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(Nearly) all about:
Oru = Ot + (x — a(t))u, t>0, xR,

where the nonlocal term is given by

with initial data
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Introduction: the replicator-mutator equation

Deleterious vs. advantageous mutations

A central issue in evolutionary genetics is to predict whether a
population accumulates deleterious or advantageous mutations.

For asexual (clonal) populations:

Muller's ratchet: the population will accumulate deleterious
mutations and, therefore, its fitness will decay.

”

Recent experiments on viruses: beneficial mutations are more
abundant than previously suspected.

Construct a mathematical model for such beneficial mutations.
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Introduction: the replicator-mutator equation

The replicator-mutator equation

Model proposed by Tsimring, Levine, and Kessler 1996, for the
evolution of RNA virus populations on a fitness space:

Ot = Ou +<X/xu(t,x)dx> u.
N~~~ R

mutations

replication

» x € R: a one dimensional fitness space.
» u(t,x): density of a population at time t and per unit of fitness.

» i(t) = [ xu(t,x) dx: mean fitness at time t.

Equation for “arms run”.
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Introduction: the replicator-mutator equation

Formal conservation of mass...

We assume
up > 0, / up(x) dx = 1.
R

Define m(t) := [, u(t, x) dt. Integrating the equation,

so that m(t) = 1 as long as (t) is meaningful.

Actually, conservation of mass may completely fail: solution may
become extinct in finite time...
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Reduction to the heat equation

Absorbing an external time dependent factor a(t)

Ot = Oxxt + xu — a(t)u

and

OtV = OxxV + XV
are related through

't

V(. x) = u(t, x)exp (/0 a(s) ds> |
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Reduction to the heat equation

Absorbing the momentum factor (t)

Oru = Oyt + xu — U(t)u

and

0tV = OxxV + xv

are formally related through

v(t,x) = u(t, x)exp (/Ot a(s) ds>

which can be inverted...
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Reduction to the heat equation

By multiplying by x and integrating over x € R

v(t) = u(t)exp (/Otu(s)ds> jtexp (/Otu(s)ds) :

By integrating in time

t t
/ V(s)ds = exp (/ u(s)ds) -1,
0 0
so that, as long as fo s)ds > —1,
v(t, x)
—
1+ / v(s)ds
Jo

» Computations are licit provided that @ (and therefore V) is finite.
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Reduction to the heat equation

Absorbing the linear factor x

0tV = OxV + XV

and

Gtw = 8XXW

are related through
t3
v(t,x) = w(t,x + t?)exp <tx + 3> .

» Known as Avron—Herbst formula for the Schrodinger equation
modelling evolution of particles under effect of an electric field x:

[0;v = OxxV + xV.
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Reduction to the heat equation

Not so nice explicit formulas...
Combining the above

etx+t3/3w(t, x + t?)

u(t,x) = t )
1+/ /xesx+53/3w(s,x+s2) dx ds
o Jr
so that
etX“3/3/;1L e*(X“Ly)z/“Uo()’) dy
u(t,x) — . R 7Tt1 .
1+/ /xesx+53/3/ e ) /As () dy dx dis
0o JR R V4rs
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Reduction to the heat equation

Nicer explicit formulas

Fubini and elementary algebra yield

e™ / Le—(X+t2—y)2/(4t) uo(y) dy
R s

/ e up(y) dy
JR

u(t,x) =

9

and

/ ey ug(y) dy
R

/ e” up(y) dy
R
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Various scenarii depending on initial data

Global existence vs. extinction

T:sup{t >0, / eYup(y)dy < oc}
Jo

» If T = oo, then both u(t, x) and a(t) are global in time.
» If 0 < T < 0o, then extinction in finite time occurs, that is

u(t,x)=0, Vt>T, VxeR.

» If T =0, then u(t,x) is defined for no t > 0.

The right tail of initial data plays the key role.
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Various scenarii depending on initial data

Gaussian data: acceleration
If up(x) = ‘/ie*a(xfm)zp, then

u(t, x) = 32(7?6—a(t>(x—m(t>)2/2,

where

a 1 5 b,
t) i = ——~ — t) = t —n~ t°.
at) = o~ o MO =ma4

Starting from a Gaussian profile, the solution remains a Gaussian
function, is accelerating and flattening.

» This self similar family of solutions was already noticed by
Biktashev (J. Math. Biol. 2014).
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Various scenarii depending on initial data

Compactly supported data: universal acceleration

If up is compactly supported, then

1
sup |u(t,x) — e~ (1) /at

x€R Vart

elementary solution, ug(y)=do(y)

IN
w.‘ (@)

Deviation from the elementary solution is uniformly estimated
w.r.t. x.
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Various scenarii depending on initial data

Data with light tails: extinction in finite time

If up(y) = ce™1g oo)(y), then

1 at)x —atra?t [ —2°/2
u(t,x) = ——(a—t)e (@txgmat’+a e ?/4dz

27 —(x+t2—2at)

V2t
— 0, uniformly in x € R.
t—a

Extinction of u(t,x), blow-up of &(t) at finite time t = a.
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Various scenarii depending on initial data

Data with very light tails: immediate extinction

If up decays only algebraically, then

u(t, x) is defined for no t > 0.

Actually, the above reduction requires to be able to consider an
open time interval, in order for the integration procedure to make
sense. This approach becomes meaningless if we have T(t) = co
for all t > 0.
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Conclusion

Summary

Replicator-mutator equation:

Oru = Oy U + (X—/ xu(t, x) dx> u,
R

with initial data wy > 0, [ up = 1.

@ Heavy right tails (Gaussian like...) = global existence.
» Accelerating self similar Gaussian solutions.
» Convergence to the fundamental solution, which
accelerates, for compactly supported data.

e Light right tails (exponential...) = extinction in finite time.

e Very light right tails (algebraic...) = immediate extinction.
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Conclusion

How to treat the “large fitness region” ...

For biological applications, because of

» extinction in finite time
» acceleration x = t2
» the change of sign of traveling pulse (that can be computed by

using Fourier transform and that involve the Airy function),

the unlimited growth rate of u(t, x) at large x in the replicator
mutator equation is not admissible.
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Conclusion

Two ways of dealing such a problem:

» consider a cut-off version of the equation at large x: Rouzine,
Wakekey, and Coffin 2003, Sniegowski and Gerrish 2010...

» provide a proper stochastic treatment for large fitness region:
Rouzine, Brunet, and Wilke 2008...
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Thanks for your attention.
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Orientation detection in the area V1 of the visual cortex

The retinocortical map

retino-cortical map W-!

— -

Y pill e
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Orientation detection in the area V1 of the visual cortex

The preferred orientation map: experimental observations

PO map: ©: V1 — SY/Zy ~ (—m/2,7/2]

Patches of iso-orientation.
Singular points are called pinwheels.
Domains surrounding pinwheels define hypercolumns which tile V1.
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Orientation detection in the area V1 of the visual cortex

The model equation

Wilson-Cowan equation for average membrane potential V/(x, t):

(1) %—\;(x, t) = —kV(x,t) + /Q J(x,x)S(V(X, t))dX + lpar(x)

@ x>0, S is a sigmoidal function,
lthar = lo + €eparf (O(x) — O (x), x) is the input from thalamus.

@ The connectivity function J must reflect the patchy distribution
of neurons with same orientation preference in V1.

@ Q) is approximated by a rectangle Ly x L, with periodic boundary
conditions.
We assume hypercolumns form a periodic tiling of €:
Q= {xe+xe | —L;/2<x<1L;j/2, | = L;j/N;} and

@(x—i—njej):@(x), xeQ, nj:07...,l\/j—1.

Pascal Chossat 4 /14



Orientation detection in the area V1 of the visual cortex
The connectivity function J = Jioc + €Jig, e < 1

ot 45° 90° 135° 1807
Local connections (within the hypercolumns) are isotropic.
Long range connections (between hypercolumns) preferentially connect
neurons with same prefered orientation and in certain species the
connection is roughly aligned with the prefered orientation (anisotropy).
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Orientation detection in the area V1 of the visual cortex

The connectivity function (next)

Local connections: selection of a critical wave number

Jloc(xa Xl) = h(”X - x/||2)
with h " Mexican hat |
function” . e i N

Jioc(Tx, TX') = Jioc(x,x’) for any T € E(2,R).

Long-range connections

Jir(x,X") = G(O(x) — ©(x'))Jo(x; R—20(x)(x — x")) where G is a
Gaussian function, Ry is the rotation of angle , 0 < x <1

Jo(x, x) = e 110> +31/29%  (from Bressloff 2003).

Remarks: 1. x measures anisotropy. In treeshrew y # 0.
2. In Bressloff 2003, G(©(x — x’)) instead of G(©(x) — ©(x')).
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Analysis of the spontaneous activity: /i, =0

The strategy

@ Choose a periodic lattice (hence Q). It can be rhombic, square or
hexagonal. Then build a PO map © on this lattice.

@ Set ¢ = 0 and compute the bifurcated patterns V(x) in
bifurcation with D, x T symmetry, T ~ R2/Z2 (n=2,40r6).

© Choose a D,-symmetric solution V and study its perturbation when
e #0.
Fundamental remark: V is not isolated but part of a torus group
orbit TV (group action T - V(x) = V(T 1x)).
If TV is normally hyperbolic, perturbations with small € transform it
in an invariant torus manifold 7; for eq. (1).
Hence problem reduces to look for the induced dynamics in 7.
Note: 7¢ invariant under subgroup o of symmetries of J;g).

© Numerical simulations of the dynamics on 7.
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An example: the square lattice

The PO map

The PO map © defines a tiling of Q (or R?), characterized by its
wallpaper group (invariance group of ©).

In the square lattice case, among all possibilities only two are biologically
plausible: pmm (left) or cmm (right) (IUC notation).

Pinwheels are the black dots.

L [ SN | S [ S|
T T e e

In both cases the wall-paper group is isomorphic to D, (sym. of
rectangle). However g is different as we see next.
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An example: the square lattice

The symmetry group g

Define R, the rotation by ¢ = /2 around a pinwheel. Then

O(Ryx) = O(x) % /4.

Lemma. Jir(RpX, Rgx’) = Jir(x,x’)

Proof: recall that
Jir(x,x") = G(O(x) — O(x"))Jo(x, R-20(x)(x — X)).

But Jo(x; R-20(Ryx)Rs (X — X)) = Jo(x; Rog1+1)R—20(x)(x — X)) =
Jo(X; R 20(x)(x — X)) = Jo(x; R—20(x)(x — X')).

Corollary. Equation (1) is Ry-invariant, hence ['g D G4

Remark: in general g does not contain reflections.
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An example: the square lattice

The solution with e =0

@ Classical Turing-like bifurcation analysis of 0 = —V + Jy % S(V)
with bifurcation parameter=slope of S.

@ There exists a branch with Dy symmetry (squares), with leading
part Vo(x,y) = v/Aa(cos x + cos y).

@ Torus TV, ~ Ty = {(cos(x + ), cos(y + ¢)) , 9, ¢ € S*}.

@ Action of R, on T: Ry(V, ) = (¢, —1)
4 fixed points (km, I7) (k,/ = 0,1) = 4 equilibria with 4-fold (Cy)
symmetry.

@ With suitable choice of parameters the squares are stable, i.e. the
group orbit TVj is attracting (hence normally hyperbolic).

@ With e # 0 but small enough, perturbed torus 7, ~ 74 inherits the
same action of g, hence also 4 equilibria with C4 symmetry.

Pascal Chossat 10 / 14



An example: the square lattice

Stability diagram with ¢ =0

0.75

0.70}-

0.60|-

0.55-

0.45-

0.40}-

0.35f-

0.30 I I I I I I
1.040 1.045 1.050 1.055 1.060 1.065 1.070 1.075

Stable branches in braun color. Note that the stability domain of spots
(squares) is very near bifurcation (hence "weakly” hyperbolic).
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An example: the square lattice

Qualitative analysis of dynamics on 7,

Poincaré-Hopf theorem. Let M be a compact surface, flow-invariant for
a vector field F, and &1,...,&, the equilibria on M, then

Z signdet dF (¢;) = Euler characteristic of M.
j=1
Consequences.

@ For M = 7. the Euler characteristic is 0. We already know there
are 4 foci (due to G4 symmetry), hence with signdet dF (§;) = +1.

@ Therefore the simplest situation is that there exist 4 additional
equilibria of saddle type, hence with signdet dF(¢;) = —1.

@ The dynamics is constrained by these equilibria and it can exhibit
periodic orbits (next slide).
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An example: the square lattice

Qualitative analysis of dynamics on 7;: typical phase portrait

Rl ird
0,O)(

-

~1 N

PR

J '\
P

Figure: Left: Sketch of the dynamics.  Right: a computed trajectory.
Opposite sides are identified by periodicity.

Remark: additional reflection symmetry would strongly modify the
diagram.
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Known results on sharp interface limit for

equations with noises

m Allen-Cahn +noise:

- Kawasaki-Ohta (Physics)

- F. d =1 (space-time white noise),

d = 2 (temporal noise, convex curve)

- Weber: d > 2, general case (additive noise)
m Cahn-Hilliard +noise:

- d=1: Antonopoulou-Blmker-Karali (2012),

rather heuristic
- d=1: Bertini-Brassesco-Buta (2014), fractional BM

m Mass conserving Allen-Cahn eq
Another conservative system

Tadahisa Funaki University of Tokyo
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Plan of the talk

Mass conserving Allen-Cahn eq with stochastic term
Main result

Asymptotic expansion

Limit Stochastic PDE — 2D, convex curve

References:

® Chen-Hilhorst-Logak , Mass conserving Allen-Cahn equation and
volume preserving mean curvature flow, Interfaces Free Bound., 12
(2010)

e F., Singular limit for stochastic reaction-diffusion equation and

generation of random interfaces, Acta Math. Sin., 15 (1999).
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1. Mass conserving Allen-Cahn equation with

stochastic term

u= u(t,x) = u°(t, x;w): sol of the Stochastic PDE (1) in a
smooth bounded domain D in R":

Ot = Auf +e72 (f(ug) —]é f(u€)> +aw(t), xeD
(1) o, u® =0, x € 0D
u=(-,0) = g°(),

where a > 0, v is the inward normal vector on 9D,

]{) f(us):|é‘ /D F(u (£ ) dx,
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m we(t) is a time derivative of w®(t) = w®(t;w) €
C([0,00)) a.s. defined on a certain probability space
(Q, F, P) such that w*(t) converges to 1D Brownian
motion w(t) in a suitable sense.

m The reaction term f € C*(R) is bistable s.t.
1
F(+1) = 0, F/(+1) <0, / F(u)du = 0.
-1
m Mass conservation law is destroyed by noise:

iue(t) = ][D u*(0) + aw*(t)

m Goal: To study the limit lim o u°(t, x).
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2. Main result

m Evolution of limit hypersurfaces ~; C D:

(2) v_m—]{Hg"z" ow(t), telo,ol,

up to a certain stopping time o > 0 (a.s.), where V =
inward normal velocity of 7;, K = mean curvature of v,
(multiplied by n — 1), w(t) = white noise process,
o means Stratonovich stochastic integral.

m Evolution of approximating herpersurfaces v; C D:

D
3) Vvi= K—f - E|v'v€(t), t e [0,0],
Y5 2|7t|

m We assume ; — 7; in a proper sense.
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Theorem 1

Assume that o has the form o = 0Dy with some Dy € D
and satisfies the same condition as in [CHL]. Suppose that a
smooth local solution T = Up<<.(7: X {t}) of (2) such that
¢ € D for all t € [0, 0] uniquely exists. Then, there exist a
family of continuous functions {g°(-)}-c(0,1) satisfying

. c . 1, XGD\DO

and stopping times o¢ such that (u*(t A 0%, +),0°) converges
weakly to (X4, (+), @) on C([0, T], L*(D)) x [0,00) and
o>0as.

We need to assume the diverging speeds of ]j—tkkws(t)| are
sufficiently slow.
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3. Asymptotic expansion

m Eq (1) is rewritten as
(5) 0 = f(u°) + 2(—0:t + AU + aw®(t)) — e)c(t),
where
1 ue
Ae(t) :=¢ ]{)f( )
:Ao(f) + E)\l(f) + 0(82).

m Near 7;, we introduce a coordinate x = (r, s) and stretched variable
p=r/e

Tadahisa Funaki University of Tokyo
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® Under the change of variables: x € D — (p,s) € R x U,
Oeu = e V,u+ O(e),
Au= s’zaﬁu + e tAdd,u + O(e),
near v:. (We heuristically ignore the terms of O(1).)

® We expand u = m+ cup + £2u; + O(e3) near ;. Then,
f(u) = f(m) +ef' (m)uy + f' (m)ur + Lf"(m)e*u§ + O(e?),
so that from (5)
0 =f(m) +ef' (m)uo + &*f'(m)ur + 3" (m)e®ug
+e*(—e Vo,u+ 8_28§U + e AdO,u + at(t)) — e(t) + O(E2).

® Since f(m) + m” =0, we have
0=¢e(f'(m)uo + 8§uo — Vm' + Adm' — Xo)
+ &2 (F'(m)uy + 3" (m)ug — VO,uo + Duy + Add,up + aw(t) — A1)
+ 0(%).

Tadahisa Funaki University of Tokyo
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® To vanish the terms of O(e) and O(&?),

Lug = —Vm' +Adm' — ),

(6) o _ 1 2 € _
Luy = Opuo(Ad = V) + 5" (m)ug + aw(t) — Ay,

where Lu = —(95u + f'(m)u).
® By the solvability condition for the first, we obtain
/(—Vm’ + Adm' — \o(t))m'dp = 0.
R

This shows
@) V = Ad — \(t)o,

where o = 2(f(m')2dp)71 is the surface tension.

Tadahisa Funaki University of Tokyo
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® The next task is to search for Ao(t). Similarly as above and from (6),

Au+e2f(u) — e (t)
= H(—Lup + Ad m' — X\o) + (—Luy + 3" (m)ug + Add,up — A1) + O(e)
= Vm' + (8,u0V — aw?(t)) + O(e).

® Since this integrated over D vanishes, denoting the Jacobian by J,,
0 :/ / (V' + (@p0V — (1)) + O(£) ) (. 5 t)dpds.
{pi lpI<2} JU
® Noting that J.(p,s,t) = 1+ O(e), the right hand side is rewritten into

:2/ Vds+/ /sa,,uo Vdpds — aw®(t) /edpderO(s)
u {ri o<} Ju {pi lpl<€} Ju

- 2/U(Ad—>\o(t)o)ds+e/

" |<d}/u<9puo(Ad—)\o(t)a)dpds—av'vg(t)\D|+O(s),
PPl ¢

where we have used (7) and f{p; <1 Jyedpds = |D|.
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® Noting that d,up is of order O(e=V2ely as |p| — oo, the middle term is
O(g). Thus we have

0= 2/ Ad(s, )ds — 22e(t)o| U] — a(£)| D] + O(c).
U

This shows

alD| .
t A ——— g).
Ao a|U\/ d(s,t)ds 2\U| (t) + O(¢)

e Combining this with (7), we finally obtain the equation:

1 o|D|,
V:Ad——/Adstds—i—— we(t) + O(e).
U1 [, Ad(s 0ds + S (1) + O()

Since Ad(s, t) = k(s,t) + O(e), s € U, in the limit as ¢ tends to 0, we
formally obtain

| D]
2‘7t|

o w(t)

V(s, t) = (s, t)—|71t|/ K(s. t)ds +

Tadahisa Funaki University of Tokyo
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In the real proof:
m We expand u® around ~ (not ;).

m In order to derive error estimates, we need to expand u®
up to k th order terms with k > K := max{4, n}.

m In the 0 th order term, only w*(t) appears.

m However, in the k th order terms with k > 1, diverging
terms like higher order derivatives of w®(t) and their
products appear. Fortunately, these terms multiplied by

ek converges to 0, if the diverging speed of derivatives of
we(t) is sufficiently slow:

| Lwi(t)] < Clloge|2, te0,T], k=1,2,...,K.

Tadahisa Funaki University of Tokyo
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4. Limit SPDE (2) — 2D, convex curve

m : strictly convex closed plane curve

m Gauss map: 6 € S :=[0,27) — x = x(f) € ~ if the angle
between one fixed direction e := (1,0) in the plane R?
and the outward normal 7i(x) at x to v is 6.

m Denote by x = k(#) > 0 the curvature of v at x = x(6).

Vit
¥

©
e
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m Under these notation, the dynamics (2) is rewritten into
the stochastic integro-differential equation for k = x(t, ):

— 2 .
(8) 8tﬁ:m28§m+m3—m2-m—%owt,

where K denotes the average of x over the curve ; and
|v¢| stands for the length of ~;.

m Similarly, the dynamics (3) is rewritten into the equation
for k = K°:

- 2 .
(9) Ok = K205k + K> — K2 - — S5 0f,

where & denotes the average of x over the curve ;.

Tadahisa Funaki University of Tokyo
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m Since x(0) € R? = C is written as

N1
© de’,

x(0) = x(0) —v—1 /

we see that [x'(0)| = 1/k(6).

m Therefore, & and || are given by

R L k(0)|x :2—7T
-5 / (O (0)1d0 = .
)
ol [ @l = [

respectively, which are functionals of k = {k(0);0 € S}.

Tadahisa Funaki University of Tokyo
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o5 = inf{t > 0; k°(t,0),s°(t,0)7, |k°(t,0)| > N
for some 6 or dist(v;,0D) < 1/N}

Theorem 2

For each m € N and T > 0, let P¢ be the distribution of the
solution K (t A 0%, ) of SPDE (9) corresponding to (3) on
C([0, T], C™(S)). Then, {P°}o<-<1 is tight.

m The pathwise uniqueness combined with the existence of
the solution in law sense implies the existence of a strong
solution of (8).

m Therefore v; converges to y; up to time o < T in
C([0, T], C™) sense.

m In the present setting, the assumption “v; — 7" for
Theorem 1 holds.

Tadahisa Funaki University of Tokyo
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5. Summary of the talk

m We discussed the sharp interface limit for mass conserving
Allen-Cahn equation with stochastic term by extending
the method of the asymptotic expansion employed by
Chen-Hilhorst-Logak.

m Then, diverging term like (w°(t))?, (w°(t))* etc. appear.
Usually, we cannot control such terms, but fortunately
they appear only in the higher order terms in the
expansion.

m Therefore, if the diverging speed of derivatives of we(t) is
sufficiently slow, we can control them.

Tadahisa Funaki University of Tokyo
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Thank you for your attention!
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Our system and assumptions

The spreading dynamics
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Our system and assumptions

Our system and assumptions
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Our system and assumptions

A prey-predator reaction-diffusion system

» A two-component reaction-diffusion system:

{ Oru = dAu + uF(u,v) RV £ 0
X ) )

Orv = Av + vG(u, v)
together with nontrivial & nonnegative initial data
0<uw(x)<1,0< w(x).

» F(u,v) is the growth rate of the prey u,
G(u,v) is the growth rate of the predator v.

» Both growth rates will be positive in some range.

Thomas GILETTI Spreading speeds in diffusive prey-predator systems



Our system and assumptions

A prey-predator reaction-diffusion system

» The predation effect:
OvF(u,v) <0, 0,G(u,v) > 0.
» A KPP type assumption:
OuF(u,v) <0, 0,G(u,v) <0.
» Survival of the prey when there is no predator:
Yu e [0,1), F(u,0) > F(1,0) =0, but F(0,+00) <O0.
» The predator requires the prey to survive and grow:

G(0,0) <0< G(1,0).

Thomas GILETTI Spreading speeds in diffusive prey-predator systems



Our system and assumptions

The propagation dynamics

>

Under our assumptions, both the prey and the predator have
the ability to invade the domain.

» Question:

Assuming that both populations are compactly supported
at time t = 0, how fast do they spread through the domain?

» The difficulty: The system as a whole does not satisfy the
comparison principle!

» However, we will see that both species spread, but also that
their respective speeds may differ.

Thomas GILETTI Spreading speeds in diffusive prey-predator systems



The spreading dynamics
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The spreading dynamics

Single equation dynamics

» Assume that v = 0 (no predators).

= u satisfies the classical KPP equation
Oru = dAu + uF(u,0).
» Then the prey u spreads with speed c* [Aronson-Weinberger]:

Ve > c¢*, limsup sup u(t,x) =0,
t=00  Ix||>ct

Ve < c*, limsup sup |1 —u(t,x)| =0,
t=00 x||<ct

where ¢* = 2,/dF(0,0) speed of the linearized problem.
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The spreading dynamics

Single equation dynamics

» Assume that u =1 (many preys).
» Then the predator v spreads with speed ¢** [AW]:

Ve > ™, limsup sup v(t,x) =0,
t—=00 ||| >ct

Ve < ™, liminf inf |v(t,x)| >0,
t=o0 |Ix|[<et

where ¢** =2,/G(1,0).

» It is not assumed that there exists a positive stable state.

» Comparing c* and ¢**, which species is faster?

Thomas GILETTI Spreading speeds in diffusive prey-predator systems



The spreading dynamics

Our results: the slow predator case

» Theorem 1: Assume that ¢** < c¢*, then:
Ve > c¢*, limsup sup |u|+|v] =0,
t—=00 ||x||>ct

Ve <a<e<c limsup  sup |[1—ul+]|v|=0,
t—00 ¢ t<||x||[<cat

Ve < ™, liminf inf min{l —u,u,v} >0.
t—00 ||x||<ct

1
i
predator v\
1

prey u

Final zone Intermediate zone Leading edge

Prey spreads with speed c* and predator with speed c**.
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The spreading dynamics

Our results: the fast predator case

» Theorem 2: Assume that c** > c¢*, then:

Ve > ¢*, limsup sup |u|+|v|] =0,
=00 ||x||>ct

Ve < c*, liminf inf min{l —u,u,v} >0,
t=00 |Ix||<ct

prey

predator v

Final zone Leading edge

Both the prey and predator spead with speed c*.



The spreading dynamics

The proof: leading edge and intermediate zone

» The leading edge can be dealt with by simple comparison
arguments.

» The intermediate zone is more intricate: (here ¢* > ¢**)

> it relies on the KPP assumption, for small densities of preys to
propagate away of the predator’s reach;

» this intermediate zone appears as long as

24/dF(0,0) > 2/||G(1, )|l co-

Otherwise, there may be some threshold effect with respect to
initial data.

Thomas GILETTI Spreading speeds in diffusive prey-predator systems



The spreading dynamics

The proof: final zone

» Weak dissipativity property: Vx > 0, IM(x) > 0 s.t.
(Uo, VO) <K= Vt, (U(t, ')7 V(t7 )) < M(K’)
» It is satisfied if G(0,0) < 0 and F(0,+o0) < 0.

» The final zone:
» (u=1,v =0) is linearly unstable w.r.t. the ODE system;

» Step 1: by contradiction, there exists ¢ > 0 so that v may not
stay smaller than e indefinitely in a moving frame with speed
¢ < min{c*, c**};

» Step 2: by a strong maximum principle argument, if there
exists a sequence Vv(t,, x,) — 0 in the final zone, one can
construct a solution contradicting step 1.

Thomas GILETTI Spreading speeds in diffusive prey-predator systems



The spreading dynamics

Inside the final zone

» We only know that
O<u<l,O<v

uniformly in the final zone.

» What is the shape of the solution?

» Conjecture: the solution always converges to the same entire
solution.

» Holds true if d = 1, the ODE system admits a stable
stationary state and a strong Lyapunov function.

» What about d # 1, stable cycles and patterns?

Thomas GILETTI Spreading speeds in diffusive prey-predator systems



The spreading dynamics

Thank you for your attention.
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1. Example: Eruption of Mount St. Helen (1980):
Invasion into the open space.

The massive size of the 230 square mule blast zone as seen from space i1s revealed in this 1580 false color compesite iImage from the
Landsat MSS satellite
[Landsat, MSS Comiposite, 1980

From http://www.fs.usda.gov/main/mountsthelens/learning



sSuccession

1t 15 not unusual to see herds of bull etk running together on the debns avalanche of in the biast zone north of the voicano.
Elk viewing i= a very activity among Moaument visitors,
[C.Tonn, USDA Forest ice)




AT AT A v o gt g Sy TN SER
Prairies lupine (Lupinus lepidus) have been an important early colonizing plant on the Pumice Plain {pyroclastic flow)
north of the crater.

[James Cook, University of Wisconsin-Stevens Point. 1999]
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) L.
More and more Insects are colonizing the bisst Zone s developing plant life prowides & source of food and shelter. Grasshoppers forage
among the lupines on the pumice piam. Such nsects provide a food source for small mammals and insectivoreus brds. As food and shelter
becomes increasingly available aumals are coloning the blast zone in ever incréasing numbers

[J Gale, USDA Forest Service. 1984



The ecological question:
Can the predation slow down the invasion of a prey ?

§ A Trajectory Without Herbiveres
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 Fagan, W.F. and Bishop, J.G., Trophic interactions during primary
succesion: herbivores slow a plant reinvasion at Mount St.Helens, Am.
Nat. 155 (2000),238-251.



2. The model equation and the preliminaries.

The Lotka-Volterra Predator-Prey model

- u=du,+r@d-u-vyu
P v, =d,v +(-1+au-bv)v

Assumption: a>1,b =20

= (u, V) = (0, 0) = O: unstable (saddle)
(u, v) = (1, 0) = Q: unstable (saddle)
(u, v) = (u*, v*) = P: stable

rla

where u* = (b+1)/(atb), v* = (a-1)/(at+hb)
(BC1) (u(=20,t),v(=0,1)) = (u*,v*), (U(e,1),v(,1)) = (1,0).
(BC2) (u(=0,1),v(=,1)) = (u*,v*), (u(e,t),v(e,1)) = (0,0).

See,

 Owen M.R. and Lewis M.A., How predation can slow, stop or reverse a prey
invasion, Bulletin Math. Biology, 63 (2001),655-684.

» Fagan, W.F., Lewis M.A., Neubert M.G. and van den Driessche, P., Invasion
theory and biological control, Ecological Letters, 5 (2002), 148-157.



Traveling wave solutions :
a couple of nonnegative functions satisfying

(U@ V(2)E C*(R)x C*(R)

du"+cU'+rf(UV)=0
(T) d. v" :
,V"+cV'+ gU,V) =0,

Z=X-Ct,

o (BCL) (U(-%),V(-%)) = (u*,v*), (U(»),V(x)) = (1,0).
(BC2) (U(-%),V(-x)) = (u*,v*), (U(x),V(x)) =(0,0).
where ' denotes d/dz

According to Dunbar, we call that
traveling waves satisfying (BC1) is type | waves,
traveling waves satisfying (BC2) is type Il waves.

C : constant to be determined



The known results (b = 0)

Theorem 1 (Dunbar, S (1983))
Assume that d, =0, d, =1.

If O<c< 2va-1, traveling waves of type | do not exist, and
traveling waves of type Il exist.

If C=2+a-1, traveling waves of type Il do not exist, and
traveling waves of type | exist.

Theorem 2 (Dunbar, S (1984))
Assumethat O<d <1, d, =1.
If Cc=2+/a-1, traveling waves of type | exist.

Theorem 3 (Ma, S (2001))
Assume that d >0, d, > 0.
Forany c>2,/dr, the monotone traveling waves of type Il exist.




3. The heuristic and numerical argument on the invasion processes

d=d d,=1
When v =0, there exists a traveling prey wave with the minimal
wave speed
P C,* =2+/rd

O = u =<1 implies that the fastest speed of v is

c*=2va-1

If C* <C,*, the prey u-wave with the speed C,* goes ahead

and the predator wave with the speed C,™ follows the prey.

If c* >cC,™, the predator can catch the prey at the invasion front

and they invade with the same speed.

The numerical example:

c*=2va-1=42 (a=2)< c,*=2+/rd =2
c*=2va-1=+/6 (a=5/2) >c,* =2/rd =2



c*=2va-1=42<c,*=2/rd =2

1=500, T=200

al=1,a2=15
bl=1,b2=0
ri=1,r2=1.0
di1=1.d2=1
h=0.1, k=0.01

hairitsu=|

=500, T=200

al=1.a2=1.5
bl=1. b2=0
ri=1,2=1.0
di=1,d2=|
h=0.1, k=0.01

bairitsu=1
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c*=2va-1=6>c,*=2/rd =2

Predator-Prey Model (d1=d2=1.0,r2=1.0,a2=2.5)

1=500, T=200
=500, T=2(%) al=l,a2=25
l hi=1,h2=0
rl=1. r2=1.0
dl=1.d2=1
al=l, a2=2.5 h=0.1, k=001
bi=1. h2=() bairitsu=1
rl=1.1r2=1.0
di=1,d2=|
h=0.1, k=0.01
bairitsu=1
1
08
0.6
04
02
0




Mathematical Questions :

[1] For d,/d, > 1, do there exist type | waves and type Il waves ?

[2] Do there exist type Il waves which are not monotone ?

[3] For d, =0, do there exist type | waves and type Il waves ?
Remark 1 :

The linearization at the critical points O and Q implies that

[1] Type Il waves exist only for c=C,* = 2,/rd,,

[2] Type | waves exist only for C = C* = 2\/d2(a—1).

[1] implies that a predator cannot slow down the invasion of a prey.

For the standard predator-prey model, this is true.



4. The degenerate case d, = 0.

Theorem 4 (Y.H.) Assume that b =0.

For any c >0, there exists no type Il traveling wave, and there exist
type | traveling waves.

(Proof) The existence of type | waves is proved by the shooting argument
based on the Wazewski theorem for

U=V,

V'=—r(1-U -V)U,

W= -1C1+au-bv)v,
L C

J\o

(D)

with the boundary conditions
(BC1) (U(=),V(-2),W (=2)) = (U*,0,v*), (U(=2),V (=),W (=) = (1,0,0).

The nonexistence of type Il waves is derived from the property of the
critical point O = (0,0,0).



5. Type Il waves for the case: d, =&°, c=o0¢, d,=1.

The formal singular perturbation analysis.

The traveling wave equations of (PP) are

(TPP) eU"+eoU'+r(1-U -V)U =0
V'"+eoV'+(-1+aU -bV)V =0

Put £=0. r(l-U-Vv)U =0
V"+(-1+aU -bV)V =0

Define

O (0O<V <p)

N =hﬁ(V)E{Lv (B <V <V¥)



Outer Problem :

V'+g(h, (V).V) =0,
V(=e0) = V¥,V () = 0,V(0) = .

(R)

Lemmal (R) has a unique C!solution only for 8 = * € (O,v*),
where B * is a unique zero of

J(B) = [, 9(h,(s),9)ds.

Inner Problem : stretched variable & = z/«.

U+oU+r(1-B8*-U =0,
U (=) =1-%,U(x)=0.

()

Lemma 2 (1) has a unigue monotone solution for each

O=0"= 2\/r(1— [)’*),

except for modulo translation.



Remark 2 : This formal singular perturbation analysis may suggest

[1] type Il waves exist for any € = £0* with o* = 2\/ r(l-pg*).
However, this is not true since type Il waves exist only for

C=€O'ZCZ*EZ\/F.

[2] The profile of a prey is not monotone because the internal layer U(¢)
decreases monotonely w.rt. ¢ from 1—-p8* to 0 where 1 — 3* > u*.

The uniqueness of traveling waves may not valid. (See, Ma’s result.)
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I=50,1T=1200
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6. Type | wave for b >0 and d, > d,.

u =du, +r(l-u-vu
(PP {vt =d,v, +(-1+ au-bv)v

Assumption: a>1

(u, v) = (1, 0) = Q: unstable

= (U V)= (U, v) = P: stable

where u* = (b+1)/(atb), v* = (a-1)/(a+b),
(BCL) (U(~00,1),v(~0,1)) = (U* ,v*), (u(o0,t),v(c,1)) = (1,0).

There exists an invariant rectangle

D={(uV) | O=u=l OsVs%.



The formal singular perturbation analysis.
Consider the case: d, =1, d, =¢%, ¢=o0¢.

The traveling wave equations of (PP) are

U"+eocU'+r(1-U -V)U =0

(TPP) {3 V'+eoV'+(-1+aU —-bV)V =0
U"+r(1-U -V)U =0

Put £=0. { (-1+aU -bV)V =0

Define

1 *
V =k (U) = B(aU -1 (u*=U <a)
0] (a<U =<1



Outer Problem :

U"+f(U,k (U)) =0,
U (=) = u*,U () = 0, U (0) = c.

(RI)

Lemma 3 (RI) has a unigue solution only for a =a* & (u*,1)

where «a* is a unique zero of

J(a) = [.. f(s,k,(s))ds.

Inner Problem : stretched variable & = Z/€.
V + oV + (aa* -1-bV)V =0,
V(=) = (act* 1) /b, V() = O.

(I-1)

Lemma4 (I-1) has a uniqgue monotone solution for each

o =0 =2Jaa* -1,

except for modulo translation.




Remark 3 : This formal singular perturbation analysis may suggest

[1] type | waves exist for any ¢ 2 €0,* with o* =2JVaa* -1
However, this is not true since type | waves exist only for

coco 2ot =2yal

[2] The profile of a predator is not monotone because the internal layer V(<)
increases monotonely w.r.t. ¢ from 0to (aa*-1)/b>v*.
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The behavior of the profleas b — 0

We now fix (u*, v*) and let the slope of the nullcline : v = Z‘u 1

b
be inifinity. Let x =g and a*(k) be the zero of J(a):

J(a) = [, T(s.k,(9))ds

- [ (1-9)sds+ (%‘ +1) [ (u* —s)sds

Then,
lima* (k) = u*, lim(aa* (k) —1)/b=+ow

K —00

This implies that the profile of the predator becomes unbounded
as b tends to zero.

Remark 4 : For the degenerate case (D), the reduced problem of the
singular perturbations w.r.t. ¢ = ¢ is the same as (R-I).
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Conjecture :
If c* <c,*, type Il waves exist for any c satisfying c* =c <c,*,
and type | waves exist only for ¢ satisfying c=cC,*.

Furthermore, there exists no non-monotone type Il wave for C = C,

If c,* > c,™, non-monotone type Il waves do not exist for any ¢ > 0,

and type | waves exist only for ¢ satisfying cC=C,~.

Here, c* =24d,(a-1), c,*=2.dr.



Numerical speeds of the pursuit-evasion waves (type | waves)

For r = 0O(1), let us consider the case that

d is sufficiently small
d C state time h

102 24252*10% ¢ 100 001

10*  24360*102 ¢ 1000  0.005
10°  22399*10° — 15000 0.001

ct =2./d(a-1) =/6d = 2.449./d



The mathematical analysis assure that there exists no travelling
wave for any c <c* where

¢t = 2,/d(a-1) =/6d = 2.449d

Open problem: How can we understand the numerical results?
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Random Migration of Biological Species



Population dynamics and biological dispersal 3

1. Random Diffusion of Brownian Particles

The linear diffusion equation is written as
w; = dAu.
The diffusivity d of a Brownian particle in R is given by

2 2
Einstein-Smoluchowski Relation: d= N (X5 = N |Az] ,
2n t 2n | At|

where Ax is the mean free path and At is the mean collision time.
What will happen if the temperature is not constant?

If Az and At are nonconstant functions of x € R"”, the diffusivity is not
constant, i.e., d = d(x). Then, Fick’s diffusion law give

u = V-(dVu).

Is it correct?
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2. Random Walk with spatial heterogeneity

We may consider a random walk system. Let Ax and At be walk length and
jumping time. Then the probability density function satisfies

Az _ Az
u =V- (—V(—u))
¢ 2n At
We can show the probability density function of non-uniform random
walk system converges to the solution.
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3. Slower Diffuser Prevails!

Consider a competition model,

up = dy Au+ u(m(z) = (u +v)),
{ vy = do Ao +v(m(z) — (u+v)), €8, t>0 (1)
The initial and boundary conditions are
uo(z), vo(x) > 0in 2, n-Vu=n-Vov=0on 0f2. (2)

Let di < do 1i.e., uis a slower diffuser and v is a faster diffuser.
The result of this competition is rather surprising.

Theorem(’98 Dockery, Hutson, Mischaikow & Pernarowski)

v(z,t) >0 as t— oo.

This is a paradox !  Why is this happen?
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4. Random walk with respect to food, but not space

So far everybody considered random walk with respect to space. Now we
consider it with respect to food.

1. Suppose that m(z) > 0 is the food distribution in one space dimension.
2. First define a metric
b
/ m(x)dx
a

3. Imbed this metric space into a Euclidean space and bring back the linear
diffusion of Euclidean space. Then we obtain

w=d(3(2)), =l - o)

4. For multi-dimensional case, we obtain

wmav (Lo(2))

d(a,b) =
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5. Diffusion with nonconstant departing probability

In a random walk system, every particle jumps at every time step. Let v > 0
be a departure probability, then the diffusion equation is

up = dA(yu).
Suppose v = y(u,m) > 0 and
Oy >0 and 9,v<0, (3)

then this diffusion can be called a starvation driven diffusion.

We may call the following a starvation measure:

§=— Oor s = —.
m u

If v = v(s) is an increasing function of s, then

1

=~(s)= > — ()X <.
Yu=7(8)— 20, ym=—7(s)—5 <0
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Fick’s law, Self-diffusion, Cross-diffusion and Advection

Consider
up = dAu  +u[m(z) —u— ],
vy = A(y(s)v) +vim(z) —u—v].
In this case the starvation measure is

U+ v

S =
m

and the diffusion term is written as

A(y(s)v) = V-(’qu + %’}’/VU + %’y’Vu - %s’y’Vm).
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Four papers on starvation driven diffusion

1. E.Cho and Y.J. Kim, Starvation driven diffusion as a survival strategy
of biological organisms, Bull. Math. Biol. 75(5) (2013) 845-870

2. Y.J. Kim, O. Kwon and F. Li, Global asymptotic stability and the
ideal free distribution in a starvation driven diffusion, J. Math. Biol. 68 (6)
(2014) 1341-1370

3. Y.J. Kim,O. Kwon and F. Li, Evolution of dispersal toward fitness,
Bull. Math. Biol. 75(12) (2013) 2474-2498

4. C. Yoon and Y.-J. Kim, Bacterial chemotaxis without gradient-sensing,
J. Math. Biol. (2014), published on line
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6. Keller-Segel model
The Keller-Segel model for Addler’s traveling wave phenomenon is
up = (p(m)ue — x(m)umg)q,
_ _ (4)
my = €My, — k(m)u,

where u > 0 is the population density, m > 0 is the nutrient concentration,
e > 0 is the diffusivity of nutrient concentration, and k(m) > 0 is the
consumption rate. In the derivation of the Keller-Segel model, p and x satisfy

x(m) = —(1—a)p'(m), p'(m) <0, (5)

where 0 < a < 1 is the effective body ratio.

Traveling wave solutions of (4) have been intensively studied after various
simplifications. In fact, Keller and Segel by themselves broke the link between
w and x in (5) by assuming

e=p =K =0 and x(m)=m1, (6)

and then found explicit traveling waves. x(m) = m~! is Weber-Fechner.
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7. Bacteria chemotaxis without gradient-sensing

Consider
{ u = (YU,

my = —k(m)u.
The first equation is written as
up = (7 + uye)te + Uy mm)w.
Let v = v(m). Then, it becomes

up = (y(m)uy + uy'(m)ymy) .

xT

Therefore, the corresponding chemosensitivity x(m) and diffusivity p(m)
satisfy

x(m) = —p'(m).
This is exactly the Keller-Segel model when a = 0.
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Numerical Simulations for traveling waves

oaff — ~ U
0.08
0.06
0.04
0.02

0
0 1 2 3 4 5 0 1 2 3 4 5

(a) Traveling waves at two different (b)Pulse type traveling wave of ODE system
moments ¢t = 10 and 20 with ¢ = 0.158

Fig. 1. Traveling wave of finite mass
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8. Logistic population model

The population growth is modeled by a linear term,
U = Tr1U,

where 71 > 0 is the growth rate. If resource is limited, there exists a compe-
tition for resource, which is modeled by a quadratic term,

U =riu— r2u2,

where 75 is the self-competition rate. The ratio m = r1/ro is called the
carrying capacity and the equation can be written as

. u (a1
w=ru{l——), m=—.
m 2

Now we complete the model by adding the zero-th order term:
U= (riu— rou® — TO)X{u>O}7

where ry > 0 is for the effect of constant loss.
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9. Competition model beyond Lotka-Volterra

Lotka-Volterra competition model is written as

. U+ a2V . a1 + v
u:r1u<1—7>, v:r2v<1—7>.
mi ma

Let A, B,C be resources, where u comsumes A, B and v consumes B, C.
How to model it? If we assume

u_A:uB+UB:v_c (%)
A B c’

the population model becomes

u:rlu(l—%”’» @:rgv(l—“;;”), M=A+B+C.

However, (x) cannot be satisfied if

<

u
A+ B

> or

Ql=
NS
Sy
_|_
Q
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Competition model beyond Lotka-Volterra

For general initial value, the system consists of three parts:

. u . v . U v

’LL—T‘lU(l—m), U—T‘Q'L)(l—a) if A >6

u—ru(1—3> @—rv(l— v ) if Lo Y
! A) m B+C ASBrC
. U+ v . u-+v .

U= Tlu(l Y ), U= 7‘21)(1 ~ > otherwise.

There are infinitely many steady states:
u=A+tB, v=C+(1—-t)B, 0<t<1.

The asymptotic convergence limit is decided by initial value.

Qustion: What will happen if there exists a spatial heterogeneity?
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Thank you.
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(1) Underlying ODE model system, 6 > 0

S = —oSI+bS+0b1—-(m+kP)S,
{ I" = oSI+(1-0)bl—al—(m+kP)I.
A straightforward computation yields a threshold parameter
%:b+aa(}§6)b,’ K:bTm' (1)
Then
when Tg <1

- the semi-trivial stationary state S = K,/ = 0 is GAS;

when 7o > 1
- the semi-trivial stationary state S = K,/ = 0 is unstable,
- there exists a unique persistent stationary state,
S$* >0,/ >0 with 0 < $* 4+ I* < K that is GAS.

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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(2) Nonlinear diffusion model system, 6 > 0

89S = Ald(S)—oSI+bS+0b1—(m+kP)S;
O = Aldo(D]+0SI+(1—0)bIv—al—(m+kP)I.

One assumes

d d;
in S
dX

/

0 < dm (X) =d: (X), X >0,i=1,2; d; € C*([0,0)).

One prescribes no flux boundary conditions
dll(S)VS(x7 t)-n(x) = dZ/(I)VI(x, t)-n(x)=0, x€edQ, t>0

7 being a unit normal vector to Q along 0.

Given nonnegative and bounded initial conditions, S(0, x) = Sp(x) and
1(0, x) = Ip(x), with So(x) + lh(x) # 0 this PDE model system has a
unique componentwise nonnegative and bounded classical solution.

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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Lemma

Assume Tg > 1.

The unique persistent stationary state of the underlying ODE system
remains GAS for the nonlinear diffusion model system for those
nonnegative and bounded initial conditions such that Sqo #Z 0 and Iy Z 0.

Usual Lyapunov function already designed for the ODE system

(v, V)ZVs/Q(u(x)—S*—S*In”éf))dxw,/ﬂ(v(x)—/*—/*mfo))dx.

When o > k : rather straightforward.

When o < k : a trick from Busenberg and Cooke.

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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1D TW solutions when 7o > 1
HhS = dAS—0SI+bS+0b1—(m+kP)S;
ol = dAlI+0SI+(1-0)b!l—al—(m+kP)I.

S(x,t) = u(ex —ct) and I(x,t) = v(ex — ct)
Ao (05) - () 2 (05)-(5)

c*=2d /(0 —k)K —m—a+ (1—0)b

Lemma

- when o < k for each ¢ > c* there is a solution (u, v) with u increasing
and v decreasing;

- when o > k and di = d, for each ¢ > c* there is a componentwise
positive solution (u, v).

(Ducrot - ML - Magal)

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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(3) Cross diffusion and nonlinear diffusion model system 6 > 0

Prototypical model system involving nonlinear and cross diffusion

KhS=A[(d1 +d11S+di21)S]—acSI+bS+0b 1 —(m+kP)S;
6tl:A[(dg+d215+d22I)/]+USI+(1—O)bll—al—(m+kP)I
One assumes

—d1>0,d2>0,
-dj>0fori,j=1,2.

One prescribes no flux boundary conditions .

Additional set of conditions : di» = dr1 =1, djj > % fori=1,2

Given nonnegative and bounded initial conditions, 5(0, x) = Sp(x) and
1(0, x) = Ip(x), with So(x) + lo(x) # 0 one gets at least one
(componentwise nonnegative and bounded) weak solution solution,
(Bendahmane - ML).

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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Assume Tp > 1

Can the unique persistent stationary state $* > 0, /* > 0 of the
underlying ODE system be destabilized by cross and nonlinear diffusion ?

Litterature (currently limited search, to be completed).
People in the room !

Idea : linearization and algebraic computation, numerical experiments.

No closed form expression for S* > 0, /* > 0, but for a suitable and quite
restrictive parameter data set with a misleading outcome.

In that restrictive case cf. G. Gambino, M.C. Lombardo, and M.
Sammartino (2012), Canrong Tian, Zhigui Lin, Michael Pedersen (2010).

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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f#1 Linearized system assuming 7o > 1

Set S =u—S* and | = v — I*. Linearizing yields

r(v)=ee () (V)

equipped with no flux boundary conditions.

Herein D* is the linearized diffusion matrix evaluated at (§*, /*)

D — di+2di1 S* +dpp I* dip S*
- doy I* o+ dry S* +2dy I*

J* is Jacobian matrix of the ODE system evaluated at (5%, /*).

One gets
trace(D*) > 0, det(D*) > 0;
trace(J*) < 0, det(J*) > 0.

(case o < k being again somewhat trickier than case o > k).

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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#1 Linearized system assuming 7o > 1, cont'd

Let ( P> 0) and ((pj) >0 be the eigenvalues / eigenfunctions to

{ P(x) = pe(x), xe;
Veo(x) - 1(x )_0 x € 0Q.

Looking for a solution ( l‘; ) = exp(\t) goj(x)( a ) to

one gets an eigenvalue problem in R?

. * * z1 _ O
(Mdz = [ D* + 7)) ( i ) - ( 0 )
The question now is whether X\ can be positive ?
- J* - ,uj D*

Because trace(Mp) < 0 unstability is feasible if and only.if det(Mp) < 0

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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2 About det(Mp) < 0, My = J* — p; D*, checked with Maple software ! J

For some linear function © of diffusivities (d;, djj)

det(Mo) = ,UJZ det(D*) + @(dl, d», di1, d1o, doy, d22) + det(J*)

A necessary condition for det(Mp) < 0 is to find a set of positive
diffusivities implying O(dl, d27 d11, d12, d21, d22) < 0.

@ According to previous results one has ©(dy, d», 0, d2, dz1,0) > 0 for
nonnegative (61'17 do, dio, d21) with di + db + dio + do; > 0.

@ Next looking at mere cross diffusivities one gets

©(0,0,0,d12,0,0) = —dip(kS* — kI* — aS*)I*;
©(0,0,0,0,d1,0) = doy (kS22 —kS*I* — o S*I* +20b 1%).

On the other hand note that when o > k then ©(0,0,0, d12,0,0) > 0.

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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#2 About det(Mp) < 0 : Example 1

Set b=2,b,=0, m=1, a=0, § =0.3 in which case
76:0.5%>1 < 0< 2k <o (green curve).

©(0,0,0,0, d>1,0) = dry ©(0,0,0,0,1,0) < 0 above the red one.

051

Assuming To > 1 it follows ©(0,0,0, d12,0,0) > 0 for dip > Q.

V. Anaya, M. Bendahmane, M. Langlais, M. Sepilveda ReaDiLaB workshop, CIRM Marseille June 2014
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#2 About det(M;) < 0 : Example 2

Setb=b =2 m=1 a=0.2and § =0.3.
When 7o > 1 then ©(0,0,0,0, d»1,0) > 0 for d; > 0.

76:1.25%>1andcr<k — 0<08k<o <k

©(0,0,0, d12,0,0) = d12©(0,0,0,1,0,0) < 0 between red and green
curves and T > 1 above green one.

14
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#3 Turing bifurcation : Example 1

Fix d; = d» = 0.1, next dy; = dy, = 0 and last di» = 0.
Select k = 0.2 and o0 = 0.8 in order to get ©(0,0,0,0, d21,0) < 0.
det(Mp) < 0 within a wide range of the (u, d>1) phase plane.

dz2l 54

[m} = =
V. Anaya, M. Bendahmane, M. Langlais, M. Sepilveda ReaDiLaB workshop, CIRM Marseille June 2014
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3 Pattern formation : Example 1, d>; = 190 — 220, 300 — 1000 J

' | ..‘

| | A

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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#3 Turing bifurcation : Example 2

Fix d; = d» = 0.05, next di; = dro = 0 and last db; = 0.
Select k = 0.2 and o = 0.165 in order to get ©(0,0,0, d12,0,0)
det(Mp) < 0 within a wide range of the (u, di2) phase plane.

AT
" ““ A LN
R
/,/’//,,"z«"a%‘e"‘.\\~\e
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i

di2

[m} = =
V. Anaya, M. Bendahmane, M. Langlais, M. Sepilveda ReaDiLaB workshop, CIRM Marseille June 2014
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Compartmentalal model for SIR infectious diseases.

(1-8)b, b
ol
S
N

| - ~
\ | ... R
| ) p(l—skq e

/

_ Y,
(1-p)(1-¢)ar
m+ Kk (St1) m+ k (St1) m+ k (St1)
Flowchart for SIR models

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda
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(1) Underlying ODE model system, 6 > 0

S = —0SI+b(S5+R)+0b1+0(1—c)al—(m+kP)S;
I' = oSI+(1=0)bl—al—(m+kP)I;
R = 4eal—(m+kP)R.
et oK b—m
76:b+a—(1—6)b,’ K==

Assume “ weak vertical transmission "
m+a—(1-6)b >0. (2)
Then
To < 1 the semi-trivial stationary state S = K,/ = R = 0 is GAS.

To>1-5S=K,l =R=0is unstable,
- there exists a unique persistent stationary state,
0< S* I*,R*,S* + I* + R* < K that is LAS.

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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(2) Linear and nonlinear diffusion model system 6 > 0

Prototypical model system involving nonlinear and cross diffusion

8t5:A[(d1+d11 5)5]
—0SI+b(S+R)+0b1+o(l—¢c)al—(m+kP)S;
Ol =A[(db+dn )] +0ST+(1—-0)bj | —al —(m+ kP)I;
R =Al(dz+ ds3s R)R]+ecal —(m+ kP)R.
One assumes d; > 0,d> > 0,d3 >0, d;; >0, for 1 </ < 3.

One prescribes no flux boundary conditions.

Given nonnegative and bounded initial conditions, S(0, x) = Sp(x),
1(0, x) = Iy(x) and R(0, x) = Ro(x), with So(x) + lo(x) + Ro(x) # 0 one
gets a unique componentwise nonnegative and bounded classical solution.

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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About stability ...

Quite partial results

oK b—m
= K = .
To b+a—(1-0)b’ k
Assume “ weak vertical transmission " m+ o — (1 —6) b; > 0.
Then
To < 1 the semi-trivial stationary state S = K,/ = R =0 is GAS
provided
- either o < k;

- or o > k, linear diffusion, d; = 0, with d; = db = ds.

To > 1 then
-S$S =K, =R =0is unstable;
- Unique persistent stationary state “ numerically " LAS,
0<S*, I*, R*,S*+ 1"+ R* < K.

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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(3) Cross diffusion and nonlinear diffusion model system 6 > 0

Prototypical model system involving nonlinear and cross diffusion

9:S = A[(dy + di1 S + dia | 4 di3 R)S]
—0SI+b(S+R)+0b1+o(l—c)al—(m+kP)S;

Otl = A[(da + do1 S + dap | + doz R)]
+0SI+(1—0)bl—al—(m+kP)I;

O:R = A[(d3 + d31 S + dsp | + ds3 R)R]

+eal —(m+ k P)R.

One assumes d; > 0,d> > 0,d3 >0, d; >0, 1 <,j <3.

One prescribes no flux boundary conditions .

Additional set of conditions : djj =1, i # j, dij > % fori,j=1,2,3.

Given nonnegative and bounded initial conditions, 5(0, x) = Sp(x),
1(0, x) = y(x) and R(0, x) = Ro(x), with So(x) + lo(x) + Ro(x) # 0 one
gets at least one (componentwise nonnegative and bounded) weak
solution, (Bendahmane - ML).

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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#1 Numerical experiments

Simplified system
-bp=b=0.03,0=1,0=1;
-m=0.01, k=0.03, a=12,¢=0.1,
-0 =0.8.
-dj=1fori#jand1<i,j<3;

- varying either dj; or das.

0:S = Al(dh + di1 S+ 1 + R)S]
—0SI+bP+ (1—¢c)al—(m+kP)S;
Ol =A[(da+S+dn!l +R)+0SI—al—(m+kP)I;
8tR:A[(d3+5+l+d33R)R]+sal—(m+kP)R
One prescribes no flux boundary conditions and nonnegative and

bounded initial conditions, S(0, x) = So(x), /(0, x) = lp(x) and
R(0, x) = Ro(x), with So(x) + lo(x) + Ro(x) # 0.

V. Anaya, M. Bendahmane, M. Langlais, M. Sepiilveda ReaDiLaB workshop, CIRM Marseille June 2014
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10

70,90 and d22 = d33 =

13 dn

-
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Thank you for your attention.

Perspectives
@ More numerics for SI model system;
@ SIR model system analysis and computations;

V. Anaya, M. Bendahmane, M.L., M. Seplilveda. A convergent finite volume
method for a model of indirectly transmitted diseases with non-local
cross-diffusion. Submitted.

V. Anaya, M. Bendahmane, M.L., M. Sepldlveda. Pattern formation for a
reaction-diffusion system with constant and cross diffusion. ENUMATH 2013.
A. Ducrot, M.L., P. Magal. Qualitative analysis and traveling wave solutions
for the SI model with vertical transmission. CPAA, 11-1 (2012) 97-113.

M. Bendahmane, M.L. A reaction-diffusion system with cross-diffusion
modelling the spread of an epidemic disease, J. Evolution Equation, 10 (2010)
883-904.
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We consider the fast reaction limit of the following system :

uy = Au — ku™rp™ms in Qr,
Uy = —ku2y"4 11 QT)
o,

ﬁ—z =0 on St,
”LL(ZIZ‘,O) — UO(ZU), ’U(CIS‘,O) — UO('CE) in Qa

~ Contents ~

(1). Motivation (some results of previous works)

(2). Main results ( the limit functions change the form
depending on the combination of exponents)



1. Some results of the fast reaction limit

Let us consider the two-component system with a positive
parameter k as follows :

[ up = d1Au+ f(u) — EF(u,v), )
ve = deAv + g(v) — EG(u,v),

where d is a positive constant, ds is a non-negative constant,
f, g, F,G are continuous functions.

Sometimes we encounter the question :

As k — oo, what happens ?

This singular limit is called the fast reaction limit.

*This limit problem is helpful in the understanding of the
dynamics for systems and the approximation of FBP.



1. Some results of the fast reaction limit
Casel: F'(u,v) = G(u,v) = uv

Ex. 1 r .
) ur = Au — kuv in Qr,

vy = —kuv in Qr,

\\

where Q7 := 2 x (0,T),  : bounded domain with
smooth boundary in [R™.
* This model is related to anti-tumor therapies.

u = u(x,t) : Density of a medicine

v = v(x,t) : Density of a tumor

Q. When k is sufficiently large, how does the
medicine penetrate to a tumor ?



1. Some results of the fast reaction limit

(Simulation results : k1 << ko )

1.0

08

Q. Does there exist the equation the limit functions of

(ug, vy ) satisfy ?
If there exists, what type is the equation ?

A. The limit function U o satisfy the classical one-phase
Stefan problem with the latent heat v = Vg .
(The rigorous proof was done by D. Hilhorst et al.)



1. Some results of the fast reaction limit

Problem setting

ur = Au — kuv in Qr,
vy = —kuv in Qr,
k
(Q) ? =0 oIl ST,
%

u(z,0) =ug, v(x,0)=1g in 2,

where S := 02 x (0,T")and I is the outer normal unit vector.

Hypothesis
o (ug,vy) € C(Q) x L™(9), :
® UpgVpy — 0.




1. Some results of the fast reaction limit

ﬁeorem 1 [Hilhorst, Mimura and Ninomiya, 2008] \
(2)

Huw, }, {vk, }, Uoo, Voo s-t.
Uk, — Uso strongly in L*(Qr),

weakly in L?(0,T; H'(Q))
Uk, — Voo strongly in L*(Qr),

as k, — 00.

(72) UooVoo = 0.

(i) /Q (= (g — 000) G + Vit - VC} dardt = 0

\for al ¢ € H3 (Qr). /




1. Some results of the fast reaction limit

In Theorem 1, if the limit functions (%o, Voo ) are sufficiently
smooth, we can confirm that (iii) is the weak form of the
classical one-phase Stefan problem with the help of
Integration by parts and fundamental lemma of calculus of

variations.

Notation:
Qu(t) ={x € Q| ulz,t) >0}, Q) :={xecQ|v(xt)>0},

Qr= J QW) x{t}, Q7= |J Q) x {1},

() = Q\ () UQ(), T:= | T() x {1}

Il . Outer normal unit vector of F(t), Vn . Outer normal velocity of F(t) |



ﬁorem 2 [Hilhorst, Mimura and Ninomiya, 2008] \

Suppose that
(Al). F(t) IS a smooth, closed and orientable hypersurface,

(A2). T'(t) N oQ = ¢,
(A3). U and Vg are smooth in QF and Q% respectively.

Then (uso, VUso) Satisfies the following equation:

ur = Au in Q%

vV = g in Q7%,
(Q)OO oV, = —Vu-n on I,

u =0 on I,

ou
\ % — O o1n 8@, /




1. Some results of the fast reaction limit

m Other results related to the fast reaction limit of (1)

uy = diAu + f(u) — kF(u,v), i
vy = doAv + g(v) — EG(u, v), (L)

Case | : F'(u,v) = G(u,v)

Ex. 2) Hilhosrt et al. (1996, 2000, 2008)
uy = Au — kF(u,v), ex.) F(u,v) = uPv?

ve = —kF(u,v), p.q>1
B.C. and I.C. ( )

@)

=) (Uso, Vo) satisfies the weak form of (Q)

k — oo



1. Some results of the fast reaction limit

m Other results related to the fast reaction limit of (1)

u = diAu+ f(u) — kF(u,v),
vy = doAv + g(v) — kG(u, v),

(1)
Casel: F(u,v) = G(u,v) = uv

Ex. 3) Evans (1980) .
(Uoo, Voo ) satisfies the two-
uy = Au — kuv, =) phase Stefan problem with
v = Av — kuv, k— oo the zero latent heat.

BC and IC ( uy = Au in Q%’
_ . 2

(mathematical model in gas-liquid) | Yt = Av in @7,
{ Vu-n=—-Vov-n on I
u=v=>0 on I,

B.C. and I.C.

\



1. Some results of the fast reaction limit

m Other results related to the fast reaction limit of (1)

uy = diAu + f(u) — kF(u,v), i
vy = doAv + g(v) — EG(u, v), (L)

Casel: F(u,v) = G(u,v) = uv
Ex. 4) Dancer et al. (1999), Crooks et al. (2004) etc
ur = di1Au ~+ (r1 — a1u)u — kuv,

vy = doAv + (19 — asu)u — kuw,
BC and IC (

(L-V system)

ur = diAu + (r1 — aju)u in Q%
) vy = do Av + (ro — asv)v in Q%,
ke — 00 . Vu-n=—-Vov-n on I,
(Uoo, Voo ) satisfies the two- | ) _ on T
phase Stefan problem with ’
the zero latent heat. | B.C. and 1.C.



1. Some results of the fast reaction limit

m Other results related to the fast reaction limit of (1)

uy = diAu + f(u) — kF(u,v), i
vy = doAv + g(v) — EG(u, v), (L)

Casell: F(u,v) = —G(u,v)

- Eymard et al. (2001)
* Bothe and Hilhosrt (2003)
- Bouillard et al. (2009)

They considered the system with reversible reaction terms and
showed that the system also converges the weak form of the
Stefan problem as k tends to infinity.



2. Our problem and main results

Therefore we encounter the following natural question:

Q. What happens for unbalanced reaction terms, that is,

F(u,v) # + ¢G(u,v) (£ : constant) 7

m Some results for unbalanced reaction terms :

= Caffarelli et al. (2008), = Dancer et al. (2012),
- Noris et al. (2014), ==

They considered the stationary Gross-Pitaevskili equation
derived from Bose-Einstein condensates’.

(o NG P e = N Bl =Y
‘ —Av + V3 —- kuv = AV, G(u,v) = w2




2. Our problem and main results

We consider the fast reaction limit of the following system :

Uy = Au — ku™rpms n QT7
VUV = — k2" In QT7
P) 5, . .
ey — on or,
U(LC,O) — u0($)7 ”U(LE,O) — ”Uo($) n Qa

where m; > 1 (1 =1,2,3,4)

We consider the four typical combination of exponents
m = (mq, Mo, M3, My).



2. Our problem and main results

(O sl =l T L I e hare bl -8
=) Uoo satisfies the heat equation on ) .
(Infinite propagation)
(1) m=(1,mo,1,1) and mo > 1
=) U satisfies the heat equation on SUPDP U .
(No propagation)

(M) m=(1,1,m3,1) and mg > 1

) U satisfies the one-phase Stefan problem.
(Finite propagation)
(V) m=(1,1,1,m4) and 2 >my > 1

) Uso satisfies the one-phase Stefan problem.
(Finite propagation)



m Simulation results

<- Infinite
propagation

No :
propagation -> -

m=(1,1,m3,1) and m = (1,1, 1, my)

<- Finite propagation




2. Our problem and main results

() m = (mqy,1,1,1) and mq >3

Assupmtion 1

o (ug,v0) € C*(Q) x C*(Q), (a€(0,1))
e Forx € (),
uo(z)vg(x) =0, 0 < ugp(x),vo(x) < M,

where M := max{ug, vg }-
TR R

o O =0 on Jf2 : C
ov




2. Our problem and main results

MnTh.l m = (mq,1,1,1) and m; > 3 \

Initial data satisfy Assumption 1 = H!U*, Uy S.1.
U —7 Ux in CO(QT)
v — U =0 in C°(Q x [,T))

as k — oo.
Where 7] is any small positive constant and U*(% t) IS a

smooth function ( C*'(Q)):

U = Au in QT, Infinite propagation

ou

=0 on S,

\_ | teomuw me. T wo/




Thank you for your attention !



Instability of periodic traveling wave

solutions to excitable systems

Toshi OGAWA (Meiji University)
M Osman GANI (Meiji University)

ReaDiLab Conference, CIRM, Luminy, June 2014



Sudden Death by Cardiac Disease

How cardiac tissue behaves
abnormally?

(1)Appearance of spiral.

(2)Spiral break-up.



Spiral waves and discordant alternans

b=1.3 b=1.2 b=1.1

b=1.05 b=1.04 b=1.035 b=1.03




Alternant response of a single cell

Cardiac cell as an excitable system as neuron.

Observe how an excitable cell responds to
repetitive (periodic) stimulus.

It responds precisely to each stimuli when the
period is sufficiently large. While it can not
follow the stimulus if the period is too short.
Alternant response can be observed in a

cardiac cell response.
Period doubling bifurcation, restitution curve



Increase the frequency




Alternant response

“““““““““““““




Restitution hypothesis

Pulse traveling wave and periodic
traveling wave (wave train) are known
to exist in a diffusively coupled
system of excitable system.

Is there any relation between the
alternant response by an excitable
cell and the transition from VT to VF?

Study the instability of wave train in
1D (simplest case).

APD

wave break

uy = Ditge +ulu—a)(l—u)—v

Dovgy + e(u — yv)

S
~
|

APD

-
-

A
N
Y

N
N




Key Idea for alternant response

e Excitable system as a fast-slow system
e Restitution curve provides 1D map



Fast-slow system

FitzHugh-Nagumo system

sgi—f = z(x—a)(l—2a)—y
o = Ty 0<a<1/2
O<e<<1
It is equivalent to the following by time scaling ¢ = 71
L p(z—a)(l-x) -y

dr e(r — vy)



\/

dx
dr

Fast Dynamics

r(r—a)(l—x)—1y
Yo

\/




Slow Dynamics

3
|

U(y)
. dt L — VY




Dynamics of the FHN system

08
0.6
04F

02}

- plor
0.10F

005

0.00 1 1 1 1
a0 a5 1o L3 20

; Right branch ( exciting period)
Left branch (charging period)

L 1 " L " A " " lv'l " i
02 /




Response to the following stimuli

Add a next stimuli during a | | ——~\
charging period.

Landing point on the exciting
branch depends on the takeoff
point on the slow charging branch.




Restitution curve

Charging period determines the following exciting period.
Longer charge leads to longer excitation.

Upper limit for the length of excitation no matter how
long the previous charge.

\ '\\ \ A APD

DI

APD : Action Potential Duration (exciting)
Dl:Diastolic Interval (charging)



1D map

Sequence of pulses are obtained by adding
the periodic stimulus (period: T).

a, = (APD), B
d, == (DI), an T+ dn =
An+1 =  ¢(dp)

Sequence of APD satisfies the following:

Un41 — f(an)




Bifurcation in the 1D map

Period doubling bifurcation occurs depending
on the slope of the restitution curve.

||||||||||||||||||||||||||||||||||||||||




Bifurcation in the 1D map

Period doubling bifurcation occurs depending
on the slope of the restitution curve.

||||||||||||||||||||||||||||||||||||||||




Restitution curve for FHN

0.8
0.6
0.4

0.2

t

In the case of FHN the slope of
the restitution curve is less than 1.
So alternant response can not be
observed.

|

yﬂ“/f A20‘00 '




Modified FHN system

To make the restitution curve steeper the period on the exciting
branch should be larger. So we modify the FHN as follows.

dx
&at
dy
dt

[l
=~ 8
/\H
>
|

5=
A~ =t
=
_|_E~2
\(_3/\_/
-
@@

»»»»»




Alternant response
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Aliev-Panfilov model

The Aliev-Panfilov model, one of the cardiac cell models, has a
similar kind of property.

Kx(x —a)(1 —x) — xy

ot o

<5 R >(K:z:(1+b—:v)—y)




1D Reaction-diffusion system

Discordant alternans seems to relate to the
alternant response. But is it true?

Modified FitzHugh-Nagumo system of RD

Uy A1tz +u(u —a)(l —u) —v
Ve =  doUzy + e(du(b —u)(u +c) — v)

Study the stability for the wave train.



Stability for Wave train

- Rinzel, Keller, Biophys. J. 13, 1973

(Piecewise linear, slow-fast branches)

- Maginu, J. Math. Biology 6, 1978

(Instability on the part of the slow branch)

- Maginu, J. Math. Biology 10, 1980

(Instability for slow branch and the part of fast)

- Gardner, J.Math.Pures Appl., 72, 1993
- Rademacher, Sandstede, Scheel, Physica D229, 2007
- Rademacher, Scheel, Int.J.Bif.Chaos 17(8),2007

- J.A. Sherratt, Applied Mathematics & Computation 218,
4684-4694 (2012) WAVETRAIN



Essential spectra

Uy = Dugy +cuy + flu) veR", 2R
Suppose (x) is a periodic stationary solution.

Lu = Dugy + cuy + a(z)u = Au a(z) = a(z + L)

L, :=D(0, +v)*+¢c(0, + V) + ax)

Lemma[Rademacher et.al]: the followings are equivalent.

(1) X\ € specl
(i) L,u= Au for some we HZ (0,L) and some v € iR

(iii) det(®y —e’") =0 for some , cg



period

Existence and stability of P

pcode=102

TW soluti

a=freg y=20,

for the Standard FHN Model

du=0.05 dv=0.005 gamma=2.0 epsl=0.003
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° A A ' ' '
015 |

[ ] [ A N ' a

A A A A A A A A A A
ok A A A A A A A A A A i
. . . . . .
0 0.05 0.1 0.15 0.2 0.25
. a
beode=101 a=0.07 beode=102 a=0.15
du=0.05 dv=0.005 gamma=2.0 epsl=0.003 du=0.05 dv=0.005 gamma=2.0 epsl=0.003
T T T T T 5 T T
@
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T
2
~
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Q

period

ons

0.003

Divugr +u(l —u)(u—a) —v
Dovyy + (U — Yo

e =0.003, v = 2.0

beode=103 a=0.2

du=0.05 dv=0.005 gamma=2.0 epsl=0.003
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period

beode=104 a=0.24

4u=0.05 dv=0.005 gamma=2.0 epsl=0.003
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005 0052 0054 0.056 0058 006 0.062 0.064

a=0.24



0.14
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0.1

0.08

0.06

0.04

Stability of PTW for modified-FHN
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| oo

Stable periodic traveling wave

Unstable periodic traveling wave solution
No periodic traveling wave

Stability boundary (Eckhaus type)



Stability of PTW for modified-FHN
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0.12
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Stable periodic traveling wave

Unstable periodic traveling wave solution
No periodic traveling wave

Stability boundary (Eckhaus type)
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Bifurcation Diagram

period
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Existence and Stability of PTWs for different periods
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Im(eigenvalue)

The essential spectra of four PTW solutions of our model
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Bifurcation Diagram (L=25, 1=25)




max. and min. width of wave pulses
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Bifurcation Diagram (L=50, 1=25)
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b=1.035
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X
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by = 1.0343
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b

We can observe another
type of Hopf bifurcation
under periodic boundary
condition with period L
which is double the
wavelength.....



Spiral pulses widths increasing as b decreased

Initial data

b=1.05 b=1.04 b=1.035 b=1.03




 We have studied the stability of periodic traveling
wave solutions by essential spectrum from
numerical continuation.

* Most of the fast periodic traveling waves become
Eckhaus unstable by the effect of long excitation.

 We also observe a change of stability of Hopf type
for small period.
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Models for cell motility
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Crawling cells

Three main components of cell motility:

speed ~ one body length/min

1. Protrusion
Adhesion
3. Contraction

actin lamelli m substratum

movement of unpolymerized actin
myosin |l
contraction Keratocyte
-
B !
focal contacts

(contain integrins)
I_ﬁ
|

B. Alberts, et al. Molecular biology of the cell. 2002, Hela )




Contraction

Motor £ ¢

K. Clark, et al. Trends Cell Biol., 17(4), 2007.



Contraction driven initiation of motility

: “ A transient mechanical stimulus
was applied to stationary fragments. The stimulus induced localized contraction
and the formation of an actin—myosin Il bundle at one edge of the fragment.
Remarkably, stimulated fragments started to undergo locomotion and the
locomotion and associated anisotropic organization of the actin—myosin Il system
were sustained after withdrawal of the stimulus. ”

: “ Local stimulation of myosin activity in stationary cells by
the local application of calyculin A induced directed motility initiation away from
the site of stimulation”

Symmetric configuration becomes unstable



—> <« —> <« —> <«

cargo motor part

Cell is modeled as a viscous active gel with moving boundaries: I (t) and /,(t)
»Adhesion is modeled by viscous friction.
» Contraction is modeled as a distributed pre-stress.

» Cell membrane/cortex is assumed to be linear elastic.



Governing equations

0o =ty Adhesion

e Force Balance: { _ _
o(l=(t),t) = —k=U ﬂ{(t) = Elasticity

5
e Consitutive relation: o = nd,v + xc(x,t) <« Contraction
——

>0

I+ =v(l+(t),t) <—— Stefan -type

e Boundary kinetic: { 1_(0) = 1° < 14(0) =19

Orc + 0 (cv) — DOyrc =0

e Myosin II : DOyc(le(t),t) =0 - Convection-diffusion
c(x,0) = ()

e Actin: { Op + 3:1:(0’0()) =0 uncoupled
p(z,0) = p*(x)
. o(x,t . v(x,t) x,t) and clx,t
Unknowns: [_(t), I4(t), (z,t) (,t) p(x,t) (@, 1)
axial stress  velocity actin myosin

density concentraction



Non-dimensionalization

(1 () —1_(t)= L
Limit & — oo: { residual stress og(t) = —klim
—

velocity V(t) = 14(t)

I (t)—1_(t)—L
L

\

Mass conservation: cg = L1 fll+_ c(x,t)dx
Non-dimensional variables: o/(cox), ¢/co, x/+/n/& and t/(n/(cox))

Mapping: y = x/L —1/2



Keller-Segel dynamics

non-local recruitement

N
~

-

— L7200+ 0

=c o(—1/2,t) = o(1/2,t) € o
Byc + L7200, (c[0,0 — LV]) — ﬁTayyc =0 Oyo(=1/2,t) = 9,0(1/2,1) =
~ ~— AL Oyc(£1/2,t) =0

convection diffusion

Non dimensional parameters: £ = \/\/__L, A= —g

L (3 sinh(Ly) symmetry break
V== Jt)dy =
/_% sinh(%) ey, t)dy { = L/2



Traveling wave assumption

Emden equation

C(y) o eMo(y)—V Ly)
2 g _ Mo (y)—V Ly) (Y2 (e —VvLy)yg
_ﬁ ( ) + J(y) - 1/26 eX(o(y)— Vﬁy)dy ‘ _1_/2 —1 7 Y
) ~1/2 ¢ v(y) =L 0'(y)
o(+3) =00 and o' (£3) = LV,
10p
Static solutions (V = 0): 0.5}
1. Trivial solution: 0 =o0g =1 0.0}
2. Patterned (quadratures, o’* = W (o)) 03y B
ol )]
3 -2 -1 0 1 2
o — Jp
Motile solutions (V' # 0): NS <P i il
No branching from patterned static solution s \ i / - osA AN A R
A WEPRERY
1/2 0 T ’_’/] 1‘: T 0 \le“jl ‘\II\—I/‘/
/ eMo(y)—o0—LVy) dy = sinhc(ALV/2) 0 02 04 06 08 1 0 02 04 06 08 1
~1/2

10



Bifurcation diagram
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Reconstruction of actin density

Orp+ L710y(p(v —V)) =0

Characteristic curves:

do
L w(g) =V
‘ 1 £ w(e) - V)
“‘. V >0 sink v’ < () source v' > 0
| ¢
—
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Governing equations

I/
e
contraction
- <« — <« —> <«
I O
membranetcortex <_- iir :
-}
<~ <« «— & <<
I (t) friction E+ (t)

cargo motor part

0,0 = fv < Adhesion

F Bal , — — i
P roree Branee {a(zi(t),w-wf) FU=L g, < Loading

Elasticity

e Consitutive relation: o = nd,v + xc(x,t) «— Contraction

>0

e Boundary kinetic: {1 = v(ly(t),?) — Stefan -type

14



Efficiency

Balance of power

0 L L/2 : L/2
ov] T —5/ v —I—n/ (0v) —|—Xf cO, v

L/2 —L/2 —L/2
L/2 L/2 L/2
2 2
[ =l —q+V+§f i [ ()
—L/2 L/2 —L/2
H*>0 P,;>0
(P = P, + ELV?
P k inst load Stokes t
. — 4 WOrK agains oads OKeS term
Efficiency A = & 9 He ey s
N~ N~
\ contraction ”maintenance heat”

M. J. Lighthill. Pur. Appl. Math., 5(2), 1952 A. V. Hill Proe. Roy. Soc., 126(843). 1938
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Efficiency

Balance of power

e BE L/?
o) lJ_r(t) _5/ v "‘77/ (0v) —I—X/ cO, vV

L/2 —L/2 —L/2
L/2 L/2 L/2
2 2
—Xf Cam”U—( —Q+ V+§/ v +77/ (6337))
—L/2 L/2 —L/2
~ ~ o P,, >() -— p
( P= K + ELV?
P k against loads  Stokes t
Efﬁciency A — L ¢ work against loads okes term
H — * * %
H= H + H? ) P
\ contraction ? maintenance heat”

M. J. Lighthill. Pur. Appl. Math., 5(2), 1952 A. V. Hill. Proc. Roy. Soc., 126(843), 1938 16



Energy consumption (1)

R = 4% — F
N~ N~~~ N~
Entropy production External power Free energy rate change
L/2 ATP  ADP Chemostat
W = / o0, vdx A — const
L/2

. L/2 . . (extent of reaction)
F = f p(—AC + pg)dx ATP +.—+ ADP + P +. Catalyst
“ / llfg = ac

—L/2 ~~ ¢ (fraction of motors)

. bog =i
F(¢.0) i
A = —0¢ f affinity of the reaction

xr T+ dz

L/2
K= / f(¢,¢)dx

Lj2

p = Oy f chemical potential

L/2 ' g = ln&cv + llQA
R— / (00,0 + pl A+ JOpp)da > 0 pC = I210,0 + Lap A

—L/2
/ J = 1330, 17



Energy consumption (2)

Efficiency A = %

H=-F=H"+H*"

L/2 L/2 L/2
H* = _X/ cOyv = E/ vidx + 77/ (0pv)*dx > 0

—L/2 —L/2 —L/2

L/2 k T L/2
H** = bAQ/ cdx + D-Z / (8xc)2d:1: > ()
—L/2 co J-L/2

c(y)




Optimization of efficiency

v
@) —L720,(0y0) +0 =c
e e =< o(—1/2) = o(1/2)
~L/2 L/2 0yo(—1/2) = 0,0(1/2)

c(y) is a control function

— v= 5 (0,0(=1/2) + 0,0 (1/2))

1 /2
—L~ / c&yya + H**
Mumerator maximized by fully localized ¢(y) = d(y + 1/2).

1/2

Denominator minimized by homogeneous c(y) 1.

4L
ﬂ Non admissible

regimes

Optimization problem:

= T T S )

A
CEKD([IP{&/);?UQDA(C) Solution: | :
1/2 2
f_{/z c(y)dy =1 I:> I
\ c=>0 3

0 2 4 6 8 10 12

L 19



Comparison

ol
08k 2
L 3
| 06
%L : L My = 0.0053
| My =0.053
fi | 04T Ms = 0.53
= | -
= |
<'_1 : 024
|
|
|
| O 1 1 1 1
| 0 0.2 04 s 0.8
| | 7A%
|
| 1 . . .
|
| L
|
: 08f
0 1 1 1 1 1 1 1 |
0 0.1 02 03 04 05 06 o7 08 083 1
V/ V:)C 061
I & = 0.004
r Es = 0.04
04+ 5:5 =0.4
Robustness
O Il 1 1 1
0 0.2 04 06 08
V/Vee

20



Conclusions

We have shown that active contractility can generate
both spontaneous polarization and steady
translocation of a cell. The morphological instability
is due to internal motion of the cytoskeleton which is
generated by active cross-linkers and simultaneously
transports them. The motility initiation pattern is
similar to the one observed in experiments on
keratocytes fragments. In this way myosin motors
use passive actin network as a medium through
which they interact and self-organize in a fashion
that is remarkably close to the optimal one.

Recho P, Putlelat T., Truskinovsky L., (2013), PRL

Recho P, Joanny J.-F,, Truskinovsky L., (2014), PRL .
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Epithelia and carcinomas

Epithelium is one of the four basic types of animal tissue:
connective ; muscle ; nervous ; epithelial

Over 80% of human tumors originate from epithelia
Multilayered, stratified epithelium

Free surface

A
Epithelium
Basement \
membrane A
Connective
tissue @
A4

institutCurie



Epithelial undulations

http://en.wikipedia.org/wiki/

Cervical_dysplasia
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Epithelial instability

Epithelium

><

Stroma

Basan et al., PRL (2011)

W
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Relaxation time and rheology

o=y
o

g aspiration
&
Ry S0.9
o=
< Rl E
-Eﬂ.n() 8
Ry o= =
0T T T T r
0 10 20 30
Time [min] .
Foty et al., Development (1996) Guevorkian et al.,
Forgacset al., Biophys. J. (1998) Phys. Rev. Lett. (2010)
Elastic modulus E ~ 10%—10* Pa
Viscosity n ~ 10°—-10° Pa-s
Relaxation time 7 ~ 10s—10 mn
T ~ hOUl"S M armottant et al .,
o PNAS (2009)
S_Oft_matter models for Gonzalez-Rodriguez et al ., O
tissues Science (2012)
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Surface tension

SURFACE TENSION EQUILIBRIUM
TISSUE  (dynes/cm) CONFIGURATION

leb bUd 20.1
(green)

Pigment

Epithelium

(red)

Heart
(yellow)

o
S

(blue)

Neural
retina Foty et al., Development (1996)

R0, institutCurie




Constitutive equations

Epithelium:

Viscous medium with sourceterm

804?)04 — kd — ka
0q0ap =0

Supportingtissue: Passive viscoelastic medium

804’03 =0 8()40-3/3 =0

(70¢ + 1) (035 + PS(SQB) —n° (aavg — 5’5’03) @

institutCurie



Epithelial source term

Boundary conditions

/!
Apical surface of the epithelium Ont = 0 Onn = Va0 H

/!
Interface O’fm — Opn + ’)’15h O-flt = Ont — é-('Ut — /UE) @

Bottom UZ =) institutCurie



Elastic stroma

all modes n

w [1/d]
w .[1/d]

T N e —
B 3] 200 1 ——
q [1/mm]
Basan et al., PRL (2011)
Epithelium viscosity 1]
Rate of cell division k
Thicknessof dividing region [ @

institutCurie



Viscous stroma

all modes Y
0.4 T T T T 0.3 T T
T ° )
? 0.4 —\/\— ‘_4?
0.8 ' ' ' '
l 0 10 20 30 40
Ns
0.2 T T T T
S T
= =,
3 : 3
-0.1 ~
0
Basan et al., PRL (2011)
Interfacial tension Yi
Stroma viscosity Ts
Thicknessof dividing region [ @

institutCurie



Viscous stroma

all modes i
04 T T T T 03 T T T T
%‘ 0 —
~ 3
= =,
3 -04 -\/\- 3
0-8 1 1 1 1
0 10 20 30 40
s
0-2 T T T T
R &)
~ ~
— —
[E— O —_
3 10 kPa-s 3
0.1 _ 1.5 MPa:s ==-=-- |
. _ 1 kPa-s - e
0 10 20 30 40
q [1/mm]

Relativeviscosities 7 =10 MPa-s

02 ——r—r—r——r—— 02 ——————1—1—1—
ns = 10 kPa - s Ao,l_/—\_ D oy ] ns =20 MPa - s
— 0 o
3 -0.1 | E E 0.1} i
= 02 i, = o2 i
. 3 st 1 3 sl .
Rider and Basan, 04l 1 o4l ] @
New J. PhyS (2013) 0 5 10 15 20 25 %0 35 40 45 0% 05 10 15 20 25 30 35 40 45 |n5t|tUtcu rie

q [1/mm] q [1/mm)]



Coupling to nutrient diffusion

— R1p — ko

= DV?p—cp
— st2ps

)

institutCurie



Coupling to nutrient diffusion

— R1p — ko
= DV?p—cp
— st2ps
Boundary conditions
Distance ¢ from theinterface ,OS = o
Apical surface of the epithelium —DO01p = kogp @

institutCurie



Comparison of the two models

Fit the cell- R ==
production function g |
(1) kq — ka = K1p — Ko h
Op = DV?p—cp B 1

0ip° = IDRAVE: p° 40 50 100 150 200 250 300

z [pm]
(2) kg —ka =kexp(—2z/l) — ko

w [1/d]

N\
W J
g

institutCurie



Mullins-Sekerka-type peak

0 50 100 150 200

q [1/mm] www.its.caltech.edu/~atomic/
snowcrystals

w [1/d]

08 I I I I I I I I I
------ D = 210" m? st
— D° = 210710 m?.g7!
. D® = 2109 m?.s7!
0 10 20 30 40 50 60 70 80 90 100 Risler and Basan, New J. Phys. (2013)
g [1/mm] O
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Viscoelastic stroma B ..

Epithelium thickness H = 300 pm

Epithelium viscosity

w [1/d]

0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8

-
-
-~
A
g
.

e
|

0 10 20 30 40 50 60 70 80 90 100
q [1/mm]

100 pm
50 pum
900 pm

n =10 MPa - s

w [1/d]

0 40 80 120 160 200

q [1/mm]

oo
. o
et

0.4 F

.......
.......
......
.....

w [1/d]

-0.8

-1.2 L

0 10 20 30 40 50 60 70 80 90 100

Risler and Basan, New J. Phys. (2013)

q [1/mm]

5 MPa - s
20 MPa - s

institutCurie



Reconstituted membrane-cortex interaction

Arp2/3, CP

Scale bars: 5 ym

J0ij| lipid bilayer O biotin § PEG M
® Amp23 QP streptavidin - {9 actin subunits myosm

filament
%955@ F-actin & pVCA ' capping proteins

Carvalho et al., Phyl Trans R Soc B (2013)

D

institutCurie



Membrane-cortex shape fluctuations

20nM CP

-~ li~ o)
28 T 77 i
= ! | ! |
= ' | | [
Scale bars: 10 ym SF A\ A A | \
S o/ WA \'\A'\/

Scale bar: 5 pym

Carvalho et al., Phyl Trans R Soc B (2013)

r
()
ez
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Model for membrane-cortex shape fluctuations
A

€ & Cortex bulk equations
0,0, =0
0 /R 8aaa5 =0
Oap + P5a5 =1 (aavg + 851)@)

Boundary conditions
Inner surface Un = Up
ont = 0
Onn = —Dlip +7C

(W

institutCurie

Liposomeof radiusR
Gel of thickness h Outer surface Opt = Oppn = 0



Regulation of the gel thickness

Tension favors depolymerization

(7o7)
Kramers T = Tp€X P —
0 b ]CBT Vg = ’Ug exp (Utang>
_ 2 00
I = O'ta,ngg 2kpT
d=a/2 00 = £2q
dh
— = va(R+h)—v3=0
B o va(Bt 1)
h 1200, — ooRn (0/8)
R~ 36nu, —200R i

institutCurie



“\ -y
-

Model for membrane-cortex shape fluctuations

Unperturbed

Perturbed

Axisymmetric first-order expansion

v =v,(r,0)er + vg(r, 0)eg
R+ u(0)
h+ €(0)

e~uUu<<L h< R

D

institutCurie



Unstable modes

Mode n=0

Volume conservation : stable

Mode n=1

WithR=5pum ; h=0.5pum

Unstableif — — 2 2
Yq

Unperturbed

n=1

n=2

/ .

institutC_urrie



Unstable mode n=2

R=5um ; h=05pum

X =

Stable

Stable

Stable

§l

0
CH

Unstable

Unstable

Unstable

Unstable

Unperturbed

Scale bars: 5 ym

Carvalho et al. 2013

s1~1.04
So ~1.13

s D

Unstable

's1

110 sz

1.20 1.25 1.30 institutCurie



Epithelial undulations

M. Basan
J.-F. Joanny
J. Prost

Basan et al., PRL (2011)
Risler and Basan, New J. Phys. (2013)

Instability of polymerizing actin gels

Stable

P. Loyer

8 r Unstable

4. stable

Unstable

D

institutCurie

2+ Stable

Unstable Unstable

s1 110 s2 120 125 130




Simulation study of

crawling locomotion In gastropod

Daishin Ueyama (Meiji Univ.)
Mayuko Iwamoto (Meiji Univ.)
Ryo Kobayashi (Hiroshima Univ.)

The Advantage of Mucus for Adhesive Locomotion in Gastropods,
Mayuko lwamoto, Daishin Ueyama, and Ryo Kobayashi,
Journal of Theoretical Biology 353(21)(2014), pp. 133-141.



Gastropods

- belong to Phylum Mollusca, Class Gastropoda.

- are generally called “spiral shell”. Bivalve
- have the largest number of species Gastropad
am O n g m OI I us kS(Ek{ZI:EEjJ tl:%) ) Salvini-Plawen & Mizzaro-Wimmer (2001)

- secrete mucus(f4&) to adjust humidity and salinity.

Many gastropods move by adhesive locomotion.



How they walk?

| from YouTube
Snall “Gliding Snails On Glass Plate”

body

. by Dr. Toshiya Kazama
Ch |t0n (Hiroshima University)

body

Animals that move by crawling, (a) snake, (b) earthworm,
and (c) snail [Alexander, 1992b], respectively. (d) Abalone
[lwamoto, 2011].

Retrograde wave



Simplest model of spring-mass system.

mlfél =T — Ozljjl,

mgjfg = T — ()423.32,

Friction control
O<a<«o

Importance

of Friction Control

How to control?

Images of muscular contraction and elongation, and control of
interfacial friction [Alexander, 1992b].



How to generate

propulsive force?

How they control friction against the ground?

Images of muscular contraction and elongation, and control of
interfacial friction [Alexander, 1992b].



Aim of This Study

Aim:
To Investigate the mechanism of adhesive locomotion In
gastropods with mucus.

- to verify that the mutual interaction between
propagation of muscular contraction waves along the
pedal foot and nonlinear property of the mucus can
realize efficient motion.

Method: N

3§Ll —l

1 dimensional mathematical model



Modeling:

Muscular Contraction Waves

Real-time Tunable Spring (RTS)

ﬁn+l
. 2 L . . . .
Fn—l—% — 7 ($n+1 Ln ln—l—%) T Untl (xn+1 an)
X, : position of nth segment
Rptl and qn+% are positive.
by Ishiguro lab (Tohoku University) F
[Umedachi et al., 2007] n—|—%
RTS \

Modeling of the ventral foot of gastropods. Each segment is connected by a Real-time Tunable
Spring (RTS) and a damper.



Role of Pedal Mucus

Pacific Banana Slug

(Ariolimax columbianus) &

VISCOUS
| | liquid
by The New York Times .
(Aliette Frank)
Lissajous curves resulting from LAOS
| tests using pedal mucus from Limax
‘ maximus [Ewoldt et al., 2007].
VISCOUS 1
liquid

[Alexander, 1992]

. . _ Photographs of two prototype crawler
The characteristics of Ariolimax columbianus pedal robots, (a) Retrograde crawler and (b)

mucus [Denny and Gosline, 1980]. Direct crawler [Chan et al., 2005].



Pedal mucus under each segment.

O . switching parameter

Elastic mode

when o,, = 1,

if |F .1 —F _1i|>F,, then o, =0,
n+3 n—3

Viscous mode

when o,, = 0,

it |F,.1—F 1| <Fp, theno, =1
n+3 n—s

and z,, = x,,.

Modeling:

Viscoelasticity of Mucus

Modeling for pedal mucus. (a) Outline of one of
the results in Denny’s experiments [Denny, 1980Db;

Denny and Gosline, 1980]. (b) Internal hysteresis
loop of pedal mucus.



Modeling

Equation of Motion

Fn—% Fn-|—%
Ln—1 Ln Ln+1
viscous liquid elastic solid
—F _1—(1—0,)ux, — opy(T, — Tp

2

M . mass of a segment
Iy, . position
11+ force by spring and damper
o, = {0, 1}: switching parameter
Lt 2 viscous coefficient
7Y . elastic coefficient
X, - Standard point

)



Modeling:

Dimensionless Equation

The dimensionless equation below is obtained by setting z, = LW ™', and t = w™ 't .

~ ~

e _ T — X Ly — Lp_ ~y A 2 2 ~ 2 ~ =
i, = & ( n—? no_ nzv n 1>—|—q(ajn+1 — an -+ :Ijn_l) — (1 — an),uxn — Un(l’n — Zlfn),
1

n+% n—s
where some coefficients are assumed constant, ~,, 1= Kk and 9+l =4,
and dimensionless parameters are obtained as

~ ~

n
m:mwly_l, ln—l—% — 1—|—OzSiI1(t—27TWN),

F=rN(L)™,  g=qwy ', [=pwy !,

[, =FW(HL)™?, F,=FW(L)™

The order of m is vanishingly small compared with the other dimensionless coefficients, so
that means it can be assumed that the inertial force is negligible.

where the tildes are omitted for simplicity.



Modeling:

Estimation of Parameters

Data of physical features in animals obtained from [Denny,
1980b; Denny and Gosline, 1980; Lai et al., 2010; Iwamoto,

2011].
Denny & Lai Iwamoto
Gosline (Banana slug, | (Japanese
(Banana slug) | garden slug) | abalone)
wave frequency [Hz| 1.0-2.5 0.02-0.2
crawling speed [mm/s] 1.0-5.0 0.4-2.84
body length [mm] 7-280 60-90
number of waves 6-23 1.5-2.0
wave speed [mm/s] 1.5-3.28 1.26-15.0 _ _ _
: Results of detailed experiments [Lai et al.,
speed ratio 2010]
(crawling / wave) 0.33-1.0 0.12-0.33
z F ~ -
extension rate 0.5-0.85 = sl
wave length [mm] 2.5-5.5 30-60
iscosity [P 3.0-5.0 - USRS
viscosity [Pa s] m s
300
stress against strain [Pa] | (against 1 Hz) [lwamoto, 2011]
thickness of mucus [pm] 70




Calculations were carried out
with « = 1.0, ¢ = 0.005 ,a = 0.9,
and £} = 0.001 x 1072,

Numerical Simulations

Direct wave
wave >
bod
o
A
elastic | >
solid
viscous
liquid .
F
healing

-
F,

yield

> force

con\traction

pedal—— | *  |expand
mucus— solid solid

Retrograde wave

wave >

bod




Realization of Locomotion

Direct wave Retrograde wave Mucus

expansion contraction

region region

The effects of properties of mucus on the velocity
ratio Rfor » = 1.0, and g = 0.005.

Muscle

©

Chronological snapshots of simulations carried out with F, = §

0.001x10-2, » = 1.0, and q = 0.005. c

Y

(a) Fu=0.35 x 102 ~ (b) Fu=0.42x102 O

s o position — position _ g

Y - = =

S - S K =

3 \ 3 L - o
g 1000 ¢ - - ‘» 1000 ¢ e [

: : " : (contraction rate)
Time series plots of the position of each segment using the

same parameters as in Figure 2.17(a) and (b). The effect of muscle features on velocity ratio R.



Direct wave or

Retrograde wave

Mucus Muscle

(stiffness of muscle)

(contraction rate)
Figure 2.21. The effects of properties of mucus Figure 2.25. The effect of muscle features

on the velocity ratio Rfor » = 1.0, and g = 0.005. on velocity ratio R.

elastic
solid

viscous
liquid

> force

healing yield

Figure 2.24. The effects of properties of mucus on Figure 2.26. The effect of muscle features
the velocity ratio R for » = 1.0, and g = 0.005. on velocity ratio R.



Summary

and Future Works

Modeling
- To verify the mechanism of adhesive locomotion in gastropods,
1 dimensional mathematical model has been proposed.
Numerical calculations
- Adequate propulsive force for locomotion could be generated by the
Interaction between the propagation of a flexible muscular wave and
the nonlinear nature of mucus.
- Both direct and retrograde waves were realized by the mechanism.
- The mucus has a role in controlling the friction with the ground.
- The features of the mucus and muscle, especially, the yield point of
the mucus, stiffness and contraction rate of muscle influence on
determination of locomotion strateqgy, direct wave or retrograde wave.
Future works
- A continuous model for mathematical analysis of the bifurcation.
- Detalled experimental research on the yield point of mucus and the
ratio of muscle contraction in various species, and the muscular
features.
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