

If f : Rn → R is a Lipschitz function, then f is differentiable almost
everywhere in R

n.

Sharpness of the result, n = 1

n = 1, f : R → R

For every E ⊆ R of measure 0 there is a Lipschitz function which fails to
have a derivative at any point of E .

Sharpness of the result, n ≥ 2

n ≥ 2, f : Rn → R

[Preiss, 1990] [Doré, M., 2009, 2010, 2011] [Dymond, M., 2012]
There are Lebesgue null subsets E of Rn, n ≥ 2 with the property that
every Lipschitz function f : Rn → R has a point of differentiability in E .

X ∗ separable ⇒ X has “small” universal differentiability subsets.
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Examples of non-differentiability sets of Lipschitz functions

Classical results

1. E ⊆ X is porous, then f (x) = dist(x ,E ) is a 1-Lipschitz function and
the set of points where f is not Fréchet differentiable contains E .

Olga Maleva Differentiability of functions inside small subsets of infinite-dimensional spaces



Examples of non-differentiability sets of Lipschitz functions

Classical results

1. E ⊆ X is porous, then f (x) = dist(x ,E ) is a 1-Lipschitz function and
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Thus porous sets are not UDS.

Olga Maleva Differentiability of functions inside small subsets of infinite-dimensional spaces



Examples of non-differentiability sets of Lipschitz functions

Classical results

1. E ⊆ X is porous, then f (x) = dist(x ,E ) is a 1-Lipschitz function and
the set of points where f is not Fréchet differentiable contains E .
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the set of points where f is not Fréchet differentiable contains E .

Thus porous sets are not UDS.

2. E ⊆ X is σ-porous, i.e. a countable union of porous sets.

B. Kirchheim, D. Preiss, L. Zaj́ıček (1980s):
There exists a Lipschitz function f : X → R that is nowhere diff. on E .
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Examples of non-differentiability sets of Lipschitz functions

Classical results

1. E ⊆ X is porous, then f (x) = dist(x ,E ) is a 1-Lipschitz function and
the set of points where f is not Fréchet differentiable contains E .

Thus porous sets are not UDS.

2. E ⊆ X is σ-porous, i.e. a countable union of porous sets.

B. Kirchheim, D. Preiss, L. Zaj́ıček (1980s):
There exists a Lipschitz function f : X → R that is nowhere diff. on E .

Thus σ-porous sets are not UDS.

3. D. Preiss (1990):
If X ∗ is separable and the set E ⊆ X is Gδ and contains a dense set of
lines, then every Lipschitz function f : X → R is Fréchet differentiable at
some point x ∈ E .
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Examples of non-differentiability sets of Lipschitz functions

Classical results

1. E ⊆ X is porous, then f (x) = dist(x ,E ) is a 1-Lipschitz function and
the set of points where f is not Fréchet differentiable contains E .

Thus porous sets are not UDS.

2. E ⊆ X is σ-porous, i.e. a countable union of porous sets.

B. Kirchheim, D. Preiss, L. Zaj́ıček (1980s):
There exists a Lipschitz function f : X → R that is nowhere diff. on E .

Thus σ-porous sets are not UDS.

3. D. Preiss (1990):
If X ∗ is separable and the set E ⊆ X is Gδ and contains a dense set of
lines, then every Lipschitz function f : X → R is Fréchet differentiable at
some point x ∈ E .

This set is a UDS.

Olga Maleva Differentiability of functions inside small subsets of infinite-dimensional spaces



UDS

Search for null universal differentiability sets

1. The set constructed by D. Preiss can be chosen to be Lebesgue null in
every X = R

n, n ≥ 2,
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Search for null universal differentiability sets

1. The set constructed by D. Preiss can be chosen to be Lebesgue null in
every X = R

n, n ≥ 2,
however its closure is always equal to the whole space.
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1. The set constructed by D. Preiss can be chosen to be Lebesgue null in
every X = R

n, n ≥ 2,
however its closure is always equal to the whole space.

2. M. Doré, O.M. (2009 + 2010):
If n ≥ 2, there exists a compact universal differentiability set E ⊆ R

n of
Hausdorff dimension 1 (so it is Lebesgue null).
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UDS

Search for null universal differentiability sets

1. The set constructed by D. Preiss can be chosen to be Lebesgue null in
every X = R

n, n ≥ 2,
however its closure is always equal to the whole space.

2. M. Doré, O.M. (2009 + 2010):
If n ≥ 2, there exists a compact universal differentiability set E ⊆ R

n of
Hausdorff dimension 1 (so it is Lebesgue null).

3. M. Doré, O.M. (2011):
If X ∗ is separable, then there exists a closed bounded totally disconnected
universal differentiability set E ⊆ X of Hausdorff dimension 1.
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UDS

Search for null universal differentiability sets

1. The set constructed by D. Preiss can be chosen to be Lebesgue null in
every X = R

n, n ≥ 2,
however its closure is always equal to the whole space.

2. M. Doré, O.M. (2009 + 2010):
If n ≥ 2, there exists a compact universal differentiability set E ⊆ R

n of
Hausdorff dimension 1 (so it is Lebesgue null).

3. M. Doré, O.M. (2011):
If X ∗ is separable, then there exists a closed bounded totally disconnected
universal differentiability set E ⊆ X of Hausdorff dimension 1.

4. M. Dymond, O.M. (2012):
If n ≥ 2, ∃ E ⊆ R

n a compact universal differentiability set of the lower
Minkowski (box counting) dimension 1 (so it is Hausdorff dim 1).
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Universal differentiability sets

dimH(UDS) ≥ 1:
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Universal differentiability sets

dimH(UDS) ≥ 1:

Assume dimH(E ) < 1; let e ∈ X , P ∈ X ∗ be s.t. P(e) = 1.
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Universal differentiability sets

dimH(UDS) ≥ 1:

Assume dimH(E ) < 1; let e ∈ X , P ∈ X ∗ be s.t. P(e) = 1.

dimH(P(E )) < 1 ⇒ S = P(E ) ⊆ R is Lebesgue null.
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Universal differentiability sets

dimH(UDS) ≥ 1:

Assume dimH(E ) < 1; let e ∈ X , P ∈ X ∗ be s.t. P(e) = 1.

dimH(P(E )) < 1 ⇒ S = P(E ) ⊆ R is Lebesgue null.

∃ g : R → R Lipschitz, not differentiable everywhere on S ,
thus f := g ◦ P : X → R is Lipschitz and
∀x ∈ E , directional derivative f ′(x , e) does not exist
⇒ ∀x ∈ E , f is not differentiable at x .
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Finding a point of differentiability in a set

E ⊆ X , f : X → R is Lipschitz
How to find a point x∗ ∈ E s.t. f is differentiable at x∗?
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Finding a point of differentiability in a set

E ⊆ X , f : X → R is Lipschitz
How to find a point x∗ ∈ E s.t. f is differentiable at x∗?

Step by step

We construct a sequence (xk , ek), xk ∈ E and ‖ek‖ = 1 such that
f ′(xk , ek) exists and is “almost maximal” among f ′(x , e) when x ∈ E ,
‖x − xk‖ is small and e is arbitrary direction.
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How to find a point x∗ ∈ E s.t. f is differentiable at x∗?

Step by step

We construct a sequence (xk , ek), xk ∈ E and ‖ek‖ = 1 such that
f ′(xk , ek) exists and is “almost maximal” among f ′(x , e) when x ∈ E ,
‖x − xk‖ is small and e is arbitrary direction.

xk → x∗, ek → e∗ and f ′(x∗, e∗) exists, is equal to lim f ′(xk , ek) and is
therefore “almost maximal” in every neighbourhood of x∗.
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Finding a point of differentiability in a set

E ⊆ X , f : X → R is Lipschitz
How to find a point x∗ ∈ E s.t. f is differentiable at x∗?

Step by step

We construct a sequence (xk , ek), xk ∈ E and ‖ek‖ = 1 such that
f ′(xk , ek) exists and is “almost maximal” among f ′(x , e) when x ∈ E ,
‖x − xk‖ is small and e is arbitrary direction.

xk → x∗, ek → e∗ and f ′(x∗, e∗) exists, is equal to lim f ′(xk , ek) and is
therefore “almost maximal” in every neighbourhood of x∗.

We then prove f is differentiable at x∗ and f ′(x∗)(u) = f ′(x∗, e∗)Φe∗(u),
where Φe∗ is the Fréchet derivative of the norm ‖ · ‖ at e∗.
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Finding a point of differentiability

a=r/d

x* e*z

y

r
d

M = f ′(x∗, e∗) ≥ 0
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Finding a point of differentiability

a=r/d

x* e*z

y

r
d

M = f ′(x∗, e∗) ≥ 0

f (y) > f (x∗) + εr

f (z) ≈ f (x∗)− f ′(x∗, e∗)d
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Finding a point of differentiability

a=r/d

x* e*z

y

r
d

M = f ′(x∗, e∗) ≥ 0

f (y) > f (x∗) + εr

f (z) ≈ f (x∗)− f ′(x∗, e∗)d

f (y)− f (z)

‖y − z‖ ≥ Md + εr√
d2 + r2

=
M + εa√
1 + a2

> M + εa+ O(a2) > M + τ
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Finding a point of differentiability

r a=r/d

x* e*z

y

d

w

f (y)−f (z)
‖y−z‖ > f ′(x∗, e∗) + τ , τ > 0 is fixed

Therefore there exists w ∈ [y , z] such that f ′(w ,
y−z

‖y−z‖ ) > f ′(x∗, e∗) + τ

Olga Maleva Differentiability of functions inside small subsets of infinite-dimensional spaces



Finding a point of differentiability

r a=r/d

x* e*z

y

d

w

f (y)−f (z)
‖y−z‖ > f ′(x∗, e∗) + τ , τ > 0 is fixed

Therefore there exists w ∈ [y , z] such that f ′(w ,
y−z

‖y−z‖ ) > f ′(x∗, e∗) + τ

If [y , z] ⊆ E , we get a contradiction.
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Finding a point of differentiability

r a=r/d

x* e*z

y

d

w

f (y)−f (z)
‖y−z‖ > f ′(x∗, e∗) + τ , τ > 0 is fixed

Therefore there exists w ∈ [y , z] such that f ′(w ,
y−z

‖y−z‖ ) > f ′(x∗, e∗) + τ

If [y , z] ⊆ E , we get a contradiction.

Thus f ′(x∗, e∗⊥) = 0.
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Essential properties of a UDS

◮ The limit point x∗ must not be a porosity point of the set E to be
constructed
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Essential properties of a UDS

◮ The limit point x∗ must not be a porosity point of the set E to be
constructed

◮ Our argument works if around each limit point x∗ the set E contains
straight line segments in a dense set of directions
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Essential properties of a UDS

◮ The limit point x∗ must not be a porosity point of the set E to be
constructed

◮ Our argument works if around each limit point x∗ the set E contains
straight line segments in a dense set of directions

◮ To get a set of Hausdorff dimension 1
◮ we start upfront with a Gδ set G =

⋂
n≥1 Gn of Hausdorff dimension

1 and make sure that E ⊆ G by defining E =
⋂

En with En ⊆ Gn

◮ In the fin-dim case: such set G must contain a dense set of lines so
if its closure has nonempty interior ⇒ its Minkowski dimension is n.

◮ Need to ”dynamically” define Gn on each step in order to control the
Minkowski dimension.
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Geometric measure theory

Equivalent definitions of a u.p.u. sets

Theorem. G. Alberti, M. Csörnyei, D. Preiss (2010): S ⊆ R
n The

following two conditions are equivalent:

1 There exists a Lipschitz function f : Rn → R such that ∀x ∈ S and
∀‖e‖ = 1 the directional derivative f ′(x , e) does not exist
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n The

following two conditions are equivalent:

1 There exists a Lipschitz function f : Rn → R such that ∀x ∈ S and
∀‖e‖ = 1 the directional derivative f ′(x , e) does not exist

2 S is C -null for every cone C , i.e.
for every C = {v : ‖v − v0‖ < α} and for every ε > 0
there exists an open set Gε with S ⊆ Gε and

H1(γ ∩ Gε) ≤ ε

for every C 1-curve γ whose tangents lie in C .
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Theorem. G. Alberti, M. Csörnyei, D. Preiss (2010): S ⊆ R
n The

following two conditions are equivalent:

1 There exists a Lipschitz function f : Rn → R such that ∀x ∈ S and
∀‖e‖ = 1 the directional derivative f ′(x , e) does not exist

2 S is C -null for every cone C , i.e.
for every C = {v : ‖v − v0‖ < α} and for every ε > 0
there exists an open set Gε with S ⊆ Gε and

H1(γ ∩ Gε) ≤ ε

for every C 1-curve γ whose tangents lie in C .

u.p.u. ⇒ p.u.

Each uniformly purely unrectifiable set is purely unrectifiable:
its intersection with any smooth curve has 1-dimensional measure 0.
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Geometric measure theory: Open question

Does there exist a purely unrectifiable set which is NOT uniformly purely
unrectifiable?

Question

Does there exist a purely unrectifiable UDS?
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◮ In the construction, replace straight segments by broken lines or

curves with Lipschitz constants → ∞
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curves with Lipschitz constants → ∞

◮ If the measure of E ∩ I is zero for straight line intervals I then we
cannot have a sequence of points xn ∈ E
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◮ If the measure of E ∩ I is zero for straight line intervals I then we
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Geometric measure theory: Open question

Does there exist a purely unrectifiable set which is NOT uniformly purely
unrectifiable?

Question

Does there exist a purely unrectifiable UDS?

◮ In our original construction the final set contains many straight line
intervals ⇒ not p.u.

◮ However we know how to eliminate all straight line intervals from
the UDS

◮ Now eliminate the measure from these intervals (and smooth curves)
◮ In the construction, replace straight segments by broken lines or

curves with Lipschitz constants → ∞

◮ If the measure of E ∩ I is zero for straight line intervals I then we
cannot have a sequence of points xn ∈ E (nothing to start with!)
so xn ∈ En for each n ≥ 1
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Geometric measure theory: Open question

Does there exist a purely unrectifiable set which is NOT uniformly purely
unrectifiable?

Question

Does there exist a purely unrectifiable UDS?

◮ In our original construction the final set contains many straight line
intervals ⇒ not p.u.

◮ However we know how to eliminate all straight line intervals from
the UDS

◮ Now eliminate the measure from these intervals (and smooth curves)
◮ In the construction, replace straight segments by broken lines or

curves with Lipschitz constants → ∞

◮ If the measure of E ∩ I is zero for straight line intervals I then we
cannot have a sequence of points xn ∈ E (nothing to start with!)
so xn ∈ En for each n ≥ 1

◮ If xn ∈ En \ En+1 then how to find xn+1 ∈ En+1 close to xn+1?
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W.T. Gowers started a classification program for Banach
spaces The goal of the program is to identify disjoint classes of
Banach spaces which are

• inevitable, i.e. any Banach space contains an infinite
dimensional subspace in one of those classes,

• hereditary, i.e. if a space belongs to a given class, then all
of its closed infinite dimensional subspaces as well,

• belonging to one class gives a lot information about the
structure of the space and what operators can be defined
on it.

The starting point was W.T. Gowers and B. Maurey example
of a Hereditarily Indecomposable (H.I). Banach space.

Definition
A Banach space X is said to be H.I. if no subspace of X
admits a non-trivial projection.
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Theorem (Gowers 1st dichotomy)
Every Banach space contains either an HI subspace or a
subspace with an unconditional basis.

The H.I property⇔ dist(SY , SZ ) = 0 for all Y ,Z inf.
dimensional subspaces of X implies quasi-minimality.

Definition
X is quasi-minimal if every two inf. dimensional subspaces
Y ,Z of X have further subspaces Y1,Z1 resp. which are
isomorphic.

Definition (H.P. Rosenthal)
A Banach space X is said to be minimal if every infinite
dimensional subspace of X has further subspace isomorphic to
X .

`p-spaces are minimal, Schlumprecht’s space is minimal space
not containing any `p.
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A quasi-minimal space which does not contain a minimal
subspace is called strictly quasi-minimal .
Tsirelson’s space is strictly quasi-minimal Banach space.

Theorem (Gowers classification)
Every Banach X space has a subspace Y with one of the
following properties

• Y is H.I space

• Y has unconditional basis and no two subspaces with
disjoint support are isomorphic

• Y has unconditional basis and is quasi-minimal

1. is strongly quasi-minimal
2. is minimal

A dichotomy with respect the minimality was asked.
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Definition (V. Ferenczi-C. Rosendal (2007))
A space X with a Schauder basis (en)n is tight if for every
subspace Y of X there exists a successive sequence

I0 < I1 < I2 < . . .

of subsets of N such that for every infinite subset A of N,
Y 6↪→ [en, n 6∈ ∪i∈AIi ].

1) A tight space admits few embeddings of any space Y.
2) [FR] A tight space contains no minimal subspace.
(FR-3rd dichtomy) A Banach space contains either a minimal
subspace or a tight subspace.
Example: Tsirelsons space T , Gowers space Gu with
unconditional basis solving the hyperplane problem.
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V.Ferenczi- C.Rosendal distinguish three forms of tightness

• Tight with constants: For every subspace Y the sequence
of subsets I0 < I1 < . . . witnessing the tightness of Y
maybe chosen so that

Y 6↪→K [en : n 6∈ IK ] ∀K .

• Tight by support: For every block subspace Y = [yk ] the
sequence of subsets I0 < I1 < . . . witnessing the tightness
of Y maybe chosen so that

Ik = supp(yk).

• Tight by range: For every block subspace Y = [yk ] the
sequence of subsets I0 < I1 < . . . witnessing the tightness
of Y maybe chosen so that

Ik = range(yk).



Theorem ((FR)-classification 2007)
Any infinite dimensional Banach space contains a subspace
from one of the following classes:

1. HI, tight by range (Gowers HI space with asymptotic
unconditional basis),

2. HI, tight, sequentially minimal (?)
(X is sequentially minimal if it is quasiminimal end every

block subspace has subsequentiall minimal subspace)

3. tight by support (the space Gu),

4. unconditional basis, tight by range, quasi-minimal (?),

5. unconditional basis, tight, sequentially minimal,(T-space),

6. unconditional basis, minimal (`p, c0, T ∗, S)



The proof that the above examples of spaces are in classes
1,3,5,6 and for more examples in classes 1,3,5,6, V.
Ferenczi-C. Rosendal, Banach spaces without minimal
subspaces(Examples), JFA 2009, (Annales de l’Institut Fourier,
(2012))

Example of a space in class 2? i.e. an HI, tight by range and
sequentially minimal space?

V. Ferenczi- Th. Schlumprecht: A variation of Gowers-Maurey
space is in class 2), (Proceeding’s of LMS)
A similar result was given recently by S.A.Argyros and P.
Motakis.

Example of a space in class (4)?
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We shall present an example of space in class (4). i.e. a space
X with unconditional basis which is
a) quasi-minimal
b) tight by range ⇔ no two block subspaces with disjoint
ranges being comparable



Basic Notation

Given a symmetric subset W ⊂ c00(N), which contains the
uvb (en)n we define

‖x‖W = sup{< x , f >: f ∈ W }

Given x , y ∈ c00(N) we say that

x < y if max supp(x) < min supp(y).



Let θ ∈ (0, 1) and n ∈ N. We say that a subset W ⊂ c00(N) is
closed under (θ,An)-operation if whenever

f1 < · · · < fn in W then θ(f1 + · · ·+ fn) ∈ W .

We consider two sequences of natural numbers
(nj)j ↗∞, (mj)j ↗∞.
We say that f ∈ c00(N) has weight mj , w(f ) = mj , if f is the
result of an (m−1j ,Anj )j operation.

Definition
A finite sequence (f1, . . . , fn2j+1

) of c00(N) is said to be special

sequence if every fi is the result if an (m−12ji
,An2ji

)-operation, j1
sufficiently large and for every i > 1, ji is uniquely determined
by the sequence (|f1|, |f2|, . . . , |fi−1|)
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(nj)j ↗∞, (mj)j ↗∞.
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Definition
A finite sequence (f1, . . . , fn2j+1

) of c00(N) is said to be special

sequence if every fi is the result if an (m−12ji
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)-operation, j1
sufficiently large and for every i > 1, ji is uniquely determined
by the sequence (|f1|, |f2|, . . . , |fi−1|)



A variation of Gowers example Gu

Let W1 be the smallest subset of c00(N) satisfying

(i) W1 contains (en)n

(ii) For every f ∈ W1 and g ∈ c00 with |g | = |f |, then
g ∈ W1

(iii) It is closed in the projections on the subsets of N
(iv) It is closed in the even operations ( 1

m2j
,An2j )

(v) It is closed in the odd operations ( 1
m2j+1

,An2j+1
) on special

sequences f1, f2, . . . , fn2j+1

Let X1 = (c00(N), ‖·‖W1).



Properties of the space X1

The space X1 is

• reflexive with a 1-unconditional basis

• tight by support, hence not quasi-minimal.

In particular the space X1 does not contain block sequence
(xn)n with the even-odd property i.e. (x2n+1)n ∼ (x2n)n
which implies that X1 is not isomorphic to a proper subspace.

(W.T. Gowers- B.Maurey, Math. Annalen 97) Every bounded
operator T in X1 is of the form T = D + S where D is a
diagonal and S is strictly singular.
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Properties of the space X1

The space X1 is

• reflexive with a 1-unconditional basis

• tight by support, hence not quasi-minimal.

In particular the space X1 does not contain block sequence
(xn)n with the even-odd property i.e. (x2n+1)n ∼ (x2n)n
which implies that X1 is not isomorphic to a proper subspace.

(W.T. Gowers- B.Maurey, Math. Annalen 97) Every bounded
operator T in X1 is of the form T = D + S where D is a
diagonal and S is strictly singular.



Variations of the norming set W1

The projection on subsets is essential to prove the tightness by
support.
Since we are looking for quasi-minimality we substitute this
property with the projections on intervals of N. i.e. we take
W2 to have the same properties as W1 except that is closed in
the projections on the intervals of N.



Let W2 be the smallest subset of c00(N) satisfying

(i) W2 contains (en)n

(ii) For every f ∈ W2 and g ∈ c00 with |g | = |f |, then
g ∈ W2

(iii) It is closed in the projections on the intervals of N (this
only difference with the definition of W1)

(iv) It is closed in the even operations ( 1
m2j
,An2j )

(v) It is closed in the odd operations ( 1
m2j+1

,An2j+1
) on special

sequences f1, f2, . . . , fn2j+1

Let X2 = (c00(N), ‖·‖W2).
The space X2 is reflexive with a 1-unconditional basis and
quasi-minimal.



If in the set W2 we add the condition to be closed in the
rational convex combinations then we get a space X3 with
unconditional basis which is tight by support and hence not
quasi-minimal.
In order to get tightness by range we need an additional
property for the set W2.



The G -operation

Definition
A subset F = {n1 < n2, . . . , nk} of N is Schreier admissible,
S-admissible, if

k ≤ n1 < n2 < · · · < nk .

Definition (The G -operation)
Given f ∈ c00 and F = {n1, . . . , n2k} S-admissible let

GF (f ) =
1

2

k∑
i=1

E2i−1f where E2i−1 = [n2i−1, n2i)
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The norming set a type-(4) space

Let W4 be the smallest subset of c00(N) such that

(i) W4 contains (en)n

(ii) For every f ∈ W4 and g ∈ c00 with |g | = |f |, then
g ∈ W4

(iii) It is closed in the projections on the intervals of N
(iv) It is closed in the even operations ( 1

m2j
,An2j )

(v) It is closed in the odd operations ( 1
m2j+1

,An2j+1
) on special

sequences f1, f2, . . . , fn2j+1

(vi) It is closed in the G -operation.

The set W4 is the set W2 with the additional property to be
closed in the G -operation.
Let X4 be the completion of (c00, ‖·‖W4).



Theorem
The space X4 is reflexive with unconditional basis,
quasi-minimal and tight by range.

Sketch of the tightness. Let (xi) be normalized block
sequence. We show that there exists no bounded operator T
such that supp T (xi) ∩ range(xi) = ∅ and T can be extended
to an isomorphism from [(xi)] to X . This will prove that X(4)

is tight by range.
Let T be an operator as above and assume without loss of
generality that ‖T‖ ≤ 1. By the reflexivity of the space and
passing to a subsequence we may assume that (T (xi))i is a
block sequence and moreover

range(xi + Txi) < range(xi+1 + Txi+1) ∀i ∈ N.
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Lemma
Let (xk)k be a normalized block sequence. Then for every
n ∈ N there exists l(n) ∈ N such that for every finite
subsequence (xn)n∈F of (xk) with #F ≥ l(n) there exists a
block sequence y1 < y2 < · · · < yn of (xn)n∈F such that
‖yi‖ ≤ 2 and

‖ 1
n

(y1 + y2 + · · ·+ yn)‖ =‖
∑

n∈F anxn‖ > 1

Observe that taking l(n) ≤ F we have that (xn)n∈F is
S-admissible sequence i.e. (min supp(xi))i∈F is S-admissible.

Let f ∈ W4 norms the average x =
∑

n∈F anxn. Applying the
G -operation we get the functional

Gf = 1
2
(range(xn1)f + range(xn3)f + · · ·+ range(xn#F−1)f ),

It holds Gf (x) ≥ 1/4 and supp Gf ∩ suppTxi = ∅ for every i



Lemma
Let (xk)k be a normalized block sequence. Then for every
n ∈ N there exists l(n) ∈ N such that for every finite
subsequence (xn)n∈F of (xk) with #F ≥ l(n) there exists a
block sequence y1 < y2 < · · · < yn of (xn)n∈F such that
‖yi‖ ≤ 2 and

‖ 1
n

(y1 + y2 + · · ·+ yn)‖ =‖
∑

n∈F anxn‖ > 1

Observe that taking l(n) ≤ F we have that (xn)n∈F is
S-admissible sequence i.e. (min supp(xi))i∈F is S-admissible.
Let f ∈ W4 norms the average x =

∑
n∈F anxn. Applying the

G -operation we get the functional

Gf = 1
2
(range(xn1)f + range(xn3)f + · · ·+ range(xn#F−1)f ),

It holds Gf (x) ≥ 1/4 and supp Gf ∩ suppTxi = ∅ for every i



Lemma
Let (xk)k be a normalized block sequence. Then for every
n ∈ N there exists l(n) ∈ N such that for every finite
subsequence (xn)n∈F of (xk) with #F ≥ l(n) there exists a
block sequence y1 < y2 < · · · < yn of (xn)n∈F such that
‖yi‖ ≤ 2 and

‖ 1
n

(y1 + y2 + · · ·+ yn)‖ =‖
∑

n∈F anxn‖ > 1

Observe that taking l(n) ≤ F we have that (xn)n∈F is
S-admissible sequence i.e. (min supp(xi))i∈F is S-admissible.
Let f ∈ W4 norms the average x =

∑
n∈F anxn. Applying the

G -operation we get the functional

Gf = 1
2
(range(xn1)f + range(xn3)f + · · ·+ range(xn#F−1)f ),

It holds Gf (x) ≥ 1/4 and supp Gf ∩ suppTxi = ∅ for every i



We use now the machinery which has been developed for
mixed Tsirelson spaces with ’conditional structure’, i.e. we
construct for j ∈ N a double block sequence (ui , fi)

n2j+1

i=1 with
the following main properties

1. (f1, . . . , fn2j+1
) is a special sequence

2. ‖ui‖ = 1 and fi(ui) ≥ 1/4, range(fi) = range(ui) ∀i
3. supp fi ∩ supp Txj = ∅ for all i , j .
4. for every f ∈ W4 with w(f ) 6= w(fi) it holds
|f (ui)| ≤ max{w(f ),m−22ji

}(≈ 0).

The functional 1
m2j+1

(f1 + · · ·+ fn2j+1
) is the result of an

(m−12j+1,An2j+1
)-operation and hence belongs to W4. It holds

‖ 1

n2j+1

n2j+1∑
i=1

ui‖ ≥
1

m2j+1
fi(

m2j+1

n2j+1

n2j+1∑
i=1

ui) ≥ 1/4m2j+1

while ‖ 1

n2j+1

n2j+1∑
i=1

Tui‖ ≤
1

m2
2j+1

⇒ T no-isomorphism
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(V.Ferenczi-C.Rosendal 5th dichotomy). Every Banach space
X contains a subspace Y with basis that is
either tight with constants
or locally minimal i.e. there exists K such that Y is K -crudely
finitely representable in any of its subspaces.

In the space X4 it holds that `∞ is finitely disjointly
representable in every subspace and hence X4 is locally
minimal.

In the spaces Gu,X1 every bounded operator is of the form
T = D + S , D diagonal and S strictly singular.
Question: Does the same holds for the operators on X4?
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The quasi-minimality

The space X4 is
tight by range⇔ no two block subspaces with disjoint range
be comparable
In order to get quasi-minimality we have to use block
sequences with no disjoint range and to some extension to
have the same range.



The basic idea is the following:
Step 1. Given two block subspace Y ,Z of X4 we choose for j ,

A) y1 < z1 < y2 < z2 < · · · < yn2j/2 < zn2j/2 yi ∈ SY , zi ∈ SZ ,
B) y ∗i , z

∗
i ∈ W such that y ∗i (yi) = 1 = z∗i (zi)

C) range(y ∗i ) = range(yi), range(z∗i ) = range(zi)

and for u = y + z =
m2j

n2j
(y1 + z1 + · · ·+ yn2j/2 + zn2j/2) and

f = 1
m2j

(y ∗1 + z∗1 + · · ·+ y ∗n2j/2 + z∗n2j/2) it holds

(I) ‖u‖ = 1(= f (u))

(II) ∀x∗ ∈ W4:
w(x∗) 6= m2j ⇒ |x∗(u)| ≤ max{w(x∗),m−22j }(≈ 0).

Note that f (y) = 1/2 = f (z).



STEP 2. We construct vectors y ∈ Y , z ∈ Z such that
a) they have almost the same range
b) they are normed by the same (unique) functional.
Using Step 1 we choose a double sequence (ui , fi)

n2j+1

i=1 with the
following properties

1. for every i , (ui , fi) satisfies (I ), (II ) constructed as in step
1. i.e.
• ui = yi + zi =

m2j1
n2ji

∑n2ji /2

k=1 (yik + zi ,k)

• fi =
1

m2ji

∑
k(y
∗
i ,k + z∗i ,k),

• fi (yi ) = 1/2 = fi (zi )

2. (f1 . . . , fn2j+1
) is a special sequence

Let y =
m2j+1

n2j+1

∑
i yi , z =

m2j+1

n2j+1

∑
i zi and f = 1

m2j+1

n2j+1∑
i=1

fi

Note that range(y) ≈ range(z) and f (y) = 1
2

= f (z).



Property (2) in the choice of the double sequence (ui , fi) i.e.
for f ∈ W4 with w(f ) 6= w(fi) it holds

|f (ui)| ≤ max{w(f ),m−22ji
}(≈ 0).

as well as the definition of the special sequences,

the weight of fi is uniquely determined by (|f1|, . . . , |fi−1|),

implies that if a functional g gives good estimation on y then
g must equal to f or at least be ” an initial segment” of f .
So if a functional ”norms” y also ”norms” also z .

Taking sequences (yi) ∈ Y and (zi) ∈ Z where for every i ,
yi , zi are as y and z above we prove that (y)i ∼ (zi)i .
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Introduction

In this lecture we will present an example of a Banach
space Xusm , the main property of which, is that every block
subspace of Xusm contains a spreading model universal
block sequence {zk}k .
The definition of the space Xusm is very similar to the
corresponding one of the space XISP , as the method used
to construct the norming set W is saturation under
constraints and the unconditional frame is Tsirelson space.
The key difference between the two constructions, is the
way special functionals are defined.
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The Problem

In 2005 G. Androulakis, E. Odell, Th. Schlumprecht, N.
Tomczak-Jaegermann, pose the following question. Does
there exist a Banach space X such that for every subspace
Y of X and 1 6 p <∞, `p is a spreading model of Y?



The Problem

In 2005 G. Androulakis, E. Odell, Th. Schlumprecht, N.
Tomczak-Jaegermann, pose the following question. Does
there exist a Banach space X such that for every subspace
Y of X and 1 6 p <∞, `p is a spreading model of Y?



The space Xusm

Theorem (S. A. Argyros, P. M.)

There exists a reflexive space Xusm with a Schauder basis {en}n
satisfying the following properties.

(i) The space Xusm is hereditarily indecomposable.

(ii) There exists a uniform constant C satisfying the following.
Every block sequence contains a further block sequence
{xk}k , such that every 1-subsymmetric sequence is
C-equivalent to the spreading model generated by a
subsequence of {xk}k .
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Further properties of the space Xusm

The space Xusm does not contain a subspace which is tight
by range, in a strong sense. More precisely, every Y block
subspace of Xusm contains a seminormalized block
sequence {xn}n satisfying the following. There exists an
onto isomorphism T : Xusm → Xusm such that
T (x2n−1) = x2n for n ∈ N.

A similar result to the above was previously proven by V.
Ferenczi and Th. Schlumprecht. In particular, they
constructed a Gowers-Maurey type space, not containing a
subspace which is tight by range. (Subsequential
minimality in Gowers and Maurey spaces, to appear in
Proc. London Math. Soc.)



Further properties of the space Xusm

The space Xusm does not contain a subspace which is tight
by range, in a strong sense. More precisely, every Y block
subspace of Xusm contains a seminormalized block
sequence {xn}n satisfying the following. There exists an
onto isomorphism T : Xusm → Xusm such that
T (x2n−1) = x2n for n ∈ N.

A similar result to the above was previously proven by V.
Ferenczi and Th. Schlumprecht. In particular, they
constructed a Gowers-Maurey type space, not containing a
subspace which is tight by range. (Subsequential
minimality in Gowers and Maurey spaces, to appear in
Proc. London Math. Soc.)



Further properties of the space Xusm

The space Xusm does not contain a subspace which is tight
by range, in a strong sense. More precisely, every Y block
subspace of Xusm contains a seminormalized block
sequence {xn}n satisfying the following. There exists an
onto isomorphism T : Xusm → Xusm such that
T (x2n−1) = x2n for n ∈ N.

A similar result to the above was previously proven by V.
Ferenczi and Th. Schlumprecht. In particular, they
constructed a Gowers-Maurey type space, not containing a
subspace which is tight by range. (Subsequential
minimality in Gowers and Maurey spaces, to appear in
Proc. London Math. Soc.)



Further properties of the space Xusm

The space Xusm is sequentially minimal. More precisely, in
every Y block subspace of Xusm , there exists a
seminormalized block sequence {xk}k , such that any Z
block subspace of Xusm , contains a sequence equivalent to
some subsequence of {xk}k .

This fact can actually be deduced from the previous
property and V. Ferenczi - Ch. Rosendal dichotomy
(Banach spaces without minimal subspaces, J. Funct.
Anal. (2009)). In the present case however it is possible to
identify the sequence {xk}k , witnessing the sequential
minimality of the space.
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Further properties of the space Xusm

In every block subspace Y of Xusm , there exists T : Y → Y
a strictly singular operator, which is not polynomially
compact.
The existence of such an operator is directly linked to the
large variety of spreading models appearing in every
subspace of Xusm . In particular, the construction of T uses
sequences generating `p spreading models.
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Spreading model universal sequences

Let {uk}k denote the unconditional universal basic
sequence of Pełczyński.
Then, for any ε > 0, every 1-subsymmetric sequence, is
1 + ε-equivalent to some subsequence of {uk}k .
Assume that you have a sequence {xk}k in some Banach
space, satisfying the following.
There exists a constant C > 0, such that for any F ∈ S,
{xk}k∈F is C-equivalent to {uk}k∈F .
Then, every 1-subsymmetric sequence, is C-equivalent the
spreading model generated by some subsequence of
{xk}k .
The goal is to construct a space, where such a sequence
can be found in any further subspace.
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The norming set Wusm

The construction of the set Wusm uses as an unconditional
frame the set W(1/2n,Sn)n and it is quite similar to the
norming set of the space XISP .
The ( 1

2n ,Sn, α) and ( 1
2n ,Sn, β) operations are also used

here.
The key difference concerns the definition of the special
functionals.



The norming set Wusm

The construction of the set Wusm uses as an unconditional
frame the set W(1/2n,Sn)n and it is quite similar to the
norming set of the space XISP .
The ( 1

2n ,Sn, α) and ( 1
2n ,Sn, β) operations are also used

here.
The key difference concerns the definition of the special
functionals.



The norming set Wusm

The construction of the set Wusm uses as an unconditional
frame the set W(1/2n,Sn)n and it is quite similar to the
norming set of the space XISP .
The ( 1

2n ,Sn, α) and ( 1
2n ,Sn, β) operations are also used

here.
The key difference concerns the definition of the special
functionals.



The norming set Wusm

The construction of the set Wusm uses as an unconditional
frame the set W(1/2n,Sn)n and it is quite similar to the
norming set of the space XISP .
The ( 1

2n ,Sn, α) and ( 1
2n ,Sn, β) operations are also used

here.
The key difference concerns the definition of the special
functionals.



The norming set Wusm

In every HI construction the special functionals form an infinite
branching tree, such that the weight of each functional
appearing in the tree, uniquely determines all its predecessors.
In our case the tree structure is more involved, as every branch
of the tree defines two kinds of special functionals.



The norming set Wusm

b

fq

gq

F Schreier
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The norming set Wusm

The norm on the space Xusm is induced by a norming set
Wusm which is the minimal set satisfying the following
properties.

(Type Iα functionals) The set WISP is closed in the
( 1

2n ,Sn, α) operations.

(Type Iβ functionals) The set WISP is closed in the
( 1

2n ,Sn, β) operations.
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(special sequences) A sequence of pairs of functionals of
type Iα {fq,gq}q, is called a special sequence if

f1 < g1 < f2 < g2 < · · · < fq < gq < · · ·

w(fq) = w(gq) for q = 1, . . . ,d

and the weight of fk uniquely determines the sequence
{fq,gq}k−1

q=1
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The norming set Wusm

(Type II− functionals) The set Wusm includes all Eφ, with E
an interval of the naturals and

φ =
1
2

∑

q∈F

λq(fq − gq)

with {fq,gq}q a special sequence of type Iα functionals,
F ⊂ N with #F 6 min F and {λq}q∈F ⊂ Q such that
‖∑q∈F λqu∗q‖u 6 1, where {u∗k}k denotes the
biorthogonals of the unconditional basis of Pełczyński.

(Type II+ functionals) The set Wusm includes all Eφ, with E
an interval of the naturals and

φ =
1
2

∑

q∈F

(fq + gq)

with {fq,gq}q a special sequence of type Iα functionals and
F ⊂ N with #F 6 min F .
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c0 spreading models in Xusm

As in the case of the space XISP ,the critical ingredient is
sequences generating c0 spreading models, which are
achieved through the fact that the norming set Wusm is
saturated under constraints.
Here, the α and β indices are also used to identify the
spreading models admitted by a block sequence. However,
unlike in the previous case, they are not enough to fully
describe them.
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c0 spreading models in Xusm

Proposition

Let {xk}k be a seminormalized block sequence in Xusm such
that the following hold.

(i) α
(
{xk}k

)
= 0 and β

(
{xk}k

)
= 0

(ii) For every special branch b = {fq,gq}∞q=1

lim
k

sup
{
|fq(xk )| ∨ |gq(xk )| : q ∈ N

}
= 0

Then there exists a subsequence {xkn}n of {xk}k
generating a c0 spreading model.

The type II+ functionals play a crucial in role identifying
block sequences satisfying property (ii) of the above
proposition, in every block subspace.
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Spreading models

In every block subspace, there exist seminormalized block
sequences x1 < y1 < x2 < y2 < · · · < xq < yq < · · · and
{fq,gq}q special sequences such that {xq, fq}, {yq,gq} are
exact pairs.
Then the sequence {xq − yq}q is spreading model
universal, i.e. every 1-subsymmetric sequence is
146-equivalent to the spreading model generated by a
subsequence of {xq − yq}q.
Moreover, the sequences {xq}q, {yq}q generate `1
spreading models and both admit as biorthogonal
sequence, the sequence {fq + gq}q, which generates a c0
spreading model in the dual.
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The space Xusm is not tight by range

Proposition (Ferenczi - Schlumprecht)

Let {xn}n, {yn}n be block sequences in a Banach space with a
basis. If the maps xn → xn − yn and yn → xn − yn extend to
bounded linear operators, then the sequences {xn}n and {yn}n
are equivalent.

We choose sequences {xq}q, {yq}q as above and any L
infinite subset of the natural numbers such that
{xq − yq}q∈L generates a spreading model not equivalent
to `1. Since {xq}q and {yq}q generate `1 spreading models
the assumptions of the above proposition are satisfied and
therefore they are equivalent.
Moreover, since {fq + gq}q generates a c0 spreading
model in the dual and they are biorthogonal to both {xq}q
and {yq}q, the exists an isomorphism T : Xusm → Xusm such
that Txq = yq for q ∈ N.
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The space Xusm is sequentially minimal

In every block subspace there exists a block sequence
{xq}q and {fq}q a sequences of type Iα functionals in Wusm ,
such that {xq, fq} are exact pairs and for every natural
number n, there exist infinitely many q with w(fq) = n.

Theorem
Let {xq}q be a sequence as above. Then in every block
subspace Y of Xusm , there exists a sequence {yk}k , a strictly
increasing sequence of natural numbers {qk}k and
T : Xusm → Xusm an onto isomorphism, such that Txqk = yk for
k ∈ N.
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Strictly Singular Operators

Proposition

Let 1 < q <∞ and q′ be its conjugate. Then the following
holds.

If {x∗m}m is a block sequence in X∗usm and {xk}k is a block
sequence in Xusm satisfying the following,

(i) {x∗m}m is either generating an `p spreading model, with
p > q′, or a c0 spreading model

(ii) {xk}k is either generating an `r spreading model with
r > q, or a c0 spreading model
then the map T : Xusm → Xusm with Tx =

∑∞
k=1 x∗k (x)xk is

bounded, non compact and strictly singular.
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Strictly Singular Operators

Proposition
Let Y be a block subspace of Xusm . Then there exists
S : Y → Y a strictly singular operator which is not polynomially
compact.

The construction of S goes as follows.
We choose a strictly increasing sequence of real numbers
{pn}n,p1 > 2 and appropriate block sequences {xn

k }n,
such that {xn

k }n generates an `pn spreading model.
Using the previous proposition, construct operators Sn
such that Snxn

k = xn+1
k for all k ,n, whereas Snx l

k = 0 for all
n 6= l .
Then S =

∑∞
n=1

1
2n Sn is the desired operator.
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Thank you!
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Key open problem and (optimistic) conjectures

Key problem. Is it true that any three real-valued Lipschitz
functions on an (infinite dimensional separable real) Hilbert space
have a common point of Fréchet differentiability?

Conjecture I. Any countable collection of real-valued Lipschitz
functions on a Banach space with separable dual has a common
point of Fréchet differentiability.

Conjecture II. On a Banach space with separable dual, if we have
a countable collection fi of Lipschitz, RNP-valued functions, there
is a point x such that for each i ,

I fi is Gâteaux differentiable at x , and

I fi is Fréchet differentiable at x provided that the set of
Gâteaux derivatives of fi is norm separable.

Basic notions

Let f : X → Y , where X ,Y are separable real Banach spaces.

Lipschitz: ‖f (y)− f (x)‖ ≤ C‖y − x‖ for all x , y ∈ X . The least
such C is the Lipschitz constant of f , denoted Lip(f ).

Derivative of f at x0 in the direction of u ∈ X is

f ′(x0; u) := lim
t→0

f (x0 + tu)− f (x0)

t
.

Fréchet derivative of f at x0 ∈ X is f ′(x0) = f ′F (x0) ∈ L(X ,Y ),
i.e., a continuous linear map f ′(x0) : X → Y , such that

f (x0 + u) = f (x0) + f ′(x0)u + o(‖u‖) as ‖u‖ → 0.

Gâteaux derivative of f at x0 is f ′(x0) = f ′G (x0) ∈ L(X ,Y ) such
that f ′(x0)(u) = f ′(x0; u) for every u.

Porosity

A set P ⊂ X is said to be porous at x if there are xk → x ,
rk > ‖xk − x‖ and c > 0 such that B(xk , crk) ∩ P = ∅.

Trivial but important observation. P is porous at x0 iff

x → dist(x ,P)

is not Fréchet differentiable at x0.

Definition. Porous sets are sets porous at all their points.
Definition. σ-porous sets are countable unions of porous sets.

Note. Conjectures I, II are often stated as asking for a concept of
null sets (a proper σ-ideal of Borel subsets of X ) such that every
Lipschitz f : X → R is Fréchet differentiable a.e., etc.

The observation says σ-porous set must be null. For Gâteaux
differentiability, a similar role is played by directional porosity,
which requires the xk to be on one line through x .



Exercises

(P.1) For every σ-porous set S construct a Lipschitz f : X → R
that is Fréchet non-differentiable at every point of S .

(P.2) Can you do the same for σ-directional porosity and Gâteaux
non-differentiability?

(P.3) Let 0 < c < 1. Show every σ-porous set can be written as a
union of porous sets Pi such that each Pi is porous with
constant c (i.e., for each x ∈ Pi the definition of porosity of
Pi holds with the given c).

(P.4) Let P be porous in direction x =
∑n

i=1 αixi . Show that
P =

⋃n
i=1 Pi where Pi is porous in direction xi .

(P.5) If in (P.4), P is porous in direction x with constant c, what
are possible porosity constants of the sets Pi?

Lipschitz isomorphism problem.

Problem. If f is a Lipschitz isomorphism of a separable X onto Y ,
are X and Y (linearly) isomorphic?

Approaches via differentiability.

I If f ′F (x0) exists at some x0, it is an isomorphism of X onto Y ;
but f may be nowhere Fréchet differentiable.

I If f ′G (x0) exists at some x0, it is an isomorphism onto a
subspace of Y . In some cases, this leads to a positive answer:
Hilbert space, other classical spaces, or spaces not isomorphic
to any proper subspace.

I If f ′G (x0) exists at some x0, and (y∗ ◦ f )′F (x0) exists for a
dense set of y∗ ∈ Y ∗, then f ′G (x0) is an isomorphism of X
onto Y . Hence Conjecture II implies a positive answer for
RNP spaces with separable dual.

Lipschitz quotient problem.

Lipschitz quotient f : X → Y is a map which is Lipschitz and
co-Lipschitz (there is c > 0 so that f (B(x , r)) ⊃ B(f (x), cr)).

Problem. Under what conditions does the existence of a Lipschitz
quotient of X onto Y imply that Y is a (linear) quotient of X ?

Comments.

I Separability is not sufficient: if X ⊃ `1, every separable Y is a
Lipschitz quotient of X .

I If for some x0 there is a dense set of y∗ ∈ Y ∗ such that
(y∗ ◦ f )′F (x0) exists, then y∗ → (y∗ ◦ f )′F (x0) is an embedding
of Y ∗ to X ∗.

I Conjecture I implies a positive answer for separable reflexive
spaces.

RNP and Gâteaux differentiability

Definition. Y has the RNP if every Lipschitz f : R→ Y is
differentiable at least at one point (equivalently a.e.)

Theorems. If X is separable and Y has the RNP, every Lipschitz
f : X → Y is Gâteaux differentiable a.e.

Definitions of null sets. A Borel set N ⊂ X is null if

I (Mankiewicz, 1972) Whenever xi ∈ X have dense span,∑
i ‖xi‖ <∞, and x ∈ X , then

{t ∈ [0, 1]N : x +
∑

i tixi ∈ N} is a null set in [0, 1]N.

I (Aronszajn, 1976) For every xi ∈ X with dense span,
N =

⋃
i Ni , Ni Borel and null on every line in direction of xi .

I (Phelps, 1978) N is null for every non-degenerated Gaussian
measure on X .

Theorem (Csörnyei, 1999) These three notions coincide.



Haar null sets

Definition (Christensen, 1972) A Borel set N ⊂ X is Haar null if
there is a Borel probability measure µ on X such that
µ(x + N) = 0 for every x ∈ X .

Remarks.

I Form a proper σ-ideal.

I Definition makes sense in topological groups.

I Our previous null sets are Haar null.

I Rediscovered by Hunt, Sauer and Yorke (1992) and called
“shy” with complements called “prevalent.”

I There is an interesting extension defining shy subsets of
convex completely metrizable sets (Anderson and Zame, 2001)

Strengthening of Gâteaux differentiability results

Theorem (Zaj́ıček,P) For any Lipschitz f : X → Y there is a
σ-directionally porous set S ⊂ X such that f is Gâteaux
differentiable at every point of X \ S at which it is differentiable in
a spanning set of directions.

Corollary. Given any Lipschitz f : X → Y , there is a Lipschitz
h : X → R such that f is Gâteaux differentiable at every point of
X for which there is a spanning set of directions in which
(f , h) : X → Y × R is differentiable.

Note. The published proof adds countably many functions h, but it
should be possible to reduce it to just one by methods of Exercise
(P.2).

Corollary. Aronszajn’s Theorem.

Gâteaux differentiability and behaviour of sets on curves

Definition. A Borel set N ⊂ X is null on curves close to direction
u ∈ X \ {0} if there is η > 0 so that N has measure zero on every
curve γ : R→ X such that Lip(γ(t)− tu) < η.

Denote by N the σ-ideal generated by such sets.

Theorem (Zaj́ıček, P, 2001) Every Lipschitz f : X → Y , X
separable, Y with RNP, is Gâteaux differentiable N -a.e.

Possibly spurious improvements and problems.

I This can be improved to Aronszajn-like decomposition, but we
do not know if it is a genuine strengthening?

I If we consider only real-valued f , we can replace null by
“regularly null:” For every ε > 0 there is open G ⊃ N so that
λ(γ−1(N)) < ε for all γ : R→ X with Lip(γ(t)− tu) < η.
Does this hold in general? Is it a genuine strengthening?

Problem. In `2, do the σ-ideals generated by sets of Gâteaux
nondifferentiability of real-valued and `2-valued functions coincide?

The UPU problem

The simplest version. Let N ⊂ R2 be a Borel set such that

λ{t; (t, g(t)) ∈ N} = 0

for every g : R→ R with Lip(g) < 2.
Is there an open set G ⊃ N such that

λ{t; (t, g(t)) ∈ G} < 1

for every g : R→ R with Lip(g) < 1?

Comments

I True for Kσ sets. (Easy exercise.)

I Unknown, and in fact most interesting, for Gδ sets N.



How big can porous sets be on curves?

The real problem. On what X can one find a Lipschitz f : X → R
(or f : X → Y , Y with RNP) whose set of points of Gâteaux
differentiability is σ-porous?

Subproblem. In what X can one find a σ-porous set whose
complement belongs to N ?

Partial answers

I X ∗ is separable iff σ-porous sets are null on typical curves.

I (Maleva) If X ⊃ `1, there is a σ-porous set with complement
null on all curves.

I In `p, p ≥ n ≥ 2, it is impossible to find a σ-porous set with
complement expressible as a union of n sets, each of which is
null on curves close to some direction.

I In c0-like spaces it is impossible to find a σ-porous set with
complement in N .

Fréchet differentiability of Lipschitz functions – history

Literature contains several examples of real-valued Lipschitz
functions on Hilbert spaces that are nowhere Fréchet differentiable.

These are also counterexamples to our Key Problem.

However, at the 1979 Conference on Banach Spaces at Kent State
University, Robert Phelps gave a careful analysis of these examples
and found a (different) mistake in each of them.

Theorem (P, 1990) Every real-valued Lipschitz function on a
Banach space with separable dual is Fréchet differentiable at least
at one point.

In spite of quite a lot of effort, the question whether or not this
can be extended to complex-valued or Rn-valued function remains
largely open.

A real-valued example (Averbukh & Smolyanov, 1967)

Claim (without proof) A Lipschitz, nowhere Fréchet differentiable
function:

f (x) =

∫ π

0
sin(x(t)) dt, as a map of L2(0, π) to R

Calculation of Fréchet derivative of f .

f (x + u) = f (x) +

∫ π

0
cos(x(t))u(t) dt + error,

where error is estimated by∣∣∣ ∫ π

0

(
sin(x(t) + u(t))− sin(x(t))− cos(x(t))u(t)

)
dt
∣∣∣

≤ 1

2

∫ π

0
|u(t)|2dt =

1

2
‖u‖2 = o(‖u‖)

A vector-valued example (Sova 1966)

Example. A Lipschitz, nowhere Fréchet differentiable map

f (x)(t) = sin(x(t)), as a map of L2(0, π) to itself

Proof for x = 0. If f ′(0) exists,

f ′(0)u = lim
t→0

sin(0 + tu)− sin(0)

t
= u.

But, as the measure of a set S ⊂ (0, π) tends to zero,

‖f (0+π1S)−f (0)−f ′(0)(π1S)‖ = ‖ sin(π1S)−sin(0)−π1S‖ = π‖1S‖

is not o(π‖1S‖).



Almost Fréchet differentiability

Lindenstrauss, P, 1996. On uniformly smooth spaces, for any
Lipschitz f : X → Rn and ε > 0 there are x0 ∈ X and a continuous
linear T : X → Rn so that

lim sup
‖u‖→0

‖f (x0 + u)− f (x0)− Tu‖
‖u‖

< ε

Johnson, Lindenstrauss, Schechtman, P, 2002. The same result
holds in asymptotically uniformly smooth spaces.

Comment. These are the only known Fréchet-type differentiability
results that hold even in situations when the so called “mean value
estimates” are false.

Smoothness and Asymptotic Smoothness

Definition. Modulus of (uniform) smoothness of X is

ρX (t) = sup
‖x‖=1,‖y‖≤t

‖x + y‖+ ‖x − y‖
2

− 1, t > 0

The space X is said to be uniformly smooth if limτ→0 ρX (t)/t = 0.

Definition. Modulus of asymptotic uniform smoothness of X is

ρ̄X (t) = sup
‖x‖=1

inf
dim(X/Y )<∞

sup
y∈Y
‖y‖≤t

‖x + y‖ − 1, t > 0.

The space X is said to be asymptotically uniformly smooth if
limτ→0 ρ̄X (t)/t = 0.

Differentiability and Asymptotic Smoothness
Theorem (Lindenstrauss, Tǐser, P, 2002–2012). Suppose

ρ̄X (t) = o(tn logn−1(1/t)) as t → 0.

Then every Lipschitz f : X −→ Rn has points of Fréchet
differentiability.

Examples.

I ρ̄Hilbert(t) =
√

1 + t2 − 1 = o(t2 log(1/t)),

I ρ̄`p (t) = (1 + tp)1/p − 1 = o(tn logn−1(1/t)) if p ≥ n.

I ρ̄c0(t) = max{t − 1, 0} = o(tn logn−1(1/t)) for every n

Theorem (Lindenstrauss, Tǐser, P, 2002–2012).
Conjecture II holds for spaces satisfying

ρ̄X (t) = o(tn) for every n.

One dimensional mean value estimates

With the notable exception of “almost Fréchet differentiability
results,” the differentiability statements that we prove also include
a (multidimensional) mean value estimate.

One dimensional mean value estimate. If f : X → R is Lipschitz,
then for every x , u ∈ X and ε > 0, we can shift the segment
[x , x + u] slightly so that f is Gâteaux differentiable a.e. on it, and
infer that

f (x + u)− f (x) ≤ ε+ sup
{

f ′G (y)(u) : dist(y , [x , x + u]) < ε
}

If X ∗ is separable, this holds even with Fréchet derivatives (but not
by the same simple argument). In other words, the one
dimensional mean value estimate holds for Fréchet derivatives of
Lipschitz functions on spaces with separable dual.



Multidimensional mean value estimates

If M is a reasonable n-dimensional surface in X and f : X → Rn,
results such as divergence theorem, Stokes theorem, etc, express
(boundary) integrals of f as surface integrals of some linear forms
of f ′. This leads to inequalities analogous to those in the one
dimensional case, and they will again hold with Gâteaux derivatives
at points close to M.

Hence, to define what we mean by validity of multidimensional
mean value estimates for Fréchet derivatives of Rn-valued
functions, we can avoid discussion of surfaces, and require that for
every x at which f is Gâteaux differentiable, every T ∈ L(X ,Rn)∗

and every r > 0,

sup{T (f ′F (y)) : ‖y − x‖ < r} ≥ T (f ′G (x))

Invalid mean value estimates

Definition. A normalized sequence of elements xi ∈ F is said to
satisfy the upper q estimate if there is a constant A such that for
any sequence (ci ) of real numbers and any k ,

‖
∑k

i=1 cixi‖ ≤ A(
∑k

i=1 |ci |q)1/q.

Theorem (Lindenstrauss, Tǐser, P, 2002–2012). Suppose that, for
some q > n/(n − 1), the dual space X ∗ contains a normalized
sequence satisfying the upper q estimate. Then the
multidimensional mean value estimate does not hold for Fréchet
derivatives of Lipschitz Rn-valued functions on X .

Corollary. The multidimensional mean value estimate fails for
Fréchet derivatives of Lipschitz R3-valued functions on Hilbert
spaces, and for Fréchet derivatives of Lipschitz Rn-valued functions
on `p when p < n.

Large porous sets — again

An important part of our arguments are statements that σ-porous
sets are small. (Of course, we also know that for differentiability
results to hold this is necessary.)

In situations that we cannot handle, σ-porous sets can be rather
large.

Theorem (Lindenstrauss, Tǐser, P, 2002–2012). Let X be a
separable Banach space, and let n > 1. Suppose that, for some
β > 1, the dual space X ∗ contains a normalized sequence
satisfying the upper tn/(n−1)/ logβ(1/t) estimate. Then X contains
a σ-porous subset whose complement meets every n-dimensional
Lipschitz surface in a set of n-dimensional Hausdorff measure zero.

Γ-null sets

Γn-null sets: Borel sets N ⊂ X such that λn(γ−1(N)) = 0 for
typical (in the sense of Baire category) γ ∈ C 1([0, 1]n,X ).

Γ-null sets: Borel sets N ⊂ X such that λ∞(γ−1(N)) = 0 for
typical (in the sense of Baire category) γ ∈ C 1([0, 1]N,X ),
where C 1 means continuous with continuous partial derivatives.

Theorem (Lindenstrauss, P) Conjecture II holds for spaces in which
every porous set is Γ-null.

Problem. Is it true that every real-valued Lipschitz function X is
Fréchet differentiable a.e. with respect to the σ-ideal generated by
sets of Gâteaux non-differentiability (of real-valued Lipschitz
functions, of RNP-valued Lipschitz functions) and porous sets?



Porosity and Γn-nullness

Theorem (Lindenstrauss, Tǐser, P, 2002–2012). A separable
Banach space has separable dual iff every porous set in X is Γ1 null.

Theorem (Lindenstrauss, Tǐser, P, 2002–2012). Every directionally
porous set is Γ1-null and Γ2-null.

Theorem (Speight, 2012) For every n ≥ 3, every space of
dimension > n is a union of a Γn-null set and a σ-directionally
porous set.

Theorem (Lindenstrauss, Tǐser, P, 2002–2012). Suppose

ρ̄X (t) = o(tn logn−1(1/t)) as t → 0. (*)

Then every porous set in X is contained in a union of a
σ-directionally porous set and a Γn-null Gδ set.

It follows that if (*) holds for every n, every porous set is Γ-null.

Use of variational principles

Observation. Suppose that for the given Lipschitz function f on a
Hilbert space H we find a point x ∈ H and a unit vector u such
that f ′(x ; u) exists and is equal to the Lipschitz constant of f .
Then f is Fréchet differentiable at x.

Improved observation. Suppose that f is a Lipschitz function and
Φ : X × X → R is a locally uniformly continuous function having
continuous derivative with respect to the second variable.
Then f is Fréchet differentiable at a point x provided that we may
find a vector u such that the function

(y , v)→ f ′(y ; v)− Φ(y , v)

attains its maximum at (x , u).

One may hope to use a smooth variational principle to find such Φ
and (x , u).

A smooth variational principle

Suppose that h : M → R is lower bounded and lower
semicontinuous on a complete metric space (M, d). Suppose
further that Fj : M ×M → [0,∞], j ≥ 0, are functions lower
semicontinuous in the second variable with Fj(x , x) = 0 for all
x ∈ M and that 0 < rj ≤ ∞ are such that rj → 0 and

inf
d(x ,y)>rj

Fj(x , y) > 0.

If x0 ∈ M and (εj)
∞
j=0 is any sequences of positive numbers such

that

h(x0) < ε0 + inf
x∈M

h(x) and inf
d(x0,y)>r0

F0(x0, y) > ε0,

then one may find a sequence (xj)
∞
j=1 of points in M converging to

some x∞ ∈ M such that the function

H(x) := h(x) +
∞∑
j=0

Fj(xj , x)

attains its minimum on M at x∞.

An idea from descriptive theory

A serious difficulty with the use of smooth variational principles is
that the domain of the function h(x , u) = f ′(x ; u) whose maximum
we are seeking (after a perturbation) is not a complete metric
space (it is not defined on all of X × X ) and, even if it is defined
everywhere, it is not continuous (not even semi-continuous).

The domain M of h is a Borel set, so it is a 1-1 projection of a Gδ
set G in some X × X × Z ; metrizing G by a complete metric, we
can move it to a not topologically equivalent metric on M to make
it a complete metric space. Similarly, we can imagine making h
continuous.

Obviously, abstract parameters Z would not help, but this led us to
seeking “natural” parameters or distance that give the required
completeness and continuity, and at the same time control the
“differentiability behaviour” of f .



Cone monotone functions

Definition. A function f : X → R is cone-monotone if there is a
nonempty open cone C in X such that f (y) ≥ f (x) whenever
y − x ∈ C .

Theorem. Every cone-monotone function defined on a space X
with separable dual has a point of Fréchet differentiability outside
any given σ-porous set.

An appropriate version of the mean value estimate holds as well:
For any a, b ∈ X for which b− a belongs to C , any σ-porous set P,
and any ε > 0 there is x ∈ X \ P with dist(x , [a, b]) < ε at which
f is Fréchet differentiable and f ′(x ; b − a) < f (b)− f (a) + ε.

Metric space for Lipschitz f : X → R

We metrize

M =
{

(x , u) : ‖x − x0‖ < r , ‖u − u0‖ < r , f ′(x ; u) exists
}

by

d((x , u), (y , v)) = max
{
‖x − y‖, ‖u − v‖, %(fx ,u, fy ,v )

}
where fx ,u = f (x + u)− f (x) and

%(g , h) = sup
t∈(−r ,r)\{0}

|g(t)− h(t)|
|t|

.

Perturbations for f : X → R

Fi : M ×M −→ [0,∞),

Fi ((x , u), (y , v)) = Φi (x , y) + Ψi (u, v)

+ Qi ((x , u), (y , v)) + ∆i ((x , u), (y , v)),

where

Φi (x , y) = λi‖y − x‖, Ψi (u, v) = λi‖v − u‖2,

Qi ((x , u), (y , v)) = σi

(
f ′(y ; v)− f ′(x ; u)

)2
,

and

∆i ((x , u), (y , v)) = min
{
λi ,max{0, %(fx ,u, fy ,u)− si}

}
.

Notice that the peculiarity in the definition of ∆i is not a misprint:
∆i really does not depend on v .

Key lemma

Lemma. Let h : [a, b]→ R be such that h(b) = h(a) = 0. Assume
that

κ := sup
t∈[a,b]

Dh(t) <∞.

Then there is a set S ⊂ [a, b] such that λ(S) ≥ ‖h‖∞/(3κ) and for
every ξ ∈ S ,

I h is differentiable at ξ;

I h′(ξ) ≥ ‖h‖∞
3(b − a)

;

I |h(t)− h(ξ)| ≤ 60
√
κh′(ξ)|t − ξ| for every t ∈ [a, b].
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Zippin’s Embedding Theorem

Theorem (Zippin 1988)

Every separable Banach space X can be embedded into a Banach

space Z with a basis (ei ) so that:

1 If X ∗ is separable then (ei ) is shrinking, i.e.

the biorthognals (e∗i ) are a basis of X ∗.

2 If X is reflexive (ei ) is shrinking and boundedly complete

(X ≡ span(e∗j : j ∈ N)
∗

canonically).
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Quantified Versions of Zippin’s Result

[OSZ, 2007] If X is reflexive and max(Sz(X ),Sz(X ∗)) ≤ ωαω, then Z

embeds into a reflexive space Z with basis, so that

max(Sz(Z ),Sz(Z ∗)) ≤ ωαω.

[FOSZ, 2009] If X ∗ is separable and Sz(X ) ≤ ωαω, then Z embeds

into a space Z with a basis, such that Sz(Z ) ≤ ωαω.

[Ryan Causey, 2012] If X ∗ is separable and Sz(X ) ≤ ωα, then Z

embeds into a space Z such that Sz(Z ) ≤ ωα+1.
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Embedding into spaces with unconditional bases

[Johnson-Zheng 2008 & 2011] If X is a reflexive space/space with

separable dual which has the Unconditional Tree Property (UTP),

then X embeds into a reflexive/space with separable dual Z which

has an unconditional basis.

If X ∗ is separable and (en,e∗n) ⊂ X × X ∗ is a shrinking Markushevich

basis, and has (UTP) then there is blocking (En), so that every

normalized (En)-skipped block (xn) and every normalized

(E∗n )-skipped block (x∗n ) is C-unconditional for some C > 0.

Skipped means

max suppE (xn) < min suppE (xn+1)− 1.
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Embedding in Preduals of `1

[FOS, 2011] Every Banach space X embeds into a separable

L∞-space (and thus automatically has basis) so that

Z is predual of `1, if X ∗ is separable,

Sz(Z ) ≤ ωαω if Sz(X ) ≤ ωαω,

Z is somewhat reflexive if X is reflexive, and

Z doesnot contain a minimal space V if X does not contain V .
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Main Goal

A new proof of Zippin’s Theorem, which incorporates the other

embedding results.

Starting with a separable space X we want to construct a space Z

with an FDD, being as close to X as possible.
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Finite Dimensional Decompositions

A sequence of finite dimensional subspaces (Fn) of X is called

Finite Dimensional Decomposition of X (FDD)

if every x ∈ X has a unique representation as

x =
∑

j

xj , with xj ∈ Fj , for j ∈ N.

Shrinking and boundedly complete FDDs are defined as for bases:

(Fn) is shrinking ⇐⇒ X ∗ = span(F ∗n : n ∈ N)

(here: F ∗n =
{

x∗ ∈ X ∗ : suppF∗(x∗) = {i : x∗|Fi 6= 0} ⊂ {n}
}

)

(Fn) is boundedly complete ⇐⇒ X ≡ span(F ∗j : j ∈ N)
∗

(canonically).

Proposition (Johnson 1971)

If (Fn) is an FDD for a Banach space X then there are finite

dimensional spaces (Gn) so that X ⊕ (⊕Gn)`2 has a basis.
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Let X be a separable Banach space.

[Ovsepian and Pełczyński, 1975] X has Markushevich basis

(fundamental, biorthogonal and total) (en,e∗n) ⊂ X × X ∗

which is bounded and norming and which is

shrinking if X ∗ is separable and

shrinking and boundedly complete if X is reflexive.

(en) is fundamental: X = span(ej : j ∈ N),

(en,e∗n) is biorhogonal: e∗m(en) = δm,n,

(en,e∗n) is total: ∀x ∈X (∀n∈N e∗n(x) = 0)⇒ x = 0.

(en,e∗n) is C- bounded: supi∈N ‖ei‖ · ‖e∗i ‖ ≤ C,

(en,e∗n) is c- norming: sup{x∗(x) : x∗∈B∗X ∩ span(e∗j )}≥c‖x‖.

(en,e∗n) is shrinking: X ∗ = span(e∗j : j∈N),

(en,e∗n) is boundedly complete: X ≡ span(e∗j : j∈N)
∗
.

General Assumption: (after renorming)

(ei ,e∗i ) is 1-bounded and 1-norming and ‖ei‖=‖e∗i ‖= 1, for all i∈N.
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How to deal with the Lack of Uniformly Bounded

Coordinate Projections

Lemma

Given m ∈ N and ε > 0, then there exists k = k(ε,m) so that

Every f ∗ ∈ span(ej : j ≤ m)∗ can be extended to a g∗ ∈ X ∗, so

that max supp(g∗) ≤ k and ‖g∗‖X∗ ≤ (1 + ε)‖f ∗‖span(ej :j≤m)∗ .

For every f ∗ ∈ span(e∗j : j ≤ m) and h∗ ∈ span(e∗j : j > k) it

follows that ‖f ∗‖X∗ ≤ (1 + ε)‖f ∗ + h∗‖X∗ .

Every f ∗ ∈ span(ej : j > k)∗ has an extension

g∗ ∈ span(e∗j : j > m) with ‖g∗‖X∗ ≤ (2 + ε)‖f ∗‖span(ej :j>k)∗ .

We need εn ↗ 0 “fast enough”.

m0 = 0, m1∈N arbitrary, mj+1 = k(εj+1,mj ), and then

Ej = span(ei : mj < i ≤ mj+1) and E∗j = span(e∗i : mj < i ≤ mj+1).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



How to deal with the Lack of Uniformly Bounded

Coordinate Projections

Lemma

Given m ∈ N and ε > 0, then there exists k = k(ε,m) so that

Every f ∗ ∈ span(ej : j ≤ m)∗ can be extended to a g∗ ∈ X ∗, so

that max supp(g∗) ≤ k and ‖g∗‖X∗ ≤ (1 + ε)‖f ∗‖span(ej :j≤m)∗ .

For every f ∗ ∈ span(e∗j : j ≤ m) and h∗ ∈ span(e∗j : j > k) it

follows that ‖f ∗‖X∗ ≤ (1 + ε)‖f ∗ + h∗‖X∗ .

Every f ∗ ∈ span(ej : j > k)∗ has an extension

g∗ ∈ span(e∗j : j > m) with ‖g∗‖X∗ ≤ (2 + ε)‖f ∗‖span(ej :j>k)∗ .

We need εn ↗ 0 “fast enough”.

m0 = 0, m1∈N arbitrary, mj+1 = k(εj+1,mj ), and then

Ej = span(ei : mj < i ≤ mj+1) and E∗j = span(e∗i : mj < i ≤ mj+1).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



How to deal with the Lack of Uniformly Bounded

Coordinate Projections

Lemma

Given m ∈ N and ε > 0, then there exists k = k(ε,m) so that

Every f ∗ ∈ span(ej : j ≤ m)∗ can be extended to a g∗ ∈ X ∗, so

that max supp(g∗) ≤ k and ‖g∗‖X∗ ≤ (1 + ε)‖f ∗‖span(ej :j≤m)∗ .

For every f ∗ ∈ span(e∗j : j ≤ m) and h∗ ∈ span(e∗j : j > k) it

follows that ‖f ∗‖X∗ ≤ (1 + ε)‖f ∗ + h∗‖X∗ .

Every f ∗ ∈ span(ej : j > k)∗ has an extension

g∗ ∈ span(e∗j : j > m) with ‖g∗‖X∗ ≤ (2 + ε)‖f ∗‖span(ej :j>k)∗ .

We need εn ↗ 0 “fast enough”.

m0 = 0, m1∈N arbitrary, mj+1 = k(εj+1,mj ), and then

Ej = span(ei : mj < i ≤ mj+1) and E∗j = span(e∗i : mj < i ≤ mj+1).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



How to deal with the Lack of Uniformly Bounded

Coordinate Projections

Lemma

Given m ∈ N and ε > 0, then there exists k = k(ε,m) so that

Every f ∗ ∈ span(ej : j ≤ m)∗ can be extended to a g∗ ∈ X ∗, so

that max supp(g∗) ≤ k and ‖g∗‖X∗ ≤ (1 + ε)‖f ∗‖span(ej :j≤m)∗ .

For every f ∗ ∈ span(e∗j : j ≤ m) and h∗ ∈ span(e∗j : j > k) it

follows that ‖f ∗‖X∗ ≤ (1 + ε)‖f ∗ + h∗‖X∗ .

Every f ∗ ∈ span(ej : j > k)∗ has an extension

g∗ ∈ span(e∗j : j > m) with ‖g∗‖X∗ ≤ (2 + ε)‖f ∗‖span(ej :j>k)∗ .

We need εn ↗ 0 “fast enough”.

m0 = 0, m1∈N arbitrary, mj+1 = k(εj+1,mj ), and then

Ej = span(ei : mj < i ≤ mj+1) and E∗j = span(e∗i : mj < i ≤ mj+1).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



How to deal with the Lack of Uniformly Bounded

Coordinate Projections

Lemma

Given m ∈ N and ε > 0, then there exists k = k(ε,m) so that

Every f ∗ ∈ span(ej : j ≤ m)∗ can be extended to a g∗ ∈ X ∗, so

that max supp(g∗) ≤ k and ‖g∗‖X∗ ≤ (1 + ε)‖f ∗‖span(ej :j≤m)∗ .

For every f ∗ ∈ span(e∗j : j ≤ m) and h∗ ∈ span(e∗j : j > k) it

follows that ‖f ∗‖X∗ ≤ (1 + ε)‖f ∗ + h∗‖X∗ .

Every f ∗ ∈ span(ej : j > k)∗ has an extension

g∗ ∈ span(e∗j : j > m) with ‖g∗‖X∗ ≤ (2 + ε)‖f ∗‖span(ej :j>k)∗ .

We need εn ↗ 0 “fast enough”.

m0 = 0, m1∈N arbitrary, mj+1 = k(εj+1,mj ), and then

Ej = span(ei : mj < i ≤ mj+1) and E∗j = span(e∗i : mj < i ≤ mj+1).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



How to deal with the Lack of Uniformly Bounded

Coordinate Projections

Lemma

Given m ∈ N and ε > 0, then there exists k = k(ε,m) so that

Every f ∗ ∈ span(ej : j ≤ m)∗ can be extended to a g∗ ∈ X ∗, so

that max supp(g∗) ≤ k and ‖g∗‖X∗ ≤ (1 + ε)‖f ∗‖span(ej :j≤m)∗ .

For every f ∗ ∈ span(e∗j : j ≤ m) and h∗ ∈ span(e∗j : j > k) it

follows that ‖f ∗‖X∗ ≤ (1 + ε)‖f ∗ + h∗‖X∗ .

Every f ∗ ∈ span(ej : j > k)∗ has an extension

g∗ ∈ span(e∗j : j > m) with ‖g∗‖X∗ ≤ (2 + ε)‖f ∗‖span(ej :j>k)∗ .

We need εn ↗ 0 “fast enough”.

m0 = 0, m1∈N arbitrary, mj+1 = k(εj+1,mj ), and then

Ej = span(ei : mj < i ≤ mj+1) and E∗j = span(e∗i : mj < i ≤ mj+1).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



How to deal with the Lack of Uniformly Bounded

Coordinate Projections

Lemma

Given m ∈ N and ε > 0, then there exists k = k(ε,m) so that

Every f ∗ ∈ span(ej : j ≤ m)∗ can be extended to a g∗ ∈ X ∗, so

that max supp(g∗) ≤ k and ‖g∗‖X∗ ≤ (1 + ε)‖f ∗‖span(ej :j≤m)∗ .

For every f ∗ ∈ span(e∗j : j ≤ m) and h∗ ∈ span(e∗j : j > k) it

follows that ‖f ∗‖X∗ ≤ (1 + ε)‖f ∗ + h∗‖X∗ .

Every f ∗ ∈ span(ej : j > k)∗ has an extension

g∗ ∈ span(e∗j : j > m) with ‖g∗‖X∗ ≤ (2 + ε)‖f ∗‖span(ej :j>k)∗ .

We need εn ↗ 0 “fast enough”.

m0 = 0, m1∈N arbitrary, mj+1 = k(εj+1,mj ), and then

Ej = span(ei : mj < i ≤ mj+1) and E∗j = span(e∗i : mj < i ≤ mj+1).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Notation: For x∗ ∈ X ∗ we let

suppE∗(x∗)={j∈N : x∗|Ej 6=0}, and

rgE∗(x∗)=[min suppE∗(x∗),max suppE∗(x∗)].

Similarly define suppE (x), rgE (x) for x ∈ X .

By Lemma the following sets are not empty for x∗∈X ∗ and n∈N.

Tn(x∗) =



{x∗} if n≤ rgE∗(x∗)

{0} if n≥ rgE∗(x∗)

u∗ ∈ X ∗ :

u∗|span(ej :j≤mn−1) = 0

u∗|span(ej :j>mn) = x∗|span(ej :j>mn)

‖u∗‖ ≤ 2.5‖x∗‖

 else
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General Embedding into space with FDD

For x∗ ∈ SX∗ pick (u∗n (x∗))n∈N ∈
∏

Tn(x∗).

Put du∗n (x∗) = u∗n (x∗)− u∗n+1(x∗) ∈ E∗n + E∗n+1.

On Z̃ = c00
(
⊕∞j=1 Ej + Ej+1

)
consider the following norm

|||(zj )||| = sup
x∗∈S∗X ,l∈N

∣∣∣ l∑
j=1

〈du∗j (x∗), zj〉
∣∣∣,

and let Z be the completion of Z̃ with respect to ||| · |||. Define

Fj = (Ej + Ej+1, ||| · |||).

Note: ||| · ||| and ‖ · ‖ not uniformly equivalent on Ej + Ej+1, j ∈ N.
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(Fn) is a monotone FDD of Z .

Let Ψ : c00
(
⊕ Ej )→ c00

(
⊕ Fj ), (xj ) 7→ (xj + xj+1).

Then for x = (xj ) ∈ c00
(
⊕ Ej ), x∗ ∈ SX∗ and l ∈ N

∣∣∣ l∑
j=1

〈du∗j (x∗), xj +xj+1〉
∣∣∣= ∣∣∣ l∑

j=1

〈du∗j (x∗), x〉
∣∣∣= |〈x∗−u∗l+1(x∗), x〉|≤4‖x‖

and since SX∗ ∩ span(e∗j : j ∈ N) is 1-norming the space X

sup
l∈N,x∗∈SX∗

|〈x∗ − u∗l+1(x∗), x〉| ≥ ‖x‖.

Thus Ψ extends to an isomorphic embedding of X into Z .
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Now we need to pick the right u∗n (x∗), and maybe pass to further

blockings of the En, to ensure:

that (Fn) is shrinking if X ∗ is separable,

more precisely, that Sz(Z ) ≤ ωαω if Sz(X ) ≤ ωαω,

to embed X into a pre dual of `1 in this case.

that (Fj ) is unconditional, if X has the UTP,

to be able to turn Z into a reflexive space (still containing X and

having an FDD) if X is reflexive.

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Now we need to pick the right u∗n (x∗), and maybe pass to further

blockings of the En, to ensure:

that (Fn) is shrinking if X ∗ is separable,

more precisely, that Sz(Z ) ≤ ωαω if Sz(X ) ≤ ωαω,

to embed X into a pre dual of `1 in this case.

that (Fj ) is unconditional, if X has the UTP,

to be able to turn Z into a reflexive space (still containing X and

having an FDD) if X is reflexive.

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Now we need to pick the right u∗n (x∗), and maybe pass to further

blockings of the En, to ensure:

that (Fn) is shrinking if X ∗ is separable,

more precisely, that Sz(Z ) ≤ ωαω if Sz(X ) ≤ ωαω,

to embed X into a pre dual of `1 in this case.

that (Fj ) is unconditional, if X has the UTP,

to be able to turn Z into a reflexive space (still containing X and

having an FDD) if X is reflexive.

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Now we need to pick the right u∗n (x∗), and maybe pass to further

blockings of the En, to ensure:

that (Fn) is shrinking if X ∗ is separable,

more precisely, that Sz(Z ) ≤ ωαω if Sz(X ) ≤ ωαω,

to embed X into a pre dual of `1 in this case.

that (Fj ) is unconditional, if X has the UTP,

to be able to turn Z into a reflexive space (still containing X and

having an FDD) if X is reflexive.

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Now we need to pick the right u∗n (x∗), and maybe pass to further

blockings of the En, to ensure:

that (Fn) is shrinking if X ∗ is separable,

more precisely, that Sz(Z ) ≤ ωαω if Sz(X ) ≤ ωαω,

to embed X into a pre dual of `1 in this case.

that (Fj ) is unconditional, if X has the UTP,

to be able to turn Z into a reflexive space (still containing X and

having an FDD) if X is reflexive.

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Now we need to pick the right u∗n (x∗), and maybe pass to further

blockings of the En, to ensure:

that (Fn) is shrinking if X ∗ is separable,

more precisely, that Sz(Z ) ≤ ωαω if Sz(X ) ≤ ωαω,

to embed X into a pre dual of `1 in this case.

that (Fj ) is unconditional, if X has the UTP,

to be able to turn Z into a reflexive space (still containing X and

having an FDD) if X is reflexive.

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Ensure that (Fn) is shrinking

Fix 0<c<1 and define for x∗∈SX∗ a sequence nj (x∗)⊂N∪{∞}:

n1(x∗) = 1

nj+1(x∗) = min

{
r > nj (x∗) :

∀(u∗s )r
s=nj (x∗) ∈

∏r
s=nj (x∗) T ∗s (x∗)

maxnj (x∗)≤s≤r ‖u∗nj (x∗) − u∗r ‖ > c

}

with min ∅ =∞. If x∗ ∈ span(e∗j : j ∈ N) then

l(x∗) = max{j : nj (x∗) <∞} exists.

Then we choose (starting from the back) u∗n (x∗) ∈ T ∗n (x∗) so that

‖uni (x∗)(x∗)− un(x∗)‖ ≤ c if ni (x∗) ≤ n < ni+1(x∗), and

‖uni (x∗)(x∗)− uni+1(x∗)(x∗)‖ > c if i < l(x∗).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Ensure that (Fn) is shrinking

Fix 0<c<1 and define for x∗∈SX∗ a sequence nj (x∗)⊂N∪{∞}:

n1(x∗) = 1

nj+1(x∗) = min

{
r > nj (x∗) :

∀(u∗s )r
s=nj (x∗) ∈

∏r
s=nj (x∗) T ∗s (x∗)

maxnj (x∗)≤s≤r ‖u∗nj (x∗) − u∗r ‖ > c

}

with min ∅ =∞. If x∗ ∈ span(e∗j : j ∈ N) then

l(x∗) = max{j : nj (x∗) <∞} exists.

Then we choose (starting from the back) u∗n (x∗) ∈ T ∗n (x∗) so that

‖uni (x∗)(x∗)− un(x∗)‖ ≤ c if ni (x∗) ≤ n < ni+1(x∗), and

‖uni (x∗)(x∗)− uni+1(x∗)(x∗)‖ > c if i < l(x∗).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Ensure that (Fn) is shrinking

Fix 0<c<1 and define for x∗∈SX∗ a sequence nj (x∗)⊂N∪{∞}:

n1(x∗) = 1

nj+1(x∗) = min

{
r > nj (x∗) :

∀(u∗s )r
s=nj (x∗) ∈

∏r
s=nj (x∗) T ∗s (x∗)

maxnj (x∗)≤s≤r ‖u∗nj (x∗) − u∗r ‖ > c

}

with min ∅ =∞. If x∗ ∈ span(e∗j : j ∈ N) then

l(x∗) = max{j : nj (x∗) <∞} exists.

Then we choose (starting from the back) u∗n (x∗) ∈ T ∗n (x∗) so that

‖uni (x∗)(x∗)− un(x∗)‖ ≤ c if ni (x∗) ≤ n < ni+1(x∗), and

‖uni (x∗)(x∗)− uni+1(x∗)(x∗)‖ > c if i < l(x∗).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Ensure that (Fn) is shrinking

Fix 0<c<1 and define for x∗∈SX∗ a sequence nj (x∗)⊂N∪{∞}:

n1(x∗) = 1

nj+1(x∗) = min

{
r > nj (x∗) :

∀(u∗s )r
s=nj (x∗) ∈

∏r
s=nj (x∗) T ∗s (x∗)

maxnj (x∗)≤s≤r ‖u∗nj (x∗) − u∗r ‖ > c

}

with min ∅ =∞. If x∗ ∈ span(e∗j : j ∈ N) then

l(x∗) = max{j : nj (x∗) <∞} exists.

Then we choose (starting from the back) u∗n (x∗) ∈ T ∗n (x∗) so that

‖uni (x∗)(x∗)− un(x∗)‖ ≤ c if ni (x∗) ≤ n < ni+1(x∗), and

‖uni (x∗)(x∗)− uni+1(x∗)(x∗)‖ > c if i < l(x∗).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Ensure that (Fn) is shrinking

Fix 0<c<1 and define for x∗∈SX∗ a sequence nj (x∗)⊂N∪{∞}:

n1(x∗) = 1

nj+1(x∗) = min

{
r > nj (x∗) :

∀(u∗s )r
s=nj (x∗) ∈

∏r
s=nj (x∗) T ∗s (x∗)

maxnj (x∗)≤s≤r ‖u∗nj (x∗) − u∗r ‖ > c

}

with min ∅ =∞. If x∗ ∈ span(e∗j : j ∈ N) then

l(x∗) = max{j : nj (x∗) <∞} exists.

Then we choose (starting from the back) u∗n (x∗) ∈ T ∗n (x∗) so that

‖uni (x∗)(x∗)− un(x∗)‖ ≤ c if ni (x∗) ≤ n < ni+1(x∗), and

‖uni (x∗)(x∗)− uni+1(x∗)(x∗)‖ > c if i < l(x∗).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Ensure that (Fn) is shrinking

Fix 0<c<1 and define for x∗∈SX∗ a sequence nj (x∗)⊂N∪{∞}:

n1(x∗) = 1

nj+1(x∗) = min

{
r > nj (x∗) :

∀(u∗s )r
s=nj (x∗) ∈

∏r
s=nj (x∗) T ∗s (x∗)

maxnj (x∗)≤s≤r ‖u∗nj (x∗) − u∗r ‖ > c

}

with min ∅ =∞. If x∗ ∈ span(e∗j : j ∈ N) then

l(x∗) = max{j : nj (x∗) <∞} exists.

Then we choose (starting from the back) u∗n (x∗) ∈ T ∗n (x∗) so that

‖uni (x∗)(x∗)− un(x∗)‖ ≤ c if ni (x∗) ≤ n < ni+1(x∗), and

‖uni (x∗)(x∗)− uni+1(x∗)(x∗)‖ > c if i < l(x∗).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Ensure that (Fn) is shrinking

Fix 0<c<1 and define for x∗∈SX∗ a sequence nj (x∗)⊂N∪{∞}:

n1(x∗) = 1

nj+1(x∗) = min

{
r > nj (x∗) :

∀(u∗s )r
s=nj (x∗) ∈

∏r
s=nj (x∗) T ∗s (x∗)

maxnj (x∗)≤s≤r ‖u∗nj (x∗) − u∗r ‖ > c

}

with min ∅ =∞. If x∗ ∈ span(e∗j : j ∈ N) then

l(x∗) = max{j : nj (x∗) <∞} exists.

Then we choose (starting from the back) u∗n (x∗) ∈ T ∗n (x∗) so that

‖uni (x∗)(x∗)− un(x∗)‖ ≤ c if ni (x∗) ≤ n < ni+1(x∗), and

‖uni (x∗)(x∗)− uni+1(x∗)(x∗)‖ > c if i < l(x∗).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Ensure that (Fn) is shrinking

Fix 0<c<1 and define for x∗∈SX∗ a sequence nj (x∗)⊂N∪{∞}:

n1(x∗) = 1

nj+1(x∗) = min

{
r > nj (x∗) :

∀(u∗s )r
s=nj (x∗) ∈

∏r
s=nj (x∗) T ∗s (x∗)

maxnj (x∗)≤s≤r ‖u∗nj (x∗) − u∗r ‖ > c

}

with min ∅ =∞. If x∗ ∈ span(e∗j : j ∈ N) then

l(x∗) = max{j : nj (x∗) <∞} exists.

Then we choose (starting from the back) u∗n (x∗) ∈ T ∗n (x∗) so that

‖uni (x∗)(x∗)− un(x∗)‖ ≤ c if ni (x∗) ≤ n < ni+1(x∗), and

‖uni (x∗)(x∗)− uni+1(x∗)(x∗)‖ > c if i < l(x∗).

Th. Schlumprecht Zippin’s Embedding Theorem, and Beyond



Lemma

If X ∗ is separable then Ac =
{
{n1(x∗), . . .nl(x∗)(x∗)} : x∗ ∈ SX∗

}
is

compact in [N]ω.

Moreover

Sz(Z ) = sup
n

CBn(Ac)

Sketch of “Moreover”: Let z = (zi ) ∈ Z , zi ∈ Fi = Ei + Ei+1, i ∈ N.

Consider z∗ = (du∗i (x∗))i∈N. Then

z∗(z) =
∑

du∗i (zi )

=

l(x∗)∑
j=0

nj+1(x∗)−1∑
i=nj (x∗)+1

du∗i (zi ) +

l(x∗)∑
j=1

du∗ni (x∗)(zni (x∗))

≤ c
l(x∗)∑
j=0

∥∥∥ nj+1(x∗)−1∑
i=nj (x∗)+1

zi

∥∥∥
︸ ︷︷ ︸

Tsirelson estimate

+

l(x∗)∑
j=1

‖znj (x∗)‖︸ ︷︷ ︸

Schreier estimate

.
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Letting for x∗ ∈ SX∗ :

{x∗1 , x∗2 , . . . x∗l } =
{ ni+1(x∗)∑

j=ni (x∗)+1

du∗j
}
∪ {d∗u∗ni

(x∗)} \ {0}.

Lemma
0 < c < 1 and X ∗ separable. Then every x∗∈S∗X has an overlapping

c-decomposition (x∗1 , . . . , x
∗
l ) with compact initial coordinates:

1 x∗ =
∑l

j=1 x∗j ,

2 max rgE∗(x∗i ) ≤ min rgE∗(x∗i+1), i < l ,

3 Either #rgE∗(x∗i ) ≤ 2, or ‖x∗i ‖ ≤ c,

4

∥∥∥∑l2
j=l1 x∗j

∥∥∥ ≤ 5, if 1 ≤ l1 ≤ l2 ≤ l

5 {min rgE∗(x∗) : i = 1,2 . . . l} ∈ {A ∪ B : A,B ∈ Ac}

Replacing in proof of [FOS] c–decomposition by overlapping

c-decomposition leads to a Bourgain Delbaen space Z containing X

with Z ∗=`1.
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In order to assure Sz(Z ) ≤ ωαω if Sz(X ) ≤ ωαω, we need that

CB(Ac) < Sz(X ). We will need to block the En and E∗n again

Lemma (Johnson’s “Killing the Overlap” for M-bases)

Assume X ∗ separable. For m ∈ N and ε > 0, there is n = n(ε,m) so

that for all x∗, y∗ ∈ BX∗ there is an i ∈ (m + 1,n − 1) so that

||du∗i−1(x∗)||, ||du∗i (x∗)|| < ε,

||du∗i−1(y∗)||, ||du∗i (y∗)|| < ε.

Thus, for x̃∗ = x∗−
∑0

s=−1 du∗i+s(x∗) and ỹ∗ = y∗−
∑0

s=−1 du∗i+s(y∗),

it follows that ‖x − x̃‖, ‖y − ỹ‖<2ε and x̃∗|Ei = ỹ∗i |Ei ≡0.

Sketch: Choose n>m large enough so that

(m+ 1,n−1) 6∈
{ 4⋃

s=1

Ai : Ai ∈Aε
}
.
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Let Gj = Enj−1+1 + Enj−1+2 + . . .Enj , with nj+1 = n(εj ,nj ).

Lemma
There is an ε-dense set B ⊂ BX∗ so that all x∗ ∈ B can be written as

x∗ =
∑

dv∗i , dv∗i = dv∗i (x∗), so that

1 dv∗i ∈ G∗i + G∗i+1, i = 1,2 . . .,

2 max rgE∗(dv∗i ) < min rgE∗(dv∗i+1)− 1

3

∥∥∥∑l2
i=l1 dv∗i (x∗)

∥∥∥ ≤ 16.

Note that the dv∗i are basic. Choose m1(x∗) = 0, and, inductively

mj+1(x∗) = min
{

r > mj (x∗) :
∥∥∥ mj+1(x∗)∑

i=mj (x∗)+1

dv∗i (x∗)
∥∥∥ > c

}
.

Bc =
{
{m1(x∗),m2(x∗), . . .ml(x∗)} : x∗ ∈ B}.

Then CB(Bc) < Sz(X ), and thus, if Sz(Z ) = Sz(X ), where Z is

defined as before, by replacing Ej by Gj .
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Embedding into spaces with unconditional FDDs

Finally, assume that X has the unconditional tree property.

Then we can assume, after redefining the En and E∗n that for some

C > 0 for every skipped block (x∗i ) with respect to (E∗n ) is

C-suppression unconditional. Meaning,∥∥∥∑
j∈A

x∗j
∥∥∥ ≤ C

∥∥∥∑ x∗j
∥∥∥, if A ⊂ N.

So on Z̃ = coo(⊕∞j=1Gj + Gj+1) use

|||(zj )||| = sup
{∣∣∣∑

j∈A

dv∗j (x∗)(zj )
∣∣∣ : x∗ ∈ B, A ⊂ N

}
,

[
instead of |||(zj )||| = sup

{∣∣∣ l∑
j=1

dv∗j (x∗)(zj )
∣∣∣ : x∗ ∈ B, l ∈ N

}]
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Isomorphically polyhedral Banach spaces Isomorphically polyhedral Banach spaces

Isomorphically polyhedral Banach spaces
Definition (Klee 60)
A Banach space (X , ∥⋅∥) is polyhedral if, given any finite-dimensional subspace
E ⊆ X , there exist f1, . . . , fn ∈ X ∗ such that

∥x∥ = maxn
i=1fi (x) for all x ∈ E .

X is isomorphically polyhedral (i.p.) if it is isomorphic to a polyhedral space.

Facts (Klee 60, Lindenstrauss 66, Fonf 80, Gasparis, FPTS 08)
1 (c0, ∥⋅∥∞) is the archetypal polyhedral space.
2 If X admits a countable boundary then it is i.p.
3 C(K ), K an ordinal or K �-discrete, is i.p.
4 Every i.p. space is Asplund and c0-saturated (converse false, Leung 94).
5 No space containing a dual space is i.p.
6 If p ∈ (1,∞), there exists i.p. Ep ∕↪→ C(K ) (K countable), and Ep ↠ ℓp.

Richard J. Smith (UCD, Ireland) Recent advances in isomorphic polyhedrality Luminy, August 2012 2 / 7



Isomorphically polyhedral Banach spaces Isomorphically polyhedral Banach spaces

Isomorphically polyhedral Banach spaces
Definition (Klee 60)
A Banach space (X , ∥⋅∥) is polyhedral if, given any finite-dimensional subspace
E ⊆ X , there exist f1, . . . , fn ∈ X ∗ such that

∥x∥ = maxn
i=1fi (x) for all x ∈ E .

X is isomorphically polyhedral (i.p.) if it is isomorphic to a polyhedral space.

Facts (Klee 60, Lindenstrauss 66, Fonf 80, Gasparis, FPTS 08)
1 (c0, ∥⋅∥∞) is the archetypal polyhedral space.
2 If X admits a countable boundary then it is i.p.
3 C(K ), K an ordinal or K �-discrete, is i.p.
4 Every i.p. space is Asplund and c0-saturated (converse false, Leung 94).
5 No space containing a dual space is i.p.
6 If p ∈ (1,∞), there exists i.p. Ep ∕↪→ C(K ) (K countable), and Ep ↠ ℓp.

Richard J. Smith (UCD, Ireland) Recent advances in isomorphic polyhedrality Luminy, August 2012 2 / 7



Isomorphically polyhedral Banach spaces Isomorphically polyhedral Banach spaces

Isomorphically polyhedral Banach spaces
Definition (Klee 60)
A Banach space (X , ∥⋅∥) is polyhedral if, given any finite-dimensional subspace
E ⊆ X , there exist f1, . . . , fn ∈ X ∗ such that

∥x∥ = maxn
i=1fi (x) for all x ∈ E .

X is isomorphically polyhedral (i.p.) if it is isomorphic to a polyhedral space.

Facts (Klee 60, Lindenstrauss 66, Fonf 80, Gasparis, FPTS 08)
1 (c0, ∥⋅∥∞) is the archetypal polyhedral space.

2 If X admits a countable boundary then it is i.p.
3 C(K ), K an ordinal or K �-discrete, is i.p.
4 Every i.p. space is Asplund and c0-saturated (converse false, Leung 94).
5 No space containing a dual space is i.p.
6 If p ∈ (1,∞), there exists i.p. Ep ∕↪→ C(K ) (K countable), and Ep ↠ ℓp.

Richard J. Smith (UCD, Ireland) Recent advances in isomorphic polyhedrality Luminy, August 2012 2 / 7



Isomorphically polyhedral Banach spaces Isomorphically polyhedral Banach spaces

Isomorphically polyhedral Banach spaces
Definition (Klee 60)
A Banach space (X , ∥⋅∥) is polyhedral if, given any finite-dimensional subspace
E ⊆ X , there exist f1, . . . , fn ∈ X ∗ such that

∥x∥ = maxn
i=1fi (x) for all x ∈ E .

X is isomorphically polyhedral (i.p.) if it is isomorphic to a polyhedral space.

Facts (Klee 60, Lindenstrauss 66, Fonf 80, Gasparis, FPTS 08)
1 (c0, ∥⋅∥∞) is the archetypal polyhedral space.
2 If X admits a countable boundary then it is i.p.

3 C(K ), K an ordinal or K �-discrete, is i.p.
4 Every i.p. space is Asplund and c0-saturated (converse false, Leung 94).
5 No space containing a dual space is i.p.
6 If p ∈ (1,∞), there exists i.p. Ep ∕↪→ C(K ) (K countable), and Ep ↠ ℓp.

Richard J. Smith (UCD, Ireland) Recent advances in isomorphic polyhedrality Luminy, August 2012 2 / 7



Isomorphically polyhedral Banach spaces Isomorphically polyhedral Banach spaces

Isomorphically polyhedral Banach spaces
Definition (Klee 60)
A Banach space (X , ∥⋅∥) is polyhedral if, given any finite-dimensional subspace
E ⊆ X , there exist f1, . . . , fn ∈ X ∗ such that

∥x∥ = maxn
i=1fi (x) for all x ∈ E .

X is isomorphically polyhedral (i.p.) if it is isomorphic to a polyhedral space.

Facts (Klee 60, Lindenstrauss 66, Fonf 80, Gasparis, FPTS 08)
1 (c0, ∥⋅∥∞) is the archetypal polyhedral space.
2 If X admits a countable boundary then it is i.p.
3 C(K ), K an ordinal or K �-discrete, is i.p.

4 Every i.p. space is Asplund and c0-saturated (converse false, Leung 94).
5 No space containing a dual space is i.p.
6 If p ∈ (1,∞), there exists i.p. Ep ∕↪→ C(K ) (K countable), and Ep ↠ ℓp.

Richard J. Smith (UCD, Ireland) Recent advances in isomorphic polyhedrality Luminy, August 2012 2 / 7



Isomorphically polyhedral Banach spaces Isomorphically polyhedral Banach spaces

Isomorphically polyhedral Banach spaces
Definition (Klee 60)
A Banach space (X , ∥⋅∥) is polyhedral if, given any finite-dimensional subspace
E ⊆ X , there exist f1, . . . , fn ∈ X ∗ such that

∥x∥ = maxn
i=1fi (x) for all x ∈ E .

X is isomorphically polyhedral (i.p.) if it is isomorphic to a polyhedral space.

Facts (Klee 60, Lindenstrauss 66, Fonf 80, Gasparis, FPTS 08)
1 (c0, ∥⋅∥∞) is the archetypal polyhedral space.
2 If X admits a countable boundary then it is i.p.
3 C(K ), K an ordinal or K �-discrete, is i.p.
4 Every i.p. space is Asplund and c0-saturated (converse false, Leung 94).

5 No space containing a dual space is i.p.
6 If p ∈ (1,∞), there exists i.p. Ep ∕↪→ C(K ) (K countable), and Ep ↠ ℓp.

Richard J. Smith (UCD, Ireland) Recent advances in isomorphic polyhedrality Luminy, August 2012 2 / 7



Isomorphically polyhedral Banach spaces Isomorphically polyhedral Banach spaces

Isomorphically polyhedral Banach spaces
Definition (Klee 60)
A Banach space (X , ∥⋅∥) is polyhedral if, given any finite-dimensional subspace
E ⊆ X , there exist f1, . . . , fn ∈ X ∗ such that

∥x∥ = maxn
i=1fi (x) for all x ∈ E .

X is isomorphically polyhedral (i.p.) if it is isomorphic to a polyhedral space.

Facts (Klee 60, Lindenstrauss 66, Fonf 80, Gasparis, FPTS 08)
1 (c0, ∥⋅∥∞) is the archetypal polyhedral space.
2 If X admits a countable boundary then it is i.p.
3 C(K ), K an ordinal or K �-discrete, is i.p.
4 Every i.p. space is Asplund and c0-saturated (converse false, Leung 94).
5 No space containing a dual space is i.p.

6 If p ∈ (1,∞), there exists i.p. Ep ∕↪→ C(K ) (K countable), and Ep ↠ ℓp.

Richard J. Smith (UCD, Ireland) Recent advances in isomorphic polyhedrality Luminy, August 2012 2 / 7



Isomorphically polyhedral Banach spaces Isomorphically polyhedral Banach spaces

Isomorphically polyhedral Banach spaces
Definition (Klee 60)
A Banach space (X , ∥⋅∥) is polyhedral if, given any finite-dimensional subspace
E ⊆ X , there exist f1, . . . , fn ∈ X ∗ such that

∥x∥ = maxn
i=1fi (x) for all x ∈ E .

X is isomorphically polyhedral (i.p.) if it is isomorphic to a polyhedral space.

Facts (Klee 60, Lindenstrauss 66, Fonf 80, Gasparis, FPTS 08)
1 (c0, ∥⋅∥∞) is the archetypal polyhedral space.
2 If X admits a countable boundary then it is i.p.
3 C(K ), K an ordinal or K �-discrete, is i.p.
4 Every i.p. space is Asplund and c0-saturated (converse false, Leung 94).
5 No space containing a dual space is i.p.
6 If p ∈ (1,∞), there exists i.p. Ep ∕↪→ C(K ) (K countable), and Ep ↠ ℓp.

Richard J. Smith (UCD, Ireland) Recent advances in isomorphic polyhedrality Luminy, August 2012 2 / 7



Isomorphically polyhedral Banach spaces Boundaries and property (*)

Boundaries and property (∗)
Definition

1 We call a bounded set B ⊆ X ∗ a relative boundary if it is a boundary of
itself.

2 B is a boundary of X if it is a boundary of BX∗ .
3 A bounded set B has property (∗) if g(x) < sup {f (x) : f ∈ B} whenever

g is a w∗-accumulation point of B and the supremum is positive.

Proposition (Gleit, McGuigan 72)
If X admits a boundary B having (∗) then X is polyhedral.

Constructing boundaries with (∗) is the principal tool for obtaining isomorphi-
cally polyhedral spaces.
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w*-locally relatively norm compact boundaries w*-LRC sets

w∗-LRC sets
Definition
We say that a subset E ⊆ X ∗ is w∗-locally relatively norm compact (w∗-LRC)
if, given f ∈ E , there exists a w∗-open set U containing f , such that E ∩ U is
relatively norm compact.

Examples
1 If E ⊆ X ∗ is norm compact or w∗-discrete, then E is w∗-LRC.
2 Let X have a strong M-basis (x , x∗ )∈Γ and take n ∈ ℕ. Then

E = {f ∈ X ∗ : card(supp(f )) = n}

is w∗-LRC.

We are interested in �-w∗-LRC subsets of X ∗.

If dim X = ∞ then SX∗ is never �-w∗-LRC, by Baire Category. However, it is
possible for some boundaries to be �-w∗-LRC.
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w*-locally relatively norm compact boundaries sigma-w*-LRC boundaries

�-w∗-LRC boundaries
Theorem
Let " > 0 and let (X , ∥⋅∥) admit a boundary that is covered by a �-w∗-LRC and
w∗-K� set.

Then X admits a "-equivalent norm ∣∣∣ ⋅ ∣∣∣ with a boundary having
(∗). In particular, ∣∣∣ ⋅ ∣∣∣ is polyhedral.

Corollary (Fonf 89)
If X admits a boundary covered by a norm K�, then X admits a norm as above.

Corollary (FPTS 08)
If K is a �-discrete compact space, then C(K ) admits a norm as above.

Proposition
Suppose that (C(K ), ∥⋅∥∞) admits a boundary that is covered by a �-w∗-LRC
and w∗-K� set. Then K is �-discrete.
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w*-locally relatively norm compact boundaries Splitting the unit sphere of X

Splitting the unit sphere of X
We can extend the previous theorem by considering countable splittings of SX .

Theorem
Let Hn ⊆ BX∗ , n ∈ ℕ, be an increasing sequence of relative boundaries, each
covered by a �-w∗-LRC and w∗-K� set.

Moreover, suppose we can write SX =
∪∞

n=1 Sn, such that

bn = inf {sup {f (x) : f ∈ Hn} : x ∈ Sn} > 0 and bn → 1.

Then X admits an equivalent (polyhedral) norm with a boundary having (∗).

Proposition
Let (X , ∥⋅∥) be separable and isomorphically polyhedral. Then, for every " > 0,
there are countable subsets Hn ⊆ B(X∗,∥⋅∥), n ∈ ℕ, having (∗), such that

bn = inf {sup {f (x) : f ∈ Hn} : x ∈ SX} > 1− " and bn → 1.
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Isomorphically polyhedral Orlicz spaces
Corollary (cf FPTS 08)
Let (x , x∗ )∈Γ be a strong M-basis, and suppose that SX =

∪∞
n=1 Sn and

bn = inf {sup {f (x) : f ∈ BX∗ , card(supp(f )) ≤ n} : x ∈ Sn}

behave as above. Then X admits an equivalent (polyhedral) norm as above.

Example (Leung 94)
Let Γ be a set, M a non-degenerate Orlicz function and consider (hM(Γ), ∥⋅∥M).
Suppose further that there exists K > 1 satisfying

lim
t→0

M(Kt)
M(t)

= ∞.

Then hM is isomorphically polyhedral.
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