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Notation


P+(n) = the largest prime factor of n ≥ 2, and P+(1) = 1
P−(n) = the smallest prime factor of n ≥ 2, and P−(1) = 1
Ψ(x , y) := #{n ≤ x : P+(n) ≤ y} (2 ≤ y ≤ x)


Φ(x , y) := #{n ≤ x : P−(n) > y} (2 ≤ y ≤ x)


ω(n) =
∑


p|n 1, and ω(1) = 0


A stands for the set of additive functions f with f (1) = 0
M stands for the set of multiplicative functions g with g(1) = 1
f ∈ A is said to be strongly additive if f (pα) = f (p), ∀α ∈ N ;
A∗ = {f ∈ A : f strongly additive}
g ∈M is said to be strongly multiplicative if g(pα) = g(p),
∀α ∈ N ;M∗ = {g ∈M : g strongly multiplicative}
For f ∈ A, g ∈M, E (f , g ; x) := #{n ≤ x : f (n) = g(n)}
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Elementary results


We only consider those functions f ∈ A where f (n) 6= 0 for at
least one integer n > 1.
For all f ∈ A, there exists g ∈M with E (f , g ; x)� x/ log x
(choose g(pα) = f (pα) = 1 for all primes p and α ∈ N).
There exist f ∈ A and g ∈M such that E (f , g ; x) ≥ cx .
Indeed, let S ⊂ ℘ (here ℘ = {2, 3, 5, . . .}) such that∑


p∈S 1/p <∞ and let f ∈ A∗ be defined by


f (p) =


{
1 if p ∈ S,
0 if p ∈ ℘ \ S.


Then f (n) = 0 ∀n ∈ R with R ⊂ N of density c =
∏
p∈S


(
1− 1


p


)
.


Let g ∈M∗ be defined by g(p) = f (p) for p ∈ ℘ \ S.
Then, g(n) = f (n) for n ∈ R , and E (f , g ; x) ≥ cx .
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The case f (n) = ω(n)


Let f = ω
For each integer k ≥ 2, there exists a function g ∈M∗ such
that


(∗) E (ω, g ; x) > c
x


log x
· (log log x)k−1


(k − 1)!
(x > x0)


Indeed, choose g(p) = k1/k .
For all integers n such that ω(n) = k , we have


g(n) = (k1/k)ω(n) = k = ω(n).


Therefore, (∗) follows from the fact that


#{n ≤ x : ω(n) = k} > c
x


log x
(log log x)k−1


(k − 1)!
(x > x0).
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Lower and upper bounds for E (ω, g ; x)


Theorem 1. Given any ε > 0, there exists a multiplicative function
g such that


E (ω, g ; x)� x


(log log x)1+ε .


Theorem 2. Given any ε > 0, there exists a multiplicative function
g and a sequence xr →∞ such that


E (ω, g ; xr )�
xr


(log log xr )1/2+ε .
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Lower and upper bounds for E (ω, g ; x)


Theorem 3.


(this result will tamper our ambitions)


Theorem 4. For all multiplicative functions g , we have


E (ω, g ; x) = o(x) (x →∞).
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A non trivial lower bound for E (ω, g ; x)
Theorem 1. Given any ε > 0, there exists a multiplicative function
g such that


E (ω, g ; x)� x


(log log x)1+ε .


Sketch of proof :


Let δ > 0.


Let s1 = 2, and for j ≥ 2, let sj be the smallest prime number larger
than max(sj−1, j


1+δ).


Let S = {s1, s2, . . .}. We have
∑∞


i=1 1/si <∞.


Define g ∈M∗ by


g(p) =


{
j if p = sj for some sj ∈ S ,
1 if p 6∈ S.
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Sketch of the proof of Theorem 1


Let m ∈ N be fixed. The proportion Pm(S) of positive integers
divisble by sm but by no other elements of S is


Pm(S) =
∑
a≥1


1
sam


∏
k≥1


(
1− 1


sk


)
=


1
sm − 1


∏
k≥1


(
1− 1


sk


)
=


1
sm − 1


C (δ)


Let x be large and set


`1 := blog log x − (log log x)2/3c, `2 := blog log x + (log log x)2/3c


We have


#{n ≤ x : ω(n) = g(n)} ≥
`2∑


j=`1


#{n ≤ x : ω(n) = g(n) = j}
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Sketch of the proof of Theorem 1


Moreover, for each j ≥ 1,


#{n ≤ x : g(n) = j , ω(n) = j}
≥ #{n ≤ x : sj |n, sk - n for each k 6= j , ω(n) = j}


≥ #


{
m ≤ x


sj
: sk - m for each sk ∈ S, ω(m) = j − 1


}
.


For x sufficiently large, we have for each j ∈ [`1, `2],


sj ≤ j1+2δ ≤ (log log x + (log log x)2/3)1+2δ ≤ (log log x)1+3δ.


Therefore, for each j ∈ [`1, `2],


#{n ≤ x : g(n) = j , ω(n) = j}


≥ #


{
m ≤ x


(log log x)1+3δ : sk - m,∀sk ∈ S, ω(m) = j − 1
}
.
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Sketch of the proof of Theorem 1


Therefore, for all j ∈ [`1, `2],


#{n ≤ x : g(n) = j , ω(n) = j}


≥ #


{
m ≤ x


(log log x)1+3δ : sk - m,∀sk ∈ S, ω(m) = j − 1
}


Summing for j ∈ [`1, `2], we obtain


#{n ≤ x : ω(n) = g(n)}


≥ #


{
m ≤ x


(log log x)1+3δ : sk - m,∀sk ∈ S, ω(m) ∈ [`1 − 1, `2 − 1]


}
.
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Sketch of the proof of Theorem 1


On the other hand,


#


{
m ≤ x


(log log x)1+3δ : ω(m) 6∈ [`1 − 1, `2 − 1]


}
= o


(
x


(log log x)1+3δ


)
.


It follows that


#{n ≤ x : ω(n) = g(n)}


≥ #


{
m ≤ x


(log log x)1+3δ : sk - m,∀sk ∈ S
}


+ o


(
x


(log log x)1+3δ


)
≥ (1 + o(1))C (δ)


x


(log log x)1+3δ .


We only need to choose δ = ε/3.
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Theorem 2


Theorem 2. Given any ε > 0, there exists a multiplicative function
g and a sequence xr →∞ such that


E (ω, g ; xr )�
xr


(log log xr )1/2+ε .


Sketch of proof :


Let δ > 0.


Let s1 = 2, and for j ≥ 2, let sj be the smallest prime number larger
than max(sj−1, j


1+δ).


Set S = {s1, s2, . . .}.


Let rj = ee
2j for j = 1, 2, . . .
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Sketch of the proof of Theorem 2


For each j ≥ 1, let zj be the integer that maximizes the quantity


#


{
m ≤ rj


sj
: sk - m for each sk ∈ S, ω(m) = zj − 1


}
.


Let g ∈M∗ be defined by


g(p) =


{
zj if p = sj for some sj ∈ S,
1 if p 6∈ S.


Let Ij := [log log rj − (log log rj)1/2+ε, log log rj + (log log rj)1/2+ε].


We know that


#


{
m ≤ rj


sj
: ω(m) 6∈ Ij


}
= o


(
rj
sj


)
(j →∞),
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Sketch of the proof of Theorem 2


and therefore, as j →∞,


#


{
m ≤ rj


sj
: sk - m for each sk ∈ S


}
=
∑
ν∈Ij


#


{
m ≤ rj


sj
: sk - m for each sk ∈ S, ω(m) = ν


}


+o


(
rj
sj


)
.


By the nature of (zj), we have∑
ν∈Ij


#


{
m ≤ rj


sj
: sk - m,∀sk ∈ S, ω(m) = ν


}


≤ 2(log log rj)1/2+ε#


{
m ≤ rj


sj
: sk - m,∀sk ∈ S, ω(m) = zj − 1


}
.
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Sketch of the proof of Theorem 2


It follows that


#


{
m ≤ rj


sj
: sk - m for each sk ∈ S, ω(m) = zj − 1


}
≥


#{m ≤ rj
sj


: sk - m for each sk ∈ S}+ o(
rj
sj


)


2(log log rj)1/2+ε .


On the other hand,


#{m ≤ rj
sj


: sk - m for each sk ∈ S} = (1 + o(1))C (δ)
rj
sj


(j →∞).
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Sketch of the proof of Theorem 2


Therefore, as j →∞,


#


{
m ≤ rj


sj
: sk - m for each sk ∈ S, ω(m) = zj − 1


}
≥
(
1
2


+ o(1)


)
C (δ)


rj
sj(log log rj)1/2+ε .


By writing each n ≤ rj as n = sj ·m, we have


E (ω, g ; rj) ≥ #{n ≤ rj : g(n) = zj , ω(n) = zj}
≥ #{n ≤ rj : sj |n, sk - n for k 6= j , ω(n) = zj}


≥ #


{
m ≤ rj


sj
: sk - m,∀sk ∈ S, ω(m) = zj − 1


}
≥


(
1
2


+ o(1)


)
C (δ)


rj
sj(log log rj)1/2+ε .
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Sketch of the proof of Theorem 2


On the other hand, for j sufficiently large,


sj < j1+2δ < (2j)ε = (log log rj)ε,


so that


E (ω, g ; rj) ≥
(
1
2


+ o(1)


)
C (δ)


rj
sj(log log rj)1/2+ε


� rj
(log log rj)1/2+2ε .
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Theorem 3


Theorem 3. Let g be a multiplicative function for which the
corresponding set Sg := {p ∈ ℘ : g(p) 6= 1} is such that∑


p∈Sg


1
p
<∞.


Then, for each ε > 0, the exists a sequence xk →∞ such that


E (ω, g ; xk) ≤ xk
(log log xk)1−ε (k = 1, 2, . . .).
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Sketch of proof of Theorem 3


Let


A := {n ∈ N : p|n⇒ p ∈ Sg} et B := {n ∈ N : p|n⇒ p 6∈ Sg}.


Since
∑


p∈Sg
1
p
<∞, there exists a real number Cg such that


Cg =
∑
a∈A


1
a
.


Define the constants cj implicitly by∑
a∈A


g(a)=j


1
a


= cjCg ,


so that
∞∑
j=1


cj ≤ 1.
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Sketch of the proof of Theorem 3


Fix ε ∈ (0, 1). For each integer k ≥ 1, let yk = k2+6ε and define


Jk :=
(
yk − y


1/2+ε
k , yk + y


1/2+ε
k


]
(k = 1, 2, 3, . . .).


For k large enough, say for k > k0, the intervals Jk are disjoint.
Let Dk :=


∑
j∈Jk


cj (k > k0).


Since
∑
k>k0


Dk ≤ 1, for infinitely many k ’s we have Dk ≤
1
k
.
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Sketch of the proof of Theorem 3


Then, for each of these integers k , setting xk = ee
yk ,


E (ω, g ; xk) =
∑
j∈Jk


#{n ≤ xk : ω(n) = j , g(n) = j}


+O
(
xk exp(−(log log xk)2ε/3)


)
,


where we used the result (a consequence of Th. 3.8 in the book of
Tenenbaum) :


Uniformly for x ≥ 3 and 0 ≤ ξ(x) ≤
√


log log x ,


#{n ≤ x : |ω(n)−log log x | > ξ(x)
√


log log x} � xe−ξ(x)
2/3.
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Sketch of the proof of Theorem 3


For each j ∈ Jk , we have


#{n ≤ xk : ω(n) = j , g(n) = j}


=
∑
a∈A


g(a)=j


#
{
b ≤ xk


a
: b ∈ B, ω(b) = j − ω(a)


}
.


We use the following result (which follows from one of Balazard) :


The maximal value of πk(x) := #{n ≤ x : ω(n) = k} is
attained when k = k0 = log log x + O(1), in which case
πk0(x) = (c0 + o(1))x/


√
log log x as x →∞.


There exists a positive constant c such that


#{n ≤ xk : ω(n) = j , g(n) = j} ≤ c
∑
a∈A


g(a)=j


xk


a
√


log log xk
.
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Sketch of the proof of Theorem 3


It follows that


E (ω, g ; xk) ≤ c Cg


∑
j∈Jk


cj
xk√


log log xk
+ O


(
xk exp(−(log log xk)2ε/3)


)
= c CgDk


xk√
log log xk


+ O
(
xk exp(−(log log xk)2ε/3)


)
≤ c Cg xk


k
√


log log xk
+ O


(
xk exp(−(log log xk)2ε/3)


)
.


Since k = y
1/(2+6ε)
k ≥ y


1/2−2ε
k = (log log xk)1/2−2ε, we have


E (ω, g ; xk) ≤ c Cg xk


k
√


log log xk
+ O


(
xk exp(−(log log xk)2ε/3)


)
≤ c Cg xk


(log log xk)1−2ε + O
(
xk exp(−(log log xk)2ε/3)


)
,
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Theorem 4


Theorem 4. Given any multiplicative function g ,


E (ω, g ; x) = o(x) (x →∞).


Sketch of proof


We only need to consider those integers n ≤ x such that


|ω(n)− log log x | ≤ (log log x)3/5.


For D, k ∈ N, let


TD,k :=
{
n ∈ N : P+(n) ≤ D and pk+1 - n for all primes p


}
.


For each D and k , the set TD,k is finite.
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Sketch of the proof of Theorem 4


TD,k :=
{
n ∈ N : P+(n) ≤ D and pk+1 - n for all primes p


}
.


Let UD := {n ∈ N : P−(n) > D},
so that #{n ≤ x : n ∈ UD} = Φ(x ,D).


Let Sk = {n ∈ N : pk+1|n for aome prime p}.


For each integer k ≥ 1,


Sk(x) = {n ≤ x : n ∈ Sk} ≤
x


2k
.


Jean-Marie De Koninck, Université Laval (joint work with Nicolas Doyon and Patrick Letendre)On the proximity of additive and multiplicative functions
New Perspectives on Prime Numbers CIRM, February 11, 2014 25


/ 39







Sketch of the proof of Theorem 4


TD,k :=
{
n ∈ N : P+(n) ≤ D and pk+1 - n for all primes p


}
.


Let UD := {n ∈ N : P−(n) > D},
so that #{n ≤ x : n ∈ UD} = Φ(x ,D).


Let Sk = {n ∈ N : pk+1|n for aome prime p}.


For each integer k ≥ 1,


Sk(x) = {n ≤ x : n ∈ Sk} ≤
x


2k
.


Jean-Marie De Koninck, Université Laval (joint work with Nicolas Doyon and Patrick Letendre)On the proximity of additive and multiplicative functions
New Perspectives on Prime Numbers CIRM, February 11, 2014 25


/ 39







Sketch of the proof of Theorem 4


TD,k :=
{
n ∈ N : P+(n) ≤ D and pk+1 - n for all primes p


}
.


Let UD := {n ∈ N : P−(n) > D},
so that #{n ≤ x : n ∈ UD} = Φ(x ,D).


Let Sk = {n ∈ N : pk+1|n for aome prime p}.


For each integer k ≥ 1,


Sk(x) = {n ≤ x : n ∈ Sk} ≤
x


2k
.


Jean-Marie De Koninck, Université Laval (joint work with Nicolas Doyon and Patrick Letendre)On the proximity of additive and multiplicative functions
New Perspectives on Prime Numbers CIRM, February 11, 2014 25


/ 39







Sketch of the proof of Theorem 4


TD,k :=
{
n ∈ N : P+(n) ≤ D and pk+1 - n for all primes p


}
.


Let UD := {n ∈ N : P−(n) > D},
so that #{n ≤ x : n ∈ UD} = Φ(x ,D).


Let Sk = {n ∈ N : pk+1|n for aome prime p}.


For each integer k ≥ 1,


Sk(x) = {n ≤ x : n ∈ Sk} ≤
x


2k
.


Jean-Marie De Koninck, Université Laval (joint work with Nicolas Doyon and Patrick Letendre)On the proximity of additive and multiplicative functions
New Perspectives on Prime Numbers CIRM, February 11, 2014 25


/ 39







Sketch of the proof of Theorem 4


TD,k :=
{
n ∈ N : P+(n) ≤ D and pk+1 - n for all primes p


}
.


Let UD := {n ∈ N : P−(n) > D},
so that #{n ≤ x : n ∈ UD} = Φ(x ,D).


Let Sk = {n ∈ N : pk+1|n for aome prime p}.


For each integer k ≥ 1,


Sk(x) = {n ≤ x : n ∈ Sk} ≤
x


2k
.


Jean-Marie De Koninck, Université Laval (joint work with Nicolas Doyon and Patrick Letendre)On the proximity of additive and multiplicative functions
New Perspectives on Prime Numbers CIRM, February 11, 2014 25


/ 39







Sketch of the proof of Theorem 4


Lemma. Let g ∈M. Write each integer n ∈ [2, x ] satisfying
|ω(n)− log log x | < (log log x)3/5 as


n =
∏
pa‖n


p 6∈TD,k


pa ·
∏
pa‖n


p∈TD,k


pa = u(n) · t(n).


Let n1 and n2 be two positive integers such that g(n1) = ω(n1) and
g(n2) = ω(n2). Let uj = u(nj) and tj = t(nj) for j = 1, 2.
If u1 = u2, then ω(t1) = ω(t2).


In other words, if two integers n ≤ x such that g(n) = ω(n) have the
same u(n) part, then their t(n) parts have the same number of
distinct prime factors.
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Proof of Lemma


Since TD,k is a finite set and assuming that g(n) 6= 1 for some n ∈ N,
then, for D sufficiently large (and depending only on g), the quantity


VD,k := min
m,n∈TD,k
|g(n)|>|g(m)|


|g(n)|
|g(m)|


is well defined, in which case VD,k > 1. Let x be large enough so that


1 +
1


(log log x)1/3 < VD,k .


We first show that g(t1) = g(t2). Indeed, it is clear that


ω(n1)


ω(n2)
=


g(n1)


g(n2)
=


g(u1t1)


g(u2t2)
=


g(t1)


g(t2)
.
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Proof of Lemma


If g(t1) 6= g(t2), we have


max
(
g(t1)


g(t2)
,
g(t2)


g(t1)


)
≥ VD,k > 1 +


1
(log log x)1/3 .


Assume say that ω(n2) ≥ ω(n1), then we have


ω(n2) = ω(n1) ·
ω(n2)


ω(n1)
>
(
log log x − (log log x)3/5


)(
1 +


1
(log log x)1/3


)
� log log x + (log log x)2/3


and


ω(n1) = ω(n2) ·
ω(n1)


ω(n2)
<
(
log log x + (log log x)3/5


)(
1 +


1
(log log x)1/3


)−1


� log log x − (log log x)2/3,
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Proof of Lemma


Assume say that ω(n2) ≥ ω(n1), then we have


ω(n2) = ω(n1) ·
ω(n2)


ω(n1)
>
(
log log x − (log log x)3/5


)(
1 +


1
(log log x)1/3


)
� log log x + (log log x)2/3


and


ω(n1) = ω(n2) ·
ω(n1)


ω(n2)
<
(
log log x + (log log x)3/5


)(
1 +


1
(log log x)1/3


)−1


� log log x − (log log x)2/3,


thus implying that ω(n2)− ω(n1)� (log log x)2/3, a contradiction.
We must therefore have that g(t1) = g(t2). It follows that
ω(n1) = ω(n2) and therefore that ω(t1) = ω(t2).
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Sketch of proof of Theorem 4


We have


E (ω, g ; x) =
∑
u≤x


u∈UD


#
{
t ≤ x


u
: t ∈ TD,k , g(u · t) = ω(u · t)


}
+O


( x


2k
)
+o(x)


The Lemma allows us to write


E (ω, g ; x) ≤
∑
u≤x


u∈UD


max
z≥1


#
{
t ≤ x


u
: t ∈ TD,k , ω(t) = z


}
+O


( x


2k
)


+ o(x).


Set∑
u≤x


u∈UD


max
z≥1


#
{
t ≤ x


u
: t ∈ TD,k , ω(t) = z


}
= Σ1 + Σ2 + Σ3 + Σ4,
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Sketch of the proof of Theorem 4


where


Σ1 =
∑
u∈UD


u≤x/Dlog4 D


max
z≥1


#
{
t ≤ x


u
: t ∈ TD,k , ω(t) = z


}
,


Σ2 =
∑
u∈UD


x/Dlog4 D<u≤x/D


max
z≥1


#
{
t ≤ x


u
: t ∈ TD,k , ω(t) = z


}
,


Σ3 =
∑
u∈UD


x/D<u≤x/ log D


max
z≥1


#
{
t ≤ x


u
: t ∈ TD,k , ω(t) = z


}
,


Σ4 =
∑
u∈UD


x/ log D<u≤x


max
z≥1


#
{
t ≤ x


u
: t ∈ TD,k , ω(t) = z


}
.
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Sketch of the proof of Theorem 4
We have


Σ3 =
∑
u∈UD


x/D<u≤x/ log D


max
z≥1


#
{
t ≤ x


u
: t ∈ TD,k , ω(t) = z


}
.


Since t ≤ x
u
and u > x/D, it follows that t ≤ D et P+(t) ≤ D, in


which case


Σ3 =
∑
u∈UD


x/D<u≤x/ log D


max
z≥1


#
{
t ≤ x


u
: ω(t) = z


}
.


We use the following result (which follows from one of Balazard) :


The maximal value of πk(x) := #{n ≤ x : ω(n) = k} is
attained when k = k0 = log log x + O(1) and
πk0(x) = (c0 + o(1))x/


√
log log x , as x →∞.
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Sketch of the proof of Theorem 4
Therefore, for some constant c > 0,


Σ3 =
∑
u∈UD


x/D<u≤x/ log D


max
z≥1


#
{
t ≤ x


u
: ω(t) = z


}


≤ c
∑


x/D<u≤x/ log D


P−(u)>D


x/u√
log log(x/u)


≤ cx√
log3 D


∑
x/D<u≤x/ log D


P−(u)>D


1
u


≤ cx√
log3 D


c2(logD − log logD)


logD


� x√
log3 D


.
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Sketch of the proof of Theorem 4


We obtain


Σ1 �
x


log3 D
, Σ2 �


x log4 D√
log2 D


,


Σ3 �
x√


log3 D
, Σ4 �


x log2 D


logD
.


It follows that


Σ1 + Σ2 + Σ3 + Σ4 �
x√


log3 D
,


so that
E (ω, g ; x)� x√


log3 D
+


x


2k
+ o(x) = o(x).
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Generalization of Theorem 1
Let S := {s1, s2, . . .} be an infinite set of primes such that


s1 < s2 < · · · and
∞∑
j=1


1
sj
<∞. Assume that f is a strongly additive


integer valued function and that λ(x) is a function which tends to
infinity with x in such a way that


#


{
n ≤ x


sdλ(x)e
: f (n) > λ(x)


}
= o


(
x


sdλ(x)e


)
(x →∞).


Then, if g is the strongly multiplicative function defined by


g(p) =


{
j + f (sj) if p = sj for some sj ∈ S,
1 if p 6∈ S,


we have
E (f , g ; x)� x


sdλ(x)e
.
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Corollary


Given an integer k ≥ 1 and a real number η > 0, there exists a
multiplicative function g such that


E (ω, g ; x)� x(∏k
r=1 logr+1 x


)
(logk+2 x)1+η


.


In particular, for any ε > 0, there exists a multiplicative function g
such that


E (ω, g ; x)� x


(log log x)1+ε .
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Proof of Corollary


Set f = ω. Let η > 0 and S := {s1, s2, . . .} be an infinite set of
primes defined as follows : let s1 = 2 and, for each j ≥ 2, let sj be the
smallest prime larger than


max


(
sj−1, j


(
k∏


r=1


logr j


)
(logk+1 j)


1+η


)
.


It is enough to choose λ(x) = log log x + ξ(x)
√


log log x , where ξ(x)
is a function tending to infinity with x .
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Final remarks


Most likely, the bound E (ω, g ; x) = o(x) can be replaced by a better
one.


Most likely, the bound E (ω, g ; x) = o(x) still holds if the condition
g(n) = ω(n) is relaxed to a condition of the form “g(n) is close to
ω(n)”.


In other words, we conjecture that it is impossible for a multiplicative
function to be close to ω on a set of positive density.


Perhaps limx→∞
1
x


#{n ≤ x : |g(n)− ω(n)| < (log log x)1−ε} = 0 for
any given multiplicative function g and any small number ε > 0.
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:


0110
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:


01101001
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:


011010011001011010010110011010011001011001101 · · ·


t0 = 0, t2n+k = 1 − tk (0 6 k < 2n)


Michael Drmota Automatic Sequences along Squares and Primes







⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:


011010011001011010010110011010011001011001101 · · ·


t0 = 0, t2n+k = 1 − tk (0 6 k < 2n)


tn = s2(n) mod 2


n =


ℓ−1∑


i=0


εi(n)q
i εi(n) ∈ {0,1, . . . ,q − 1}, sq(n) =


ℓ−1∑


i=0


εi(n)
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⋆ Thue-Morse sequence


TM sequence is not periodic and cubefree.


TM sequence is almost periodic:
Every appearing consecutive block appears infinitely many times
with bounded gaps.


Subword complexity is linear: pk 6 10
3 k


pk ... subword complexity (number of different consecutive blocks
of length k that appear in the TM sequence).


Zero topological entropy of the corresponding dynamical
system:


h = limk→∞
1
k log pk = 0


Linear subsequences (tan+b)n>0 have the same properties.


The TM sequence and their linear subsequences are automatic
sequences.
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⋆ Thue-Morse sequence


Automaton for the Thue-Morse sequence: tn =
∑


j>0 εj(n) mod 2


s1 / 0 s2 / 1


1


1


0 0
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:


011010011001011010010110011010011001011001101 · · ·


# {0 6 n < N : tn = 0} ∼ N
2
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:


011010011001011010010110011010011001011001101 · · ·


# {0 6 n < N : tn = 0} ∼ N
2


# {0 6 n < N : t3n = 0} ∼ N
2
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:


011010011001011010010110011010011001011001101· · ·


Mauduit and Rivat (2010):


# {0 6 p < N : tp = 0} ∼ π(N)


2
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:


011010011001011010010110011010011001011001101· · ·


Mauduit and Rivat (2009):


# {0 6 n < N : tn2 = 0} ∼ N
2
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⋆ Thue-Morse sequence


Thue-Morse sequence (tn)n>0:


011010011001011010010110011010011001011001101· · ·


Mauduit and Rivat (2009):


# {0 6 n < N : tn2 = 0} ∼ N
2


D., Mauduit and Rivat (2013+):


# {0 6 n < N : tn2 = b0, t(n+1)2 = b1, . . . , t(n+k−1)2 = bk−1} ∼ N
2k
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⋆ Gelfond Problems


Gelfond 1967/1968
a,m ... positive integers, b, ℓ ... non-neg. integer, (m,q − 1) = 1.


=⇒ #{n < N : sq(an + b) ≡ ℓ mod m} =
N
m


+ O(Nλ)


with 0 < λ < 1.
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⋆ Gelfond Problems


Gelfond 1967/1968
a,m ... positive integers, b, ℓ ... non-neg. integer, (m,q − 1) = 1.


=⇒ #{n < N : sq(an + b) ≡ ℓ mod m} =
N
m


+ O(Nλ)


with 0 < λ < 1.


In particular:


#{n < N : tan+b = 0} = #{n < N : s2(an + b) ≡ 0 mod 2}


=
N
2


+ O(Nλ)
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⋆ Gelfond Problems


1 q1,q2, . . . ,qd > 2, (qi ,qj) = 1 for i 6= j , (mj ,qj − 1) = 1:


#{n < N : sqj (n) ≡ ℓj mod mj , 1 6 j 6 d} =
N


m1 · · ·md
+ O(N1−η)
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⋆ Gelfond Problems


1 q1,q2, . . . ,qd > 2, (qi ,qj) = 1 for i 6= j , (mj ,qj − 1) = 1: Kim 1999


#{n < N : sqj (n) ≡ ℓj mod mj , 1 6 j 6 d} =
N


m1 · · ·md
+ O(N1−η)
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#{n < N : sqj (n) ≡ ℓj mod mj , 1 6 j 6 d} =
N


m1 · · ·md
+ O(N1−η)


2 (m,q − 1) = 1:


#{primes p < N : sq(p) ≡ ℓ mod m} =
π(N)


m
+ O(N1−η)
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m
+ O(N1−η)
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⋆ Gelfond Problems


1 q1,q2, . . . ,qd > 2, (qi ,qj) = 1 for i 6= j , (mj ,qj − 1) = 1: Kim 1999


#{n < N : sqj (n) ≡ ℓj mod mj , 1 6 j 6 d} =
N


m1 · · ·md
+ O(N1−η)


2 (m,q − 1) = 1: Mauduit, Rivat 2010


#{primes p < N : sq(p) ≡ ℓ mod m} =
π(N)


m
+ O(N1−η)


3 (m,q − 1) = 1, P(x) ∈ N[x ]:


#{n < N : sq(P(n)) ≡ ℓ mod m} =
N
m


+ O(N1−η)
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⋆ Gelfond Problems


1 q1,q2, . . . ,qd > 2, (qi ,qj) = 1 for i 6= j , (mj ,qj − 1) = 1: Kim 1999


#{n < N : sqj (n) ≡ ℓj mod mj , 1 6 j 6 d} =
N


m1 · · ·md
+ O(N1−η)


2 (m,q − 1) = 1: Mauduit, Rivat 2010


#{primes p < N : sq(p) ≡ ℓ mod m} =
π(N)


m
+ O(N1−η)


3 (m,q − 1) = 1, P(x) ∈ N[x ]: Mauduit, Rivat 2009 for P(x) = x2


#{n < N : sq(P(n)) ≡ ℓ mod m} =
N
m


+ O(N1−η)
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⋆ Gelfond Problems


1 q1,q2, . . . ,qd > 2, (qi ,qj) = 1 for i 6= j , (mj ,qj − 1) = 1: Kim 1999


#{n < N : sqj (n) ≡ ℓj mod mj , 1 6 j 6 d} =
N


m1 · · ·md
+ O(N1−η)


2 (m,q − 1) = 1: Mauduit, Rivat 2010


#{primes p < N : sq(p) ≡ ℓ mod m} =
π(N)


m
+ O(N1−η)


3 (m,q − 1) = 1, P(x) ∈ N[x ]: Mauduit, Rivat 2009 for P(x) = x2


Drmota, Mauduit, Rivat 2011 for large bases q > q0(deg(P))


#{n < N : sq(P(n)) ≡ ℓ mod m} =
N
m


+ O(N1−η)
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⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22
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⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


32 = (1012)3
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⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


32 = (1012)3
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⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


32 = (1012)3


Michael Drmota Automatic Sequences along Squares and Primes







⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


32 = (1012)3
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⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


32 = (1012)3 u32 = a,
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⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


32 = (1012)3 u32 = a, 61 = (2021)3


Michael Drmota Automatic Sequences along Squares and Primes







⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


32 = (1012)3 u32 = a, 61 = (2021)3
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⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


32 = (1012)3 u32 = a, 61 = (2021)3
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⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


32 = (1012)3 u32 = a, 61 = (2021)3
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⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


32 = (1012)3 u32 = a, 61 = (2021)3 u61 = b
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⋆ Automatic sequences


Definition
A sequence (un)n>0 is called a q-automatic sequence, if un is the
output of an automaton when the input is the q-ary expansion of n.


s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


32 = (1012)3 u32 = a, 61 = (2021)3 u61 = b


(un)n>0 : aaaaabaabaabaaabbaaabaaabbaaabaaabbaaaaaaba . . .
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s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22
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s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


M0 =








1 0 0
0 1 0
0 0 1








Michael Drmota Automatic Sequences along Squares and Primes







s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


M0 =








1 0 0
0 1 0
0 0 1





 M1 =








0 1 0
1 0 0
0 0 1






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s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


M0 =








1 0 0
0 1 0
0 0 1





 M1 =








0 1 0
1 0 0
0 0 1





 M2 =








0 0 1
1 0 0
0 1 0






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s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


M0 =








1 0 0
0 1 0
0 0 1





 M1 =








0 1 0
1 0 0
0 0 1





 M2 =








0 0 1
1 0 0
0 1 0








32 = (1012)3 : M2 ◦ M1 ◦ M0 ◦ M1








1
0
0





 =








1
0
0






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s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


M0 =








1 0 0
0 1 0
0 0 1





 M1 =








0 1 0
1 0 0
0 0 1





 M2 =








0 0 1
1 0 0
0 1 0








32 = (1012)3 : Mx ◦ M2 ◦ M1 ◦ M0◦M1








1
0
0





 =








0
1
0






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s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


M0 =








1 0 0
0 1 0
0 0 1





 M1 =








0 1 0
1 0 0
0 0 1





 M2 =








0 0 1
1 0 0
0 1 0








32 = (1012)3 : Mx ◦ M2 ◦ M1◦M0 ◦ M1








1
0
0





 =








0
1
0






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s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


M0 =








1 0 0
0 1 0
0 0 1





 M1 =








0 1 0
1 0 0
0 0 1





 M2 =








0 0 1
1 0 0
0 1 0








32 = (1012)3 : Mx ◦ M2◦M1 ◦ M0 ◦ M1








1
0
0





 =








1
0
0






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s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


M0 =








1 0 0
0 1 0
0 0 1





 M1 =








0 1 0
1 0 0
0 0 1





 M2 =








0 0 1
1 0 0
0 1 0








32 = (1012)3 : Mx◦M2 ◦ M1 ◦ M0 ◦ M1








1
0
0





 =








0
1
0






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s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


M0 =








1 0 0
0 1 0
0 0 1





 M1 =








0 1 0
1 0 0
0 0 1





 M2 =








0 0 1
1 0 0
0 1 0








S(n) := Mε0(n)Mε1(n) · · ·Mεℓ−1(n)


un = f (S(n)e1) e1 =
(
1 0 0


)T
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s1/a s2 /a


s3 /b


1


1


1


0 0


0


2


22


M0 =








1 0 0
0 1 0
0 0 1





 M1 =








0 1 0
1 0 0
0 0 1





 M2 =








0 0 1
1 0 0
0 1 0








Definition
A q-automatic sequence is called invertible if there exists an
automaton such that all transition matrices are invertible and M0 is the
identity matrix.
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⋆ Examples of automatic sequences


Thue-Morse sequence (invertible): tn =
∑


j>0 εj(n) mod 2


s1 / 0 s2 / 1


1


1


0 0


Rudin-Shapiro sequence (not invertible): rn =
∑


j>0 εj(n)εj+1(n) mod 2


s1 / 1 s2 / 1


1
0


0


s3/−1 s4/−1


0 0


1


1


1
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⋆ Examples of automatic sequences


Sum-of-digits-function (invertible): un = sq(n) mod m


q-additive function modulo m (invertible): un = f (n) mod m


f (n) =
∑


j>0


f (εj(n)) and f (0) = 0.
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⋆ Subsequences along squares


Theorem (D. and Morgenbesser, 2012)


Let q > 2 and (un)n>0 an invertible q-automatic sequence. Then the
densities dens(un2 ,a) exist for each letter a ∈ A.
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⋆ Subsequences along squares


Theorem (D. and Morgenbesser, 2012)


Let q > 2 and (un)n>0 an invertible q-automatic sequence. Then the
densities dens(un2 ,a) exist for each letter a ∈ A.


This generalizes a result of Mauduit and Rivat, 2009, for
un = sq(n) mod m (solution of the Gelfond problem).
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⋆ Subsequences along squares


Theorem (D. and Morgenbesser, 2012)


Let q > 2 and (un)n>0 an invertible q-automatic sequence. Then the
densities dens(un2 ,a) exist for each letter a ∈ A.


This generalizes a result of Mauduit and Rivat, 2009, for
un = sq(n) mod m (solution of the Gelfond problem).


Theorem (D., Mauduit and Rivat, 2013+)
Let (tn)n>0 denote the Thue-Morse sequence. Then the sequence
(tn2)n>0 is normal on the alphabet {0,1}.
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⋆ Subsequences along squares


Theorem (D. and Morgenbesser, 2012)


Let q > 2 and (un)n>0 an invertible q-automatic sequence. Then the
densities dens(un2 ,a) exist for each letter a ∈ A.


This generalizes a result of Mauduit and Rivat, 2009, for
un = sq(n) mod m (solution of the Gelfond problem).


Theorem (D., Mauduit and Rivat, 2013+)
Let (tn)n>0 denote the Thue-Morse sequence. Then the sequence
(tn2)n>0 is normal on the alphabet {0,1}.


Theorem (Mauduit and Rivat, 2013+)
Let r(n) denote the Rudin-Shapiro sequence. Then


dens(r(n2),a) = 1/2 for a ∈ {0,1}.
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Theorem (Deshouillers, D. and Morgenbesser, 2012)
Let un be a q-automatic sequence (on an alphabet A) and
1 < c < 7/5 . Then for each a ∈ A then asymptotic density


dens(u⌊nc⌋,a) of a in the subsequence u⌊nc⌋ exists if and only if the
asymptotic density of α in un exists and we have


dens(u⌊nc⌋,a) = dens(un,a) .
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Theorem (Deshouillers, D. and Morgenbesser, 2012)
Let un be a q-automatic sequence (on an alphabet A) and
1 < c < 7/5 . Then for each a ∈ A then asymptotic density


dens(u⌊nc⌋,a) of a in the subsequence u⌊nc⌋ exists if and only if the
asymptotic density of α in un exists and we have


dens(u⌊nc⌋,a) = dens(un,a) .


Theorem (D., Mauduit and Rivat, 2011)
For every d > 2 there exists q0(d) > 2 such that for all prime
q > q0(c) and all integer polynomials P(x) of degree d (where the


leading coefficient if coprime to q)


#{1 6 n < N : sq(P(n)) ≡ a mod m} =
N
m


+ O
(


N1−η
)


for some η > 0 and all integers m with (m,q − 1) = 1.
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⋆ Subsequences along primes


Theorem (D., 2013)
Let q > 2 and (un)n>0 an invertible q-automatic sequence. Then the
densities dens((up)p∈P,a) exist for each letter a ∈ A.
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⋆ Subsequences along primes


Theorem (D., 2013)
Let q > 2 and (un)n>0 an invertible q-automatic sequence. Then the
densities dens((up)p∈P,a) exist for each letter a ∈ A.


This generalizes a result of Mauduit and Rivat, 2010, for
un = sq(n) mod m (solution of the Gelfond problem).
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⋆ Subsequences along primes


Theorem (D., 2013)
Let q > 2 and (un)n>0 an invertible q-automatic sequence. Then the
densities dens((up)p∈P,a) exist for each letter a ∈ A.


This generalizes a result of Mauduit and Rivat, 2010, for
un = sq(n) mod m (solution of the Gelfond problem).


Theorem (Mauduit and Rivat, 2013+)
Let rn denote the Rudin-Shapiro sequence. Then we have


dens((rp)p∈P,0) = dens((rp)p∈P,1) =
1
2
.
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⋆ Generalized Thue-Morse sequences


H . . . compact (Hausdorff) group


q > 2 and g0,g1, . . . ,gq−1 ∈ H with g0 = e (identity element)


G 6 H . . . closure of the subgroup generated by g0,g1, . . . ,gq−1
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⋆ Generalized Thue-Morse sequences


H . . . compact (Hausdorff) group


q > 2 and g0,g1, . . . ,gq−1 ∈ H with g0 = e (identity element)


G 6 H . . . closure of the subgroup generated by g0,g1, . . . ,gq−1


n =
ℓ−1∑


i=0


εi(n)q
i
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⋆ Generalized Thue-Morse sequences


H . . . compact (Hausdorff) group


q > 2 and g0,g1, . . . ,gq−1 ∈ H with g0 = e (identity element)


G 6 H . . . closure of the subgroup generated by g0,g1, . . . ,gq−1


n =
ℓ−1∑


i=0


εi(n)q
i


Generalized Thue-Morse sequence:


T (n) := gε0(n)gε1(n) · · · gεℓ−1(n)
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⋆ Generalized Thue-Morse sequences


H . . . compact (Hausdorff) group


q > 2 and g0,g1, . . . ,gq−1 ∈ H with g0 = e (identity element)


G 6 H . . . closure of the subgroup generated by g0,g1, . . . ,gq−1


n =
ℓ−1∑


i=0


εi(n)q
i


q-multiplicative function:


T (j + qn) = gjT (n) = T (j)T (n) 0 6 j < q
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⋆ Generalized Thue-Morse sequences


Examples


H = 〈Z/2Z,+〉, q = 2, g0 = 0, g1 = 1:


T (n) = s2(n) mod 2 = tn .
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⋆ Generalized Thue-Morse sequences


Examples


H = 〈Z/2Z,+〉, q = 2, g0 = 0, g1 = 1:


T (n) = s2(n) mod 2 = tn .


H = 〈Z/mZ,+〉, gj = j (0 6 j < q):


T (n) = sq(n) mod m .
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⋆ Generalized Thue-Morse sequences


Examples


H = 〈Z/2Z,+〉, q = 2, g0 = 0, g1 = 1:


T (n) = s2(n) mod 2 = tn .


H = 〈Z/mZ,+〉, gj = j (0 6 j < q):


T (n) = sq(n) mod m .


H = 〈R/Z,+〉, gj = αj (0 6 j < q):


T (n) = α sq(n) mod 1 .
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⋆ Automatic Sequences and Generalized Thue-Morse sequences


un ... invertible automatic sequence


=⇒ un = f (S(n)e1) ,


where S(n) is a generalized Thue-Morse sequence on
H = SL(m,R)
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⋆ Generalized Thue-Morse sequences


Theorem
Let µ denote the Haar measure of G. Then (T (n))n>0 is µ-uniformly
distributed in G, that is,


1
N


N−1∑


n=0


δT (n) → µ.


Michael Drmota Automatic Sequences along Squares and Primes







⋆ Generalized Thue-Morse sequences


Theorem
Let µ denote the Haar measure of G. Then (T (n))n>0 is µ-uniformly
distributed in G, that is,


1
N


N−1∑


n=0


f (T (n)) →
∫


G
f dµ


(for all continuous functions f : G → R.)
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⋆ Generalized Thue-Morse sequences


Theorem
Let µ denote the Haar measure of G. Then (T (n))n>0 is µ-uniformly
distributed in G, that is,


1
N


N−1∑


n=0


f (T (n)) →
∫


G
f dµ


(for all continuous functions f : G → R.)


Remark. Equivalently, a sequence (xn) in G is µ-uniformly distributed if


1
N


|{n < N : xn ∈ B}| → µ(B)


holds for all µ-measurable sets B ⊆ G with µ(∂B) = 0.
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Theorem (D. and Morgenbesser, 2012)


Let a > 1 and b > 0 be integers and set m′ = gcd(a,m) (where
m = m(q,g0, . . . ,gq−1) can be defined in a proper way). Set


dν ′ = m′ · 1T (b)U′ dµ,
where


µ . . . Haar measure on G,


U ′ = cl({T (m′n) : n > 0}) . . . normal subgroup of G of index m′.


Then (T (an + b))n>0 is ν ′-uniformly distributed in G, that is,


1
N


N−1∑


n=0


δT (an+b) → ν ′ .
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Theorem (D. and Morgenbesser, 2012)


There exists a positive integer m = m(q,g0, . . . ,gq−1) such that the
following holds: Set


dν =


m∑


v=0


1gv U · Q(v ,m) dµ,


where


µ . . . Haar measure on G,


U = cl({T (mn) : n > 0}) . . . normal subgroup of G of index m,


Q(v ,m) = #{0 6 n < m : n2 ≡ v mod m}.


Then (T (n2))n>0 is ν-uniformly distributed in G, that is,


1
N


N−1∑


n=0


δT (n2) → ν .
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Theorem (D. , 2013)
There exists a positive integer m = m(q,g0, . . . ,gq−1) such that the
following holds: Set


dν =
m


ϕ(m)


∑


06v<m, gcd(v ,m)=1


1gv U dµ,


where


µ . . . Haar measure on G,


U = cl({T (mn) : n > 0}) . . . normal subgroup of G of index m.


Then (T (p))p∈P is ν-uniformly distributed in G, that is,


1
π(N)


∑


p∈P, p6N


δT (p) → ν .
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A unitary group representation is a continuous homomorphism
D : G → Un for some n > 1.


Un . . . group of unitary n × n matrices over C


D is irreducible if there is no proper subspace W of Cn with
D(x)W ⊆ W for all x ∈ G
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A unitary group representation is a continuous homomorphism
D : G → Un for some n > 1.


Un . . . group of unitary n × n matrices over C


D is irreducible if there is no proper subspace W of Cn with
D(x)W ⊆ W for all x ∈ G


Lemma
Let G be a compact group and ν a regular normed Borel measure on
G. Then a sequence (xn)n>0 is ν-uniformly distributed in G iff


1
N


N−1∑


n=0


D(xn) →
∫


G
D dν


holds for all irreducible unitary representations D of G.
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Remarks:


The integer m = m(q,g0, . . . ,gq−1) is the largest integer such that
m | q − 1 and such that there exists a representation D of G with


D(gu) = e−2πi u
m for all u ∈ {0,1, . . . ,q − 1}.


(T (an + b))n>0 is uniformly distributed in G (i.e., ν ′ = µ) iff
m′ = gcd(a,m) = 1.


(T (n2))n>0 is uniformly distributed in G (i.e., ν = µ) iff m 6 2.


(T (p))p∈P is uniformly distributed in G (i.e., ν = µ) iff m = 1.


If G is connected, then T (an + b), T (p), and T (n2) are uniformly
distributed in G.
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⋆ Properties of the Fourier term


Tλ(n) := gε0(n)gε1(n) · · · gελ−1(n) (periodic with period qλ)


Fλ(h) :=
1
qλ


∑


06u<qλ


e
−2πi hu


qλ D(Tλ(u))


Lemma
Set


ΨD(t) =
∑


06u<q


e(tu)D(gu),


then


Fλ(h) =
1
qλ


ΨD


(


− h
qλ


)


ΨD


(


− h
qλ−1


)


· · ·ΨD


(


−h
q


)


.
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⋆ Properties of the Fourier term


Lemma
Suppose that D 6∈ {D0, . . . ,Dm−1} is an irreducible and unitary
representation of G. Then there exists a constant c > 0 such that


max
h∈Z


‖Fλ(h)‖2 ≪ q−cλ .
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⋆ Exercise on linear subsequences


∑


n<N


D(T (an + b))


=
∑


06u<qν


∑


n<N


D(T (u)) · 1
qλ


∑


06h<qλ


e


(
h(an + b − u)


qλ


)


=
∑


06h<qλ


Fλ(h)
∑


n<N


e


(
h(an + b)


qλ


)


.
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⋆ Exercise on linear subsequences


∑


n<N


D(T (an + b))


=
∑


06u<qν


∑


n<N


D(T (u)) · 1
qλ


∑


06h<qλ


e


(
h(an + b − u)


qλ


)


=
∑


06h<qλ


Fλ(h)
∑


n<N


e


(
h(an + b)


qλ


)


.


∥
∥
∥
∥
∥


∑


n<N


D(T (an + b))


∥
∥
∥
∥
∥


2


≪
∑


06h<qλ


‖Fλ(h)‖2 · min





N,
1


∣
∣
∣sin πha


qλ


∣
∣
∣





 .
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⋆ Sketch of the proof for squares


1
N


∑


06n<N


D(T (n2))
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⋆ Sketch of the proof for squares


1
N


∑


06n<N


D(T (n2))


The representation D0, . . . ,Dm−1 are special but easy:


Dk (gu) = e−2πi k
m u for all 0 6 u < q and 0 6 k < m


Dk (T (n2)) = e−2πi k
m n2


Gauss sums


For all other irreducible unitary representations . . .
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Van der Corput type inequality:


∥


∥


∥


∥


∥


∥


∑


06n<N


Z (n)


∥


∥


∥


∥


∥


∥


F


6














dN
R


∑


|r |<R


(


1 −
|r |
R


)


∥


∥


∥


∥


∥


∥


∥


∥


∑


06n6N
06n+r6N


Z (n + r)Z (n)H


∥


∥


∥


∥


∥


∥


∥


∥


F














1/2


+
f
2


R
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Van der Corput type inequality:


∥


∥


∥


∥


∥


∥


∑


06n<N


D(T (n2))


∥


∥


∥


∥


∥


∥


F


6














dN
R


∑


|r |<R


(


1 −
|r |
R


)


∥


∥


∥


∥


∥


∥


∥


∥


∑


06n6N
06n+r6N


D(T (n + r)2)D(T (n2))H


∥


∥


∥


∥


∥


∥


∥


∥


F














1/2


+
f
2


R
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Van der Corput type inequality:


∥


∥


∥


∥


∥


∥


∑


06n<N


D(T (n2))


∥


∥


∥


∥


∥


∥


F


6














dN
R


∑


|r |<R


(


1 −
|r |
R


)


∥


∥


∥


∥


∥


∥


∥


∥


∑


06n6N
06n+r6N


D(T (n + r)2)D(T (n2))H


∥


∥


∥


∥


∥


∥


∥


∥


F














1/2


+
f
2


R


T (n) = gε0(n)gε1(n) · · · gελ−1(n)gελ(n) · · · gεℓ−1(n)
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Van der Corput type inequality:


∥


∥


∥


∥


∥


∥


∑


06n<N


D(T (n2))


∥


∥


∥


∥


∥


∥


F


6














dN
R


∑


|r |<R


(


1 −
|r |
R


)


∥


∥


∥


∥


∥


∥


∥


∥


∑


06n6N
06n+r6N


D(T (n + r)2)D(T (n2))H


∥


∥


∥


∥


∥


∥


∥


∥


F














1/2


+
f
2


R


Tλ(n) = gε0(n)gε1(n) · · · gελ−1(n)
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Van der Corput type inequality:


∥


∥


∥


∥


∥


∥


∑


06n<N


D(T (n2))


∥


∥


∥


∥


∥


∥


F


6














dN
R


∑


|r |<R


(


1 −
|r |
R


)


∥


∥


∥


∥


∥


∥


∥


∥


∑


06n6N
06n+r6N


D(T (n + r)2)D(T (n2))H


∥


∥


∥


∥


∥


∥


∥


∥


F














1/2


+
f
2


R


Tλ(n) = gε0(n)gε1(n) · · · gελ−1(n)


(n + r)2 = (εℓ−1εℓ−2 . . . ελ . . .)q , n2 = (εℓ−1εℓ−2 . . . ελ . . .)q
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Van der Corput type inequality:


∥


∥


∥


∥


∥


∥


∑


06n<N


D(T (n2))


∥


∥


∥


∥


∥


∥


F


6














dN
R


∑


|r |<R


(


1 −
|r |
R


)


∥


∥


∥


∥


∥


∥


∥


∥


∑


06n6N
06n+r6N


D(T (n + r)2)D(T (n2))H


∥


∥


∥


∥


∥


∥


∥


∥


F














1/2


+
f
2


R


Tλ(n) = gε0(n)gε1(n) · · · gελ−1(n)


(n + r)2 = (εℓ−1εℓ−2 . . . ελ . . .)q , n2 = (εℓ−1εℓ−2 . . . ελ . . .)q


D(T ((n + r)2))D(T (n2))H


= D(Tλ((n + r)2))D(gελ) · · ·
In


︷ ︸︸ ︷


D(gεℓ−1)D(gεℓ−1)
H · · ·D(gελ)


HD(Tλ(n2))H
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Van der Corput type inequality:


∥


∥


∥


∥


∥


∥


∑


06n<N


D(T (n2))


∥


∥


∥


∥


∥


∥


F


6














dN
R


∑


|r |<R


(


1 −
|r |
R


)


∥


∥


∥


∥


∥


∥


∥


∥


∑


06n6N
06n+r6N


D(T (n + r)2)D(T (n2))H


∥


∥


∥


∥


∥


∥


∥


∥


F














1/2


+
f
2


R


Tλ(n) = gε0(n)gε1(n) · · · gελ−1(n)


(n + r)2 = (εℓ−1εℓ−2 . . . ελ . . .)q , n2 = (εℓ−1εℓ−2 . . . ελ . . .)q


D(T ((n + r)2))D(T (n2))H


= D(Tλ((n + r)2))D(gελ) · · ·
In


︷ ︸︸ ︷


D(gεℓ−1)D(gεℓ−1)
H · · ·D(gελ)


HD(Tλ(n2))H
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Van der Corput type inequality:


∥


∥


∥


∥


∥


∥


∑


06n<N


D(T (n2))


∥


∥


∥


∥


∥


∥


F


6














dN
R


∑


|r |<R


(


1 −
|r |
R


)


∥


∥


∥


∥


∥


∥


∥


∥


∑


06n6N
06n+r6N


D(T (n + r)2)D(T (n2))H


∥


∥


∥


∥


∥


∥


∥


∥


F














1/2


+
f
2


R


Tλ(n) = gε0(n)gε1(n) · · · gελ−1(n)


(n + r)2 = (εℓ−1εℓ−2 . . . ελ . . .)q , n2 = (εℓ−1εℓ−2 . . . ελ . . .)q


D(T ((n + r)2))D(T (n2))H


= D(Tλ((n + r)2))D(gελ) · · ·
In


︷ ︸︸ ︷


D(gεℓ−1)D(gεℓ−1)
H · · ·D(gελ)


HD(Tλ(n2))H


= D(Tλ((n + r)2))D(Tλ(n
2))H
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⋆ Sketch of the proof for squares


Simplified version:
∑


n<N


D(Tλ((n + r)2))D(Tλ(n
2))H


=
∑


06h1,h2<qλ


Fλ(h1)Fλ(h2)
H
∑


n<N


e


(
h1(n + r)2 + h2n2


qλ


)


.
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⋆ Sketch of the proof for squares


Simplified version:
∑


n<N


D(Tλ((n + r)2))D(Tλ(n
2))H


=
∑


06h1,h2<qλ


Fλ(h1)Fλ(h2)
H
∑


n<N


e


(
h1(n + r)2 + h2n2


qλ


)


.


Actually this idea has to be extended by an applications of a second
Van-der-Corput inequality (following the ideas of Mauduit and Rivat).
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⋆ Sketch of the proof for squares


A subtle Fourier analysis of a double truncated sum leads to the
following expression:
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⋆ Sketch of the proof for squares


A subtle Fourier analysis of a double truncated sum leads to the
following expression:


2
π


log
(


4eπ/2qλ


π


)


qλ/2 max
06ℓ<qλ


∑


d|qλ


d1/2


·
∑


06h1,h2,h3,h4<qλ


(h1+h2+h3+h4,q
λ)=d


d|2r(h1+h2)+2sqµ(h2+h3)+ℓ


‖Fµ,λ(h1)‖F ‖Fµ,λ(h2)‖F ‖Fµ,λ(h3)‖F ‖Fµ,λ(h4)‖F
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⋆ Sketch of the proof for squares


A subtle Fourier analysis of a double truncated sum leads to the
following expression:


2
π


log
(


4eπ/2qλ


π


)


qλ/2 max
06ℓ<qλ


∑


d|qλ


d1/2


·
∑


06h1,h2,h3,h4<qλ


(h1+h2+h3+h4,q
λ)=d


d|2r(h1+h2)+2sqµ(h2+h3)+ℓ


‖Fµ,λ(h1)‖F ‖Fµ,λ(h2)‖F ‖Fµ,λ(h3)‖F ‖Fµ,λ(h4)‖F


This term can be estimated by applying upper bounds on the Fourier
terms (an analogue of this expression appears in Mauduit and Rivat’s
work).
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⋆ Sketch of the proof for primes


1
π(N)


∑


p<N, p∈P


D(S(p))
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⋆ Sketch of the proof for primes


1
π(N)


∑


p<N, p∈P


D(S(p))


The representation D0, . . . ,Dm−1 are special but easy:


Dk (gu) = e−2πi k
m u for all 0 6 u < q and 0 6 k < m


Dk (T (p)) = e−2πi k
m p elementary sums


For all other irreducible unitary representations . . .
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⋆ Sketch of the proof for primes


Vaughan’s method: 0 < β1 < 1/3, 1/2 < β2 < 1, and D(S(n)) a
sequence of unitary matrices. Suppose that for all M 6 Nβ1


∑


M/q<m6M


max
N


qm6t6 N
m


∣
∣
∣
∣
∣
∣
∣


∑


t<n6 N
m


D(S(mn))


∣
∣
∣
∣
∣
∣
∣


= O(N1−η)


and for Nβ1 6 M 6 Nβ2 and for all sequences am, bn with |am| 6 1 and
|bn| 6 1


∣
∣
∣
∣
∣
∣
∣


∑


M
q <m6M


∑


N
qm<n6 N


m


ambnD(S(mn))


∣
∣
∣
∣
∣
∣
∣


= O(N1−η)


=⇒
∑


06n<N


Λ(n)D(S(n)) = O(N1−η(log N)2)


We mimic the method of Mauduit of Rivat for the Rudin-Shapiro
sequence.
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⋆ Normality of t(n2)


Fourier term with correlations in oder to handle blocks of length > 1:


Gλ(h,d) =
1
2λ


∑


06u<2λ


e


(


1
2


k−1∑


ℓ=0


αℓs2,λ(u + ℓd)− h2−λ


)


(α0, . . . , αk−1 ∈ {0,1})


Uniform upper bounds.


|Gλ(h,d)| 6 2−c′′λ


(for some constant c′′ > 0)
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⋆ Normality of t(n2)


After several quite technical steps (in particular with a subtle Fourier
analysis this leads to upper bounds for the exponential sums


∑


n<N


e


(


1
2


k−1∑


ℓ=0


αℓs2((n + ℓ)2)


)


≪ N1−η


and consequently to the proof that tn2 is normal.
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⋆ Local results the sum-of-digits function on primes


Theorem (D., Mauduit and Rivat, 2009)
Suppose that (q, k − 1) = 1. Then


#{primes p < N : sq(p) = k}


=
q − 1


ϕ(q − 1)
π(N)


√


2πσ2
q logq N


(


exp


(


−
(k − µq logq N)2


2σ2
q logq N


)


+ O((log N)−
1
2+


where


µq :=
q − 1


2
, σ2


q :=
q2 − 1


12
.


Remark: This asymptotic expansion is only significant if
∣
∣
∣k − µq logq N


∣
∣
∣ 6 C(log N)


1
2


Note that 1
π(N)


∑


p<N sq(p) ∼ µq logq N.
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⋆ Binary Representation of Primes


Corollary


Theorem (D., Mauduit, and Rivat, 2011)
s2(n) ... number of powers of 2 in the binary expansion of n


#{primes p < 22k : s2(p) = k} ∼ 22k


√
2π log 2 k


3
2
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⋆ Binary Representation of Primes


Corollary


Theorem (D., Mauduit, and Rivat, 2011)
s2(n) ... number of powers of 2 in the binary expansion of n


#{primes p < 22k : s2(p) = k} ∼ 22k


√
2π log 2 k


3
2


In particular for every (sufficiently large) positive integer k there exist a
prime p with


s2(p) = k .
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Thank you!
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A Sideways Approach to the Circle Problem


Autour du problème du Cercle


Abstract


The average of the sum-of-two-squares function r(n) can be read as count-
ing integer points in a circle with centre at the origin. Moving the centre,
or changing the shape, hasn't helped yet, but it leads to some interesting
problems.


Let r(n) be the number of solutions of x2 + y2 = n, x ≥ 1, y ≥ 0.


r(n) =
∑
d|n


χ(d), χ(n) the Dirichlet character (mod 4).


∞∑
1


r(n) = ζ(s)L(s, χ),


so ∑
n≤N


r(n) =
1


2πi


∫
ζ(s)L(s, χ)


ds


s


=
πN


4
+


∫
L
ζ(s)L(s, χ)


ds


s
,


where L is an indented contour, made up of L1 along Res = 1 + 1/ logN ,
L2 along Ims = −iT , L3 along Res = 0, L4 along Ims = iT , and L5 along
Res = 1 + 1/ logN again. This is the usual method.
The integral along L5 is


O


(
N1+ε


T


)
.


The integral along L3 is
O(N εT log T ) .


The best choice is T =
√
N , when the integral along L is


O
(
N1/2+ ε


)
.


Moving the contour further doesn't give anything better.


1







Geometric Idea: The number of integer points (m,n) in the circle
x2 + y2 ≤ R2 is


1 + 4
∑


1≤k≤R2


r(k), where k = m2 + n2.


Associate each integer point (m,n) with the unit square m ≤ x < m + 1,
n ≤ y < n+ 1.
Then the number of integer points is the area of a zigzag (non-convex) poly-
gon which extends at most


√
2 outside the circle (�rst, second and fourth


quadrants), and includes every point more than
√
2 inside the circle (second,


third and fourth quadrants).
So the number of integer points inside the circle is πR2 +O(R).
Gauss mentions this in a paper on quadratic forms.
Similarly the divisor problem


∑
d(n) corresponds to counting integer points


in a region x > 0, y > 0, xy ≤ N .
Voronoï in Warsaw saw that the way that the curve cuts the squares forms
a pattern in some places, especially where the gradient a/q has small height
(H(a/q) = max(|a|, q)).
Voronoï (1904) approximated the hyperbola xy ≤ N by a polygon formed
by the tangents with rational gradients of small height.
Sierpi«ski (1906) did it for the circle, getting πR2 +O(R2/3).
Van der Corput in his thesis (1913) showed that this worked for any smooth
closed curve.


C2 curve: continuous radius of curvature ρ = ds/dψ, bounded away
from 0 and ∞, so c1 ≤ ρ ≤ c2.


C3 curve: extra condition that dρ/dψ is continuous, |dρ/dψ| ≤ c3.


Cn curve: similarly up to dn−2ρ/dψn−2.


Notation: From now on C is a closed bounded plane curve, at least C2.
C(R, u, v) is C enlarged by a factor R, then translated by a vector (u, v).
S(R, u, v) is the closed convex set bounded by C(R, u, v).
J(R, u, v) is the set of integer points in S(R, u, v); this corresponds to taking
the unit squares as m− u ≤ x < m− u+ 1, n− v ≤ y < n− v + 1.
So when (u, v) = (1/2, 1/2), then the squares are centred at integer points.
N(R, u, v) is the size of J(r, u, v), the number of integer points in S(r, u, v).
Van der Corput showed that N(R, u, v) = AR2 +O(R2/3).
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Application: The group SL(2,Z) of 2×2 integer matrices with ad−bc =
1 acts on the upper half plane by


z → az + b


cz + d
.


Real-analytic modular forms have ∇2F = −λF , where ∇2 is the Laplacian
in hyperbolic geometry.


∇2 = y2
(
∂2


∂x2
+


∂2


∂y2


)
, so ∇2ys = s(s− 1)ys.


The fundamental domains form a pattern of hyperbolic triangles with cusps
such as i∞ and 0, 1/2, . . . on the x-axis.
The function ys is large at the cusp i∞, 0 at the other cusps.


Method of images:


E(z, s) =
∑
cusps


(image of ys)


= ys +
∑
c


∑
d


HCF(c,d)=1


Im


(
az + b


cz + d


)s


= ys +
∑
c


∑
d


HCF(c,d)=1


ys


|cz + d|2s
.


ζ(2s)E(z, s) = ζ(2s)ys +
∑
c


∑
d


not both 0


ys


|cz + d|2s
.


Now for �xed z, |cz + d|2 ≤ R2 means that the integer point (c, d) lies in an
ellipse.
The number of points is AR2 +O(R2/3.
This means that the sum converges for Res > 1, but it has an analytic
continuation to Res > 1/3, with a pole at s = 1.
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Back to E(s,z) as a function of z = x+ iy. E(z, s) has a Fourier series in x.


ζ(2s)E(Z, s) = ζ(2s)ys +B(s)y1−s +
∑
n 6=0


c(|n|, s)e(nx)K
(
s− 1


2
, |n|y


)
,


where K(r, y) is built from a Bessel function of order r.
The coe�cient c(n, s) is a divisor sum which is symmetric under s→ 1− s.
The functions K(s− 1/2, y) and K(1/2− s, y) satisfy the same second order
di�erential equation, and they both vanish at y = +∞.
So K(s− 1/2, y) and K(1/2− s, y) must be proportional,


K


(
s− 1


2
, y


)
= G(s)K


(
1


2
− s
)
.


and so


ζ(2s)E(z, s)−G(s)ζ(2− 2s)E(z, 1− s)
= (ζ(2s)−G(s)B(1− s))ys + (B(s)−G(s)ζ(2− 2s))y1−s.


The left hand side is invariant under z → (az + b)/(cz + d), but the right
hand side is not invariant -
unless the coe�cients of ys and of y1−s are both 0.
I haven't said what function B(s) is yet.
B(s) has a factor ζ(2s− 1) in it, so B(1− s) has a factor ζ(1− 2s) in it.
We get the functional equation for ζ(s) as well as for E(z, s).
In the case z = i the functional equation for


ζ(2s)E(i, s) = ζ(2s)ys +
∑
c


∑
d


not both 0


ys


(c2 + d2)s


gives the functional equation for the Dirichlet series that we �rst thought of,
ζ(s)L(s, χ).


Big Question: Do these non-analytic modular forms on the upper half
plane tell you more about the zeta function?
Not so far.


4







Van der Corput's thesis used two methods:
Voronoï-Sierpi«ski: approximate by a polygon.
Exponential sums (which come from Fourier transforms)
He did a lot of work from 1913-39 on estimating exp sums.


Newer Method (Bombieri-Iwaniec-Mozzochi): uses
Voronoï Polygon
Exp Sums


z → az + b


cz + d
).


The newer method gives πR2 +O (Rκ+ε).


Iwaniec-Mozzochi: κ = 7/11 = 0 · 6363 . . .
Huxley: κ = 131/208 = 0 · 6298 . . .


Limit of method: κ = 5/8 = 0 · 625.


The method works for a C3 curve:


N(R, u, v) = AR2 +O
(
Rκ+ε


)
.


A variation: the Tiled Circle Problem. How many square tiles to
tile a room the shape of S(R, 0, 0)?
You have to cut O(R) tiles to �t the shape of the curved boundary. At least
AR2, at most AR2 + O(R). However, if you can rotate the o�-cut parts of
the tiles by 180o, cut them, and use them again, then:


Algorithm based on the Voronoï-Sierpi«ski polygon (to appear inMath-


ematika):
At most AR2 +O(δR) +O


(
R2/3


)
,


where δ is the width of the cutting tool.
The error estimate uses exp sums, and an idea from my �rst paper, which
was on pn+2 − pn.
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Sideways approach: Keep the enlargement R �xed, vary the displace-
ment (u, v).


J(r, u, v) is the set of integer points in the shape S(R, u, v).
N(R, u, v) = AR2 + E(R, u, v) is the number of points in J(R, u, v).


Kendall 1948: For a C3 curve∫ 1


v=0


∫ 1


u=0
E(R, u, v)2 dudv = O(R).


The condition on the curve can be reduced to C2.


New Result (to appear in Monatshefte für Mathematik):
Still for a C2 curve:∫ 1


v=0


∫ 1


u=0
E(R, u, v)4 dudv = O(R2 logR).


Aside: I should say that there is an Italian mathematician who says that
this is obvious, but his E-mail which is supposed to explain why it's obvious
seems to assume a C∞ condition and a dual inequality for Fourier series
which a di�erent Italian mathematician who is an expert on inequalities
didn't recognise.


Counting Con�gurations. How many di�erent sets of integer points
J(R, u, v) do you get when you vary the shift vector (u, v) (that's di�erent
up to translation)?
Huxley and �uni¢ (INTAS project): Asymptotic to BR2 when C is a C3


curve that satis�es


Triangle Condition: No translation C(R, u, v) (with R �xed) passes
through 3 or more integer points.


The Triangle Condition fails when C is the unit circle.
Careful counting gives for the circle


4πR2 +O
(
R1+κ+ε


)
.


Prof. Kolountzakis on the INTAS Project identi�ed the constant B as the
area of the di�erence set of the curve C. This led to a new proof.
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Computer Graphics Version: How many sets J(R, u, v) (now R varies
too) have N(R, u, v) = N (�xed)?
Huxley and �uni¢ (INTAS project, �nally published in Proc London Math


Soc (2013)):
Exactly 2N − 1 when C is a C3 curve that satis�es the


Quadrangle Condition: No image C(R, u, v) for any R, u, or v passes
through 4 or more integer points.
At most 2N − 1 when C is a C3 curve in general.
We have to show that the domain of a con�guration J(R, u, v), the set of
point (u, v) for which you get the same set of N integer points, is a connected
set which is simply-connected. The domain for a circle are polygons. In
general the domains have curved boundaries.
The Quadrangle Condition fails for the circle, so we only know the upper
bound.
On average, the number of sets J(R, u, v) for the circle with N(R, u, v) = N
is asymptotically 2N .
Huxley and Konyagin put a lot of e�ort into counting cyclic quadrilaterals
(Acta Arithmetica 2009), but we haven't found a result local in N (yet?).


Are the di�erent possible sets of integer points uniformly distributed in the
unit square?
Plunkett-Levin (Cardi� PhD, about 2012): Yes for the circle.
It should be Yes in general. There is a part of the calculation where the
leading term cancels for the circle, but it doesn't seem to cancel in general,
so the calculations of Weyl sums will be more delicate. More work is needed!


The computer graphics version. The counting uses a combinatoric
argument which doesn't localise, so we can't prove uniform distribution.
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Bárány's di�cult problem: What shape is the set J(R, u, v) of integer
points?
Let K(R, u, v) be the convex hull of the integer points in S(R, u, v).
How many vertices? Call it V (R, u, v) vertices.
Is V (R, u, v) asymptotic to BR2/3 for some constant B?
Balog-Deshouillers: V (R, 0, 0) is asymptotic to BR2/3 on average over R.


New Result: (to appear in Periodica Math Hung) For any C3 curve C,
V (R, u, v) is asymptotic to BR2/3 on average over u and v.
When C is normalised by ∫ 2π


0
ρ2/3 dψ = 2π,


then B is independent of C, a sum of three hypergeometric series.
In fact V (R, u, v) has normal size BR2/3 over u and v (paper being written
up).


Related Work: Fix R, u and v. For a primitive integer vector (q, a) let
T (q, a) be the point on C(R, u, v) where (q, a) is the forward tangent vector.
For a C3 curve, the set of points T (q, a) with H(q, a) ≤ Rθ, where θ > 1/4
is �xed, tends to uniform distribution mod 1 as R→∞.
For smaller values 0 < θ ≤ 1/4, the curve C has to be Cn with n > 1+1/2θ
(paper being written up).


Idea: approximate C by the Voronoï-Sierpi«ski polygon; you end up
estimating exp sums.


If very strong uniform distribution results were true, we should be able to
prove Bárány's BR1/3 conjecture.
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The Möbius function


µ(n) =



(−1)k , if n is a product of k distinct primes,


1, if n = 1,


0, otherwise.


µ(mn) = µ(m)µ(n) whenever gcd(m, n) = 1,∑
n≤N µ(n) = o(N) ⇐⇒ PNT


Conjecture (Sarnak 2010)


1


N


∑
n≤N


a(n)µ(n)→ 0


for any “reasonable” deterministic sequence a(n):


a(n) = f (T nx), where T : X → X is a homeomorphism of a
compact metric space, f ∈ C (X ),


h(T ) = 0.
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Random character of µ


Conjecture (Sarnak 2010)


1


N


∑
n≤N


f (T nx)µ(n)→ 0


for any T : X → X with h(T ) = 0 and any f ∈ C (X )


Conjecture (Chowla 1965)


1


N


∑
n≤N


µi0(n)µi1(n + a1) . . .µir (n + ar )→ 0


for 1 ≤ a1 < a2 < · · · < ar , i0, . . . , ir ∈ {1, 2} not all even.


Sarnak: The Chowla conjecture ⇒ Sarnak’s conjecture
Proofs:


Tao’s blog, Sarnak’s letter 2012 (combinatorial proof)


Abdalaoui, KP, Lemańczyk, de la Rue 2013 (ergodic proof)
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Sarnak conjecture – examples


1-point dynamical system (PNT),
rational rotations (PNT in arithmetic progressions)
irrational rotations Tx = x + α – Davenport, 1937


horocycle flows – Bourgain, Sarnak and Ziegler, 2011


nilsystems – Green, Tao, 2012


large SUBCLASS of rank one maps (bounded and recurrent


constructions) – Bourgain, 2011, Abdalaoui, Lemańczyk, de la Rue, 2013


SOME systems generated by generalized Morse sequences
Indlekofer, Katai, 2001
Dartyge, Tenenbaum, 2005
Mauduit, Rivat, 2010


Green, 2012 and Bourgain, 2013 (ALL so called Kakutani sequences)


Abdalaoui, Kasjan, Lemańczyk, 2013 (Thue-Morse type and ALL reg. Toeplitz sequences)


Rudin-Shapiro sequence – Mauduit, Rivat, 2013


some distal systems – Liu, Sarnak, 2013 (including ALL h=0 affine systems)


some continuous compact group extensions and some rel.
weakly mixing extensions of rotations – KP, Lemańczyk, 2013
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SOME systems generated by generalized Morse sequences
Indlekofer, Katai, 2001
Dartyge, Tenenbaum, 2005
Mauduit, Rivat, 2010


Green, 2012 and Bourgain, 2013 (ALL so called Kakutani sequences)
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Basic definitions: sequences and dynamical systems


X = AN or AZ, |A| <∞


X is a compact metric space:
d((x(n))n∈Z, (y(n))n∈Z) = 2−min{|n|∈N : x(n)6=y(n)}.


(left) shift on X : S((x(n))n∈N) = (y(n))n∈N, y(n) = x(n + 1)


for z ∈ X , Xz := O(z) = {Snz : n ∈ N} ⊂ X is S-invariant


T : X → X (homeomorphism of a compact metric space).
A point x ∈ X is called:


generic if 1
N


∑
n≤N δT nx → ν (such ν is always T -invariant)


quasi-generic if there exists (Nk) s.t. 1
Nk


∑
n≤Nk


δT nx → ν


Q-gen(x) =
{
ν ∈ P(X ) : ∃(Nk) s.t.


1


Nk


∑
n≤Nk


δT nx −−−→
k→∞


ν
}


completely deterministic if for all ν ∈ Q-gen(x), h(T , ν) = 0
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Basic definitions: entropy


Let T : (X ,B, ν)→ (X ,B, ν) be bi-measurable,
probability-preserving.
The entropy h(T , ν) ∈ [0,∞] is defined in a few steps:


for a finite measurable partition Q = {Q1, . . . ,Qk} of X we
define Hν(Q) = −


∑k
m=1 ν(Qm) log ν(Qm)


hν(T ,Q) = limN→∞
1
NH


(∨N−1
n=0 T−nQ


)
,∨N−1


n=0 T−nQ is the coarsest refinement of all partitions
T−nQ, n = 0, . . . ,N − 1.


(Kolmogorov and Sinai) h(T , ν) = supQ hν(T ,Q), where the
supremum is taken over all finite measurable partitions.
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Basic definitions: entropy


Let T : X → X .
Topological entropy: h(T ) = supµ h(T , µ) (variational principle).


Special case:
Let X ⊂ AZ be closed and shift-invariant.
Let p(n) = the number of n-blocks appearing on X .
Then h(S) = htop(S ,X ) = limn→∞


1
n log p(n).


Notation: htop(z) = htop(S ,Xz).


Remarks:


h(T ) = 0 ⇐⇒ all x ∈ X are completely deterministic


it is possible z is completely deterministic but htop(z) > 0
Mirsky (1949): µ2 is generic for a zero entropy measure,
i.e µ is a completely deterministic point
however: htop(µ2) = 6/π2 log 2
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Basic definitions: (S), (S0) and (Ch)


Let z ∈ {−1, 0, 1}N.


z satisfies condition (S) if for any T : X → X


1


N


∑
n≤N


f (T nx)z(n) −−−−→
N→∞


0


for each f ∈ C (X ) and x ∈ X completely deterministic.


z satisfies (S0) if it satisfies (S) for all T with h(T ) = 0


Original conjecture of Sarnak: (S0) holds for z = µ.


z satisfies condition (Ch) if


1


N


∑
n≤N


z i0(n) · z i1(n + a1) · . . . · z ir (n + ar ) −−−−→
N→∞


0


for each 1 ≤ a1 < . . . < ar , r ≥ 0, is ∈ {1, 2} not all even.


Chowla conjecture: (Ch) holds for z = µ.
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Notation


Let z ∈ {−1, 0, 1}N.


Xz = O(z) ⊂ {−1, 0, 1}N, Xz2 = O(z2) ⊂ {0, 1}N


π : Xz → Xz2 , π(w) = w2


Blocks correspond to cylinder sets: for B ∈ {−1, 0, 1}∗,


B = (b1, . . . , bk)↔ {x ∈ {−1, 0, 1}Z : x(i) = bi for 1 ≤ i ≤ k}
π(B) = (b2


1, . . . , b
2
k)↔ {x ∈ {0, 1}Z : x(i) = b2


i for 1 ≤ i ≤ k}


Each ν ∈ PS({0, 1}Z) is determined by the values on blocks: ν(B).
For ν ∈ PS({0, 1}Z) we define ν̂ ∈ PS({−1, 0, 1}Z):


ν̂(B) := 2−|supp B|ν(π(B))


(the relatively independent extension of ν).
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(Ch) rephrased


Lemma


“(Ch) holds for z” is equivalent to


ANk
(z2) :=


1


Nk


∑
n≤Nk


δSnz2 → ν ⇐⇒ ANk
(z) :=


1


Nk


∑
n≤Nk


δSnz → ν̂.
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1


Nk


∑
n≤Nk


δSnz → ν̂.


Proof: “⇐”


1 f (x) := x(0) ⇒ f ∈ C ({−1, 0, 1}Z), x(n) = f ◦ Sn(x)


2 x i0 (n)x i1 (n+a1)·. . .·x ir (n+ar )=(f i0·f i1◦Sa1 ·. . .·f ir◦Sar )(Snx)=:F (Snx)


3 let (Nk) be s.t. ANk
(z2) converges (to ν)


4
1
Nk


∑
n≤Nk


z i0(n)z i1(n+a1)·. . .·z ir (n+ar ) = 1
Nk


∑
n≤Nk


F (Snz)


→
∫
F d ν̂ =


{
0, if not all it = 2∫
Xz2


F dν, if all it = 2
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F dρ =


∫
F d ν̂.


6 Function like F form an algebra of continuous function which
distinguish points ⇒ by Stone-Weierstrass thm ρ = ν̂.
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(Ch) holds for z ⇐⇒ Q-gen(z) = {ν̂ : ν ∈ Q-gen(z2)}.


Corollary


The only sequences u ∈ {−1, 1}N satisfying (Ch) are generic points
for the Bernoulli measure B(1/2, 1/2) = ( 1


2 (δ−1 + δ1))⊗N.


Proof: For u ∈ {−1, 1}N, u2 = (1, 1, . . . ),


ANk
(u2) = δ(1,1,... ) → ν = δ(1,1,... ),


ν̂ = B(1/2, 1/2).
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(Ch), (S) and more


Let z ∈ {−1, 0, 1}N.


z satisfies condition (S-strong) if
1
N


∑
n≤N f (T nx)z i0(n) · z i1(n + a1) · . . . · z ir (n + ar ) −−−−→


N→∞
0


for each f ∈ C (X ) and x ∈ X completely deterministic and
for each 1 ≤ a1 < . . . < ar , r ≥ 0, is ∈ {1, 2} not all = 2.


z satisfies (S0-strong) if it satisfies (S-strong) for all T with
h(T ) = 0.


Lemma


Let u(n) = z i0(n) · . . . · z ir (n + ar ), n ≥ 1, not all it even.
If z satisfies (Ch) then u satisfies (Ch)


An immediate consequence of ,,(Ch)⇒ (S)” and the above lemma:


Corollary


If z satisfies (Ch) then z satisfies (S-strong).
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(Ch), (S) and more


(Ch) (S-strong)


(previous slide)
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(Ch), (S) and more


(Ch) (S-strong) (S)


(S0-strong) (S0).


(by examples)
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(Ch), (S) and more


(Ch) (S-strong) (S)


(S0-strong) (S0).


Formally, (S) is not the same as (S0):
(S0) for µ does not give us


1


N


∑
n≤N


µ2(n)µ(n + 1)→ 0,


whereas (S) does!
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Formally, (S) is not the same as (S0):
(S0) for µ does not give us


1


N


∑
n≤N


µ2(n)µ(n + 1)→ 0,


whereas (S) does!
However, (S) ⇐⇒ (S0).
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Strategy of the proof of (S) ⇐⇒ (S0)


Theorem (Abdalaoui, KP, Lemańczyk, de la Rue 2013)


(S) ⇐⇒ (S0)


Proof strategy: “⇐”


suppose that (S) does not hold, i.e.
1
Nk


∑
n≤Nk


f (T nx)z(n)→ θ 6= 0, x is completely deterministic,


approximate f (T nx) with a completely deterministic sequence
y(n) ∈ AN – reduction to 1


Nk


∑
n≤Nk


y(n)z(n)→ θ′ 6= 0,


key ingredient (w/o proof: Weiss 1995):
y ∈ AN is completely deterministic ⇐⇒
∀ε > 0 ∃K s.t. after removing from (y(n)) a subset of density
less than ε, what is left can be covered by a collection C of
K -blocks such that |C| < 2εK ,


construct y ′(n) ∈ AN which agrees with y(n) on a set of a
very small density and such that htop(y ′) = 0,


this gives 1
Nk


∑
n≤Nk


y ′(n)z(n)→ θ′′ 6= 0, i.e. (S0) also fails.
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Sketch of the proof of (Ch) ⇒ (S)


Let ν ∈ Q-gen(z2) and treat ν as a measure on {0, 1}Z.
ν̂ is a measure on {−1, 0, 1}Z.


Lemma A


F : {−1, 0, 1}Z → C, F (w) = w(0). Then Eν̂(F |{0, 1}Z) = 0.


Proof:


ν̂ =
∫
ν̂u dν(u),


Eν̂(F |{0, 1}Z)(u) =
∫
π−1(u) F d ν̂u,


ν̂u = product measure (1/2, 1/2) of all positions belonging to
the support of u,


If u(0) = 0 then OK (F = 0),


If u(0) = 1 then F on π−1(u) takes two values ±1 with the
same probability ⇒ OK.
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Sketch of the proof of (Ch) ⇒ (S)


Let B(1/2, 1/2) = ( 1
2 (δ−1 + δ1))⊗Z on {−1, 1}Z.


Lemma


(S , {−1, 0, 1}Z, ν̂) is a factor of
(S , {0, 1}Z, ν)× (S , {−1, 1}Z,B(1/2, 1/2)).


Proof:


ξ : {0, 1}Z × {−1, 1}Z → {−1, 0, 1}Z, ξ(u, v)(n) = u(n)v(n),


ξ is equivariant (we can either shift first or multiply
coordinatewise first),


ξ∗(ν ⊗ B(1/2, 1/2)) = ν̂ (calculation).
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Sketch of the proof of (Ch) ⇒ (S)


Lemma


(S , {−1, 0, 1}Z, ν̂)→ (S , {0, 1}Z, ν) is either trivial (i.e. 1-1 a.e.)
or relatively K.


T → T ′ is relatively K if any intermediate factor has greater
entropy than T ′ (unless it is =T ′)


Proof:
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Sketch of the proof of (Ch) ⇒ (S)


Lemma B


T × S : X × {−1, 0, 1}Z → X × {−1, 0, 1}Z,
x ∈ X completely deterministic, z – quasi-generic for ν̂ along (Nk).
Assume that 1


Nk


∑
n≤Nk


δ(T nx ,Snz) → ρ. Then:


(a) ρ is a joining of (T ,X , κ) and (S , {−1, 0, 1}Z, ν̂) for some
κ ∈ Q-gen(x) with h(T , κ) = 0.


(b) the factors (T ,X , κ) ∨ (S , {0, 1}Z, ν) and (S , {−1, 0, 1}Z, ν̂) are
relatively independent over (S , {0, 1}Z, ν) as factors of
(T × S ,X × {−1, 0, 1}Z, ρ)
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joining: measure invariant under T × S with the “right”
projections onto both coordinates
relative independence:(
L2((X , κ) ∨ ({0, 1}Z, ν))	 L2({0, 1}Z, ν)


)
⊥(


L2({−1, 0, 1}Z, ν̂)	 L2({0, 1}Z, ν)
)


in L2(ρ)
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3 ρ|{−1,0,1}Z = ν̂ since z is quasi-generic along (Nk) for ν̂,


4 by 2 , (T × S ,X × {0, 1}Z, ρ|X×{0,1}Z)→ (S , {0, 1}Z, ν) has rel.
entropy zero,


5 (S , {−1, 0, 1}Z, ν̂)→ (S , {0, 1}Z, ν) is rel. K (previous lemma),


6 by 4 + 5 , we obtain (b). 18 / 20
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Sketch of the proof of (Ch) ⇒ (S)


Ergodic proof of (Ch) ⇒ (S)
(Abdalaoui, KP, Lemańczyk, de la Rue 2013)


1 WLOG 1
Nk


∑
n≤Nk


δ(T nx ,Snz) → ρ.


2 Let F (w) = w(0).


3
1
Nk


∑
n≤Nk


f (T nx)z(n)= 1
Nk


∑
n≤Nk


f (T nx)F (Snz)
1→
∫
f ⊗Fdρ.


4 f = f1 + f2, where f2 := Eρ(f |{0, 1}Z)


5 By 4 , f1 ∈ L2((X , κ) ∨ ({0, 1}Z, ν))	 L2({0, 1}Z, ν)


6 By Lemma A , Eν̂(F |{0, 1}Z) = 0, i.e.
F ∈ L2({−1, 0, 1}Z, ν̂)	 L2({0, 1}Z, ν)


7 By Lemma B ,
(
L2((X , κ) ∨ ({0, 1}Z, ν))	 L2({0, 1}Z, ν)


)
⊥(


L2({−1, 0, 1}Z, ν̂)	 L2({0, 1}Z, ν)
)


in L2(ρ)


8 By 5 , 6 and 7 , f1 ⊥ F in L2(ρ)


9
∫
f ⊗ F dρ =


∫
f1 · F dρ+


∫
f2 · F dρ


=
∫
f1 · F dρ+


∫
f2 · Eν̂(F |{0, 1}Z) dρ = 0 by 8 and 6 .
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General definition


For any integer n, let P+(n) (resp. P−(n)) denotes the greatest (resp.
smallest) prime factor of n.


Definition


Let y ≥ 2. A nonzero integer n is said to be y-friable if it satisfies P+(n) ≤ y.


Abundant bibliography : Norton(1971), Hildebrand and Tenenbaum (1993),
Granville (2008).







Problem description Friable values of X1(X2
1 + X2


2) Friable values of X3
1 + 2X3


2 Outlooks


Asymptotic density of y-friable integers


Let ε > 0, Hε the planar domain defined by


x ≥ 3, exp
(


(log log x)5/3+ε
)
≤ y ≤ x,


and u := log x
log y .


Theorem (Hildebrand (1986))


For any fixed ε > 0 and uniformly for (x, y) ∈ Hε, we have


Ψ(x, y) :=
∣∣{1 ≤ n ≤ x : P+(n) ≤ y


}∣∣
=xρ(u)


(
1 + O


(
log(u + 1)


log y


))
where ρ is the Dickman function, namely the unique continuous solution to
the differential-difference equation{


ρ(u) = 1 if 0 ≤ u ≤ 1,
uρ′(u) + ρ(u− 1) = 0 if u > 1.
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Friable values of general binary forms


Problem


Given a binary form F ∈ Z[X1,X2], what can be said asymptotically about


ΨF(x, y) :=
∣∣{1 ≤ x1, x2 ≤ x : P+(F(x1, x2)) ≤ y


}∣∣ ?


Double motivation :


It is easier to work with elements of Z[X1,X2] rather than Z[X1].


The cardinal ΨF(x, y) plays a key role in the factorisation algorithm
Number Field Sieve for the choice of the parameters (see the book of
Crandall and Pomerance (2005)).
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Previous results (I)


Theorem (Balog, Blomer, Dartyge and Tenenbaum (2012))


Let k ≥ 1 and F1(X1,X2), . . . ,Fk(X1,X2) ∈ Z[X1,X2] be some integral and
irreducible binary forms of degree d1 ≥ · · · ≥ dk. There exists
α(d1, . . . , dk) ∈ [0, d1[ such that, for any fixed α > α(F1, . . . ,Fk) and uniformly
for y ≥ xα, we have


ΨF1...Fk (x, y)�α x2.


More precisely, one can take


α(F1, . . . ,Fk) :=


{
0 if k ≥ 2 and d1 + · · ·+ dk ≤ 3,
e−


1
2 if k = 1 and d1 = 3.


Other results for general polynomials F ∈ Z[X1, . . . ,Xn] :


if n = 1: Dartyge, Martin and Tenenbaum (2001),


if n ≥ 3 and F is absolutely irreducible: Fouvry (2010),
if n = 2 and F is an irreducible quadratic form:


asymptotic equivalent: Moree (1993),
asymptotic expansion: Hanrot, Tenenbaum and Wu (2008).
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Main results


Theorem


Let F1,F2 ∈ Z[X1,X2] be two irreducible binary forms, respectively of degree 1
and 2. For any fixed ε > 0 and uniformly for x ≥ 16 and
exp
(


log x(log3 x)1+ε


log2 x


)
≤ y ≤ x2, we have


ΨF1F2 (x, y) = x2ρ(u)ρ(2u)


(
1 + O


(
1


(log x)1−ε


))
.


Theorem


Let F ∈ Z[X1,X2] be an irreducible binary cubic form. For any fixed ε > 0 and


uniformly for x ≥ 3 and exp
(


log x


(log2 x)
1
2 −ε


)
≤ y ≤ x3, we have


ΨF(x, y) = x2ρ(3u)


(
1 + O


(
1


(log2 x)1−ε


))
.
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Previous results (II)


Theorem (Fouvry and Iwaniec (1997))


There exists C > 0 such that, for any A > 0 and uniformly for x ≥ 2, we have∑
x2


1+x2
2≤x


Λ(x1)Λ(x2
1 + x2


2) = Cx
(


1 + O
(


(log x)−A
))


where Λ denotes the von Mangoldt function.


Theorem (Heath-Brown (2001), Heath-Brown and Moroz (2002))


Let F(X1,X2) ∈ Z[X1,X2] be an irreducible binary cubic form without fixed
divisor. There exists c(F) > 0 and c1, c2 > 0 such that, uniformly for x ≥ 3, we
have ∑


x<x1,x2≤x(1+η)


Λ(F(x1, x2)) = C(F)η2x2 (1 + O
(
(log log x)−c1


))
where η := (log x)−c2 .
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A combinatorial identity (1)


Inclusion-exclusion principle:


ΨX1(X2
1+X2


2)
(x, y) =


∑
d≤2x2


P−(d)>y


µ(d) |Ad(x, y)|


where µ denotes the Möbius function and


Ad(x, y) :=
{


1 ≤ x1, x2 ≤ x : P+(x1) ≤ y and d|x2
1 + x2


2


}
.


By splitting the square [1,X]2 by congruence classes mod d, it suggests to
write


|Ad(x, y)| := x2ρ(u)
γ(d)


d2 + rd(x, y)


where
γ(d) :=


∣∣∣{1 ≤ x1, x2 ≤ d : d|x2
1 + x2


2


}∣∣∣ .
Remark : γ is multiplicative and satisfies


γ(p) = (p− 1)
∣∣∣{1 ≤ x1 ≤ p : x2


1 + 1 ≡ 0 (mod p)
}∣∣∣+ 1.
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Type I estimate


Lemma


For any fixed ε > 0 and uniformly for (x, y) ∈ Hε and 1 ≤ D ≤ x2, we have∑
d≤D


P−(d)>y


|rd(x, y)| � x
7
4 D


1
8 (log x)4.


Lemma directly inspired from Fouvry and Iwaniec (1997) and Friedlander and
Iwaniec (2010).
Main tools :


Well-distribution of the roots of n2 + 1 ≡ 0 (mod d).


A large sieve inequality.
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Use of Type I sums


With the choice D = x2−τ where τ = o(1) is a convenient parameter such that
xτ < y, we remark that∑


d>x2−τ


P−(d)>Y


µ2(d) |Ad(x, y)| �
∑


m≤2xτ
S (x,m, y)


where


S (x,m, y) :=


∣∣∣∣{1 ≤ x1, x2 ≤ x : m|x2
1 + x2


2 and P−
(


x2
1 + x2


2


m


)
> y
}∣∣∣∣ .


Consequently, we get


ΨX1(X2
1+X2


2)
(x, y) =x2ρ(u)


∑
d≤x2−τ


P−(d)>y


µ(d)
γ(d)


d2 + O
(


x2−τ/8(log x)4
)


+ O


(∑
m�xτ


S (x,m, y)


)
.
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A sieve lemma


Selberg sieve :


S (x,m, y)� γ(m)


m2


∏
p|m


(
1 +


γ(p)


p2


)
x2


log y
.


It follows that ∑
m≤2xτ


S (x,m, y)� τux2


and, by Perron’s formula and the inclusion-exclusion principle,


ΨX1(X2
1+X2


2)
(x, y) =x2ρ(u)


∑
d≤x2−τ


P−(d)>y


µ(d)
γ(d)


d2 + O
(


x2−τ/8(log x)4 + τux
)


= C(γ)−1ρ(u)
∑
d≤x2


P+(d)≤y


γ(d)


d
+ O


((
x2−τ/8 + x2y−1


)
(log x)c + τu2x2


)
.


where


C(γ) :=
∏


p


(
1 +


γ(pk)


p2k


)(
1− 1


p


)
> 0.
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Sums of multiplicative functions over friable integers (1)


From the formula


γ(p) = (p− 1)
∣∣∣{1 ≤ x1 ≤ p : x2


1 + 1 ≡ 0 (mod p)
}∣∣∣+ 1,


it follows the decomposition∑
n≥1


γ(n)


ns+1 = ζQ(i)(s)G(s)


where


ζQ(i) is the Dedekind zeta function of Q(i),


G(s) is an Euler product, absolutely convergent for <(s) > 1
2 .


Method of Hanrot, Tenenbaum and Wu (2008) : for any fixed ε > 0 and
uniformly for (x, y) ∈ Hε, we have∑


n≤x
P+(n)≤y


γ(n)


n
= C(γ)xρ(u)


(
1 + O


(
log(u + 1)


log y


))
.


Then, the result follows.
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Main result


Theorem


For any fixed ε > 0, we have, uniformly for x ≥ 3 and


exp
(


log x


(log2 x)
1
2 −ε


)
≤ y ≤ x3,


ΨX3
1+2X3


2
(x, y) = x2ρ(3u)


(
1 + O


(
1


(log2 x)1−ε


))
.
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An intermediate result


Let η := (log x)−c for some sufficiently large c > 0. We consider the set


A := {x < x1, x2 ≤ x(1 + η) : (x1, x2) = 1} .


We show the following theorem


Theorem


For any fixed ε > 0, we have, uniformly for x ≥ 3 and


exp
(


log x


(log2 x)
1
2 −ε


)
≤ y ≤ x3,


Ψ(A, y) : =
∣∣∣{(x1, x2) ∈ A : P+(x3


1 + 2x3
2) ≤ y


}∣∣∣
=


6
π2 η


2x2ρ(3u)


(
1 + O


(
1


(log2 x)1−ε


))
.
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A combinatorial identity (2)


Inclusion-exclusion principle:


Ψ(A, y) =
∑


d≤3x3


P−(d)>y


µ(d) |Ad(x)|


where
Ad(x) :=


{
(x1, x2) ∈ A : d|x3


1 + 2x3
2


}
.


By splitting A by congruence classes mod d, it suggests to write


|Ad(x)| := 6
π2 η


2x2 γ(d)


d2 + rd(x)


where γ is multiplicative and satisfies


γ(pk) =


{ νp
1+p−1 if p - 6 or (p|6 if k = 1) ,


0 otherwise,


where νp denotes the number of roots of the congruence x3
1 + 2 ≡ 0 (mod p).
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Type I estimates


Inspired by ideas of Greaves (1971), Daniel (1999) and Heath-Brown (2001):


Lemma


There exists c > 0 such that, uniformly for x ≥ 2 and D ≤ x2,∑
d≤D


|rd(x)| � x
15
8 D


1
16 (log x)c.


⇒We can only take D� x2/(log x)A for sufficiently large A > 0 : the previous
method fails.
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Heath-Brown’s method (2001):


Let τ, ξ be two parameters such that 0 < ξ < τ = o(1) and xτ < y. We try to
approximate, for x3/2+τ � m� x2−τ and τ ≤ kiξ, the cardinal


S(A; k1, . . . , kn; m) =
∣∣∣{(x1, x2) ∈ A : mp1 . . . pn = x3


1 + 2x3
2 and xkiξ < pi ≤ x(ki+1)ξ


}∣∣∣
by


σ0
η


3x


∑
xkiξ<pi≤x(ki+1)ξ


3x3<mp1...pn≤3x3(1+η)


σ(mp1 . . . pn)


where


σ0 :=
∏


p


(
1− νp − 1


p


)
and σ denotes the multiplicative function which satisfies, for prime p and
k ≥ 1,


σ(pk) :=


{
νp


(
p−1
p+1


)(
1− νp


1+p


)−1
if p - 6 and (p|6 and k = 1) ,


0 if p|6 and k ≥ 2.
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Sketch of proof when n = 1: First step


Approximation of


S(A; k; m) :=
∣∣∣{(x1, x2) ∈ A : mp = x3


1 + 2x3
2 and xkξ < p ≤ x(k+1)ξ


}∣∣∣
by


S1(A; k; m) :=
1]xkξ,x(k+1)ξ]


(
3x3


m


)
kξ log x


∑
(x1,x2)∈A
mq=x3


1+2x3
2


Λ(q).
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Sketch of proof when n = 1: Second step


Standard decomposition: Λ(q) = Λ1(q) + Λ2(q) where


Λ1(q) =
∑


d<xτ/2


d|q


µ(d) log
(


xτ/2


d


)
.


Lemma (Heath-Brown (2001))


For any fixed A > 0, we have, uniformly for x3/2+τ � V � x2−τ ,


∑
V≤m≤2V


∣∣∣∣∣∣∣∣∣
∑


(x1,x2)∈A
mq=x3


1+2x3
2


1]xkξ,x(k+1)ξ]


(
3x3


m


)
Λ2(q)


kξ log x


∣∣∣∣∣∣∣∣∣� x2(log x)−A.


This type II sum is the cornerstone ot the method.


Siegel zero → the implicit constants are non-effective.
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Sketch of proof when n = 1: Third step


∑
mq∈A


∑
d|q


d<xτ/2


µ(d) log
(


xτ/2


d


)
=
∑


d<xτ/2


µ(d) log
(


xτ/2


d


)
|Amd(x)|


∼ 6
π2 η


2x2
∑


d<xτ/2


µ(d) log
(


xτ/2


d


)
γ(md)


(md)2


∼ σ0
σ(m)


m
η2x2


∼ σ0
η


3x
kξ log x


∑
xkξ<p≤x(k+1)ξ


3x3<mp≤3x3(1+η)


σ(mp).


Consequently:


∣∣∣{(x1, x2) ∈ A : mp = x3
1 + 2x3


2 and xkξ < p ≤ x(k+1)ξ
}∣∣∣ ∼ σ0


η


3x


∑
xkξ<p≤x(k+1)ξ


3x3<mp≤3x3(1+η)


σ(mp).
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Application of Heath-Brown’s method


The work to do: Find a combinatoric formula which enables us to use the
previous estimates, namely a decomposition of the shape


Ψ(A, y) =
∑


n


λI(n)
∣∣∣A(I)(n)


∣∣∣+
∑


n


λII(n)
∣∣∣A(II)(n)


∣∣∣+ R(A, y)


where


the cardinal
∣∣∣A(I)(n)


∣∣∣ may be estimates whith type I sums (sieve


methods, Am(x) with m� x2/(log x)c),


A(II)(n) =
{


mp1 . . . pn ∈ A : xkiξ < pi ≤ x(ki+1)ξ,m ∈ C
}


with τ < kiξ and


C ⊂
{


m : X3/2+τ � m� X2−τ
}


convenient,


R(A, y) is negligible.
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Restriction to y < x1/2−ε


From now on, we suppose y < x1/2−ε. We can write


Ψ(A, y) =
∑


n


∣∣∣A(II)(n)
∣∣∣+ R(A, y)


where


A(II)(n) :=


{
(x1, x2) ∈ A :x3


1 + 2x3
2 = mp1 . . . pn,Xτ ≤ pn ≤ · · · ≤ p1 ≤ y,


P+(m) ≤ pn, p1 . . . pn−1 ≤ x1−τ < p1 . . . pn


}
and


R(A, y) :=


∣∣∣∣∣∣∣∣∣
⋃


m>x2−τ


P+(m)>xτ


Am


∣∣∣∣∣∣∣∣∣� x2 exp
(
−cτ−1


)
Tenenbaum(1990).


Partition of A(II)(n) as a union of sets


S(A; k1, . . . , kn; m) =
∣∣∣{(x1, x2) ∈ A : mp1 . . . pn = x3


1 + 2x3
2 and xkiξ < pi ≤ x(ki+1)ξ


}∣∣∣
with x3/2+τ � m� x2−τ and τ ≤ kiξ.
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Sums of multiplicative functions over friable integers (2)


We have
Ψ(A, y) ∼ σ0


η


3x


∑
3x3<m≤3x3(1+η)


P+(m)≤y


σ(m).


Since γ(p) = νp + O (1/p), we have the decomposition∑
n≥1


σ(n)


ns = ζQ(
3√2)(s)G(s)


where


ζQ(
3√2) is the Dedekind zeta function of Q( 3


√
2),


G(s) is an Euler product absolutely convergent for <(s) > 3
4 .


Method of Hanrot, Tenenbaum and Wu:∑
3x3<m≤3x3(1+η)


P+(m)≤y


σ(n) ∼ 18
π2σ0


ηx3ρ(3u).
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Sums of arithmetic functions other values of binary cubic forms


Let F be an irreducible binary cubic form and h be an arithmetic function. We
want to study the mean value


S(h,X; F) :=
∑


1≤x1,x2≤x


h(F(x1, x2)).


Case h = τ : Greaves (1970), Daniel (1999).


Case h = µ : Helfgott.


Case h general : La Bretèche and Browning (2006), La Bretèche and
Tenenbaum (2012).


Our method enable us to give an asymptotic estimate of S(h,X; F) for
bounded h with a ”multiplicative flavour”. As an example, one can take h = µ
or the characteristic function of sieved integers, of nuclear integers, etc.
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Three linear forms


Let F1,F2,F3 ∈ Z[X1,X2] be three linear forms which are indedependant. We
study an asymptotic formula for ΨF1F2F3 (x, y).


If F1 = X1, F2 = X2 and F3 = X1 + X2, we know an asymptotic expansion


in the domain exp
(


(log x)1/2+ε
)
≤ y ≤ x : La Bretèche and Granville,


Drappeau (2013),


under (GRH) and in the domain (log x)8+ε ≤ y ≤ x : Lagarias and
Soundararajan (2012), Drappeau (2013).
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Thank you for your attention.
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The Möbius function


Möbius function µ : N→ {−1, 0, 1}


µ(n) =



(−1)k , if n is a product of k distinct primes,


1, if n = 1,


0, otherwise.


Prime number theorem (PNT) ⇐⇒ 1
N


∑
n≤N µ(n)→ 0


when N →∞.


µ(m · n) = µ(m) · µ(n) whenever (m, n) = 1 (µ is a
multiplicative function).
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Möbius function µ : N→ {−1, 0, 1}


µ(n) =



(−1)k , if n is a product of k distinct primes,


1, if n = 1,


0, otherwise.


Prime number theorem (PNT) ⇐⇒ 1
N


∑
n≤N µ(n)→ 0


when N →∞.


µ(m · n) = µ(m) · µ(n) whenever (m, n) = 1 (µ is a
multiplicative function).


3 / 33







The Möbius function
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Sarnak’s conjecture


Sarnak’s conjecture (2010)


X - compact metric space, T : X → X homeomorphism of zero
topological entropy, x ∈ X , g ∈ C (X ). Then∑


n≤N
g(T nx)µ(n) = o(N). (1)


Whenever (1) is true for some T for all x ∈ X and all g ∈ C (X ),
we say that Sarnak’s conjecture holds for T or that T is disjoint
from (or orthogonal to) the Möbius function. (The sequence
(g(T nx)) is deterministic.)
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Sarnak’s conjecture – examples


1-point dynamical system (PNT)
J. Hadamard, 1896, Ch. J. de la Vallée-Poussin, 1896


rational rotations (PNT in arithmetic progressions)
irrational rotations – H. Davenport, 1937


horocycle flows – J. Bourgain, P. Sarnak, and T. Ziegler, 2011


nilsystems – B. Green, T. Tao, 2012
large subclass of rank one maps – J. Bourgain, 2011 (bounded
constructions), H. Abdalaoui, M. Lemańczyk, and T. de la Rue, 2012
(recurrent constructions)
SOME systems generated by generalized Morse sequences – K.-H.
Indlekofer, I. Katai, 2001, C. Dartyge, G. Tenenbaum, 2005, C. Mauduit,
J. Rivat, 2010, B. Green, 2012, J. Bourgain, 2013
Rudin-Shapiro sequences – C. Mauduit, J. Rivat, 2013
some distal systems – J. Liu, P. Sarnak, 2013 (including ALL zero entropy
affine systems), J. Ku laga-Przymus, M. Lemańczyk, 2013 (+ so called
Rokhlin extensions).
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Rokhlin extensions).


6 / 33







Sarnak’s conjecture – examples


1-point dynamical system (PNT)
J. Hadamard, 1896, Ch. J. de la Vallée-Poussin, 1896


rational rotations (PNT in arithmetic progressions)
irrational rotations – H. Davenport, 1937


horocycle flows – J. Bourgain, P. Sarnak, and T. Ziegler, 2011


nilsystems – B. Green, T. Tao, 2012
large subclass of rank one maps – J. Bourgain, 2011 (bounded
constructions), H. Abdalaoui, M. Lemańczyk, and T. de la Rue, 2012
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Rokhlin extensions).


6 / 33







Sarnak’s conjecture – generalized Morse sequences


Definition (Keane 1968)


x ∈ {0, 1}N is called a generalized Morse sequence if
x = b0 × b1 × . . . with bi ∈ {0, 1}pi , pi ≥ 2, bi (0) = 0, i ≥ 0.


Given blocks B ∈ {0, 1}k and C = C(0)C(1) . . .C(`− 1) ∈ {0, 1}`, we set


B × C = BC(0)BC(1) . . .BC(`−1) with B0 = B and B1 arises from B by the


interchange of 0s and 1s.


Definition of the corresponding subshift


X = O(x) ⊂ {0, 1}Z the subset of all two-sided sequences such
that each block of consecutive symbols appearing in y ∈ O(x) also
appears in x .


T : {0, 1}Z → {0, 1}Z-the shift, i.e. the homeomorphism that shifts a two-sided


sequence of 0s and 1s by one position to the left; O(x) - closed and


T -invariant. Under some mild assumptions on the blocks b0, b1, . . . (Keane


1968), one obtains a strictly ergodic dynamical system (X , µx ,T ), where µx is
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Sarnak’s conjecture for the zero-coordinate function–
Kakutani sequences


Definition


x = b0 × b1 × . . . - Kakutani sequence if |bi | = 2, i ≥ 0 (either
bi = 01 or bi = 00).


Sarnak’s conjecture: only zero-coordinate function


(A)
1


N


∑
n≤N


(−1)x(n)µ(n)→ 0


stronger form:


(B)
1


N


∑
n≤N


(−1)y(n)µ(n)→ 0 for all y ∈ O(x).


Consider f ∈ C (O(x)), f (z) := (−1)z(0) (and substitute z = y for
(B); for (A) use the fact that x has an extension to a two-sided
sequence in O(x)).
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Sarnak’s conjecture for Kakutani sequences


(A) for Kakutani sequences


(A) 1/N
∑
n≤N


(−1)x(n)µ(n)→ 0


x = 01× 01× . . .: Katai 1986, Indlekofer-Katai 2001,
Dartyge-Tenenbaum 2005 (+speed of convergence),
Mauduit-Rivat 2010 (+PNT).
Green 2012: 1


N


∑N
n=1(−1)sE (n)µ(n)→ 0; here E ⊂ N is fixed


(for E : |E ∩ [1,N]| = o(
√
N)) and sE (n) :=


∑
i∈E ni , where


n =
∑∞


i=0 ni2
i (ni ∈ {0, 1}). To see a relationship with


Kakutani sequences define a Kakutani sequence
x = b0 × b1 × . . . with bn = 01 iff n + 1 ∈ E ; it is now not
hard to see that sE (n) = x(n) mod 2.
Bourgain 2013: using the methods of Mauduit-Rivat 2010,
completed the result for the remaining E ⊂ N.
Bourgain 2013, Green 2012: + PNT.
It can be proved that (B) also holds.
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Sarnak’s conjecture for Kakutani sequences


Sarnak’s conjecture


X - compact metric space, T : X → X homeomorphism of zero topological entropy,
x ∈ X , g ∈ C(X ). Then 1


N


∑
n≤N g(T nx)µ(n)→ 0.


We need to show only for g in a LINEARLY dense subset of C(X ).


X = O(x), x-Kakutani sequence; functions depending on finitely many
coordinates give a dense subset of C(X ); if we fix the number of
coordinates, the relevant space is finite dimensional, then Sarnak’s
conjecture holds iff


1


N


∑
n≤N


1B(T ny)µ(n)→ 0


for each block B ∈ {0, 1}k , k ≥ 1, y ∈ O(x) (1B(z) = 1 if
(z(0), . . . , z(k − 1)) = B and 0 otherwise). For example,
(−1)y(0) = 10(y)− 11(y) and


(−1)y(0)+y(1) = 100(y) + 111(y)− 101(y)− 110(y).
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Plan


1 The Möbius function


2 Sarnak’s conjecture


3 Katai-Bourgain-Sarnak-Ziegler (KBSZ) criterion
Criterion
Ergodic theory and KBSZ criterion


4 Morse sequences and Sarnak’s conjecture


5 Toeplitz sequences and Sarnak’s conjecture
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Orthogonality criterion - numeric case


Katai 1986 (exponential sums with multiplicative coefficients),
Bourgain-Sarnak-Ziegler 2011 (KBSZ)


F : N→ C – a bounded sequence,
∑


n≤N F (rn)F (sn) = o(N) for
any sufficiently large primes r 6= s. Then∑


n≤N
F (n)ν(n) = o(N) (2)


for any multiplicative function ν with |ν| ≤ 1.


Given a homeomorphism T : X → X , we consider


F (n) = g(T nx) for n ∈ N,


x ∈ X and g ∈ C (X ).
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Orthogonality criterion for Sarnak’s conjecture


A uniquely ergodic homeomorphism T of a compact metric space
X is said to have M-disjoint powers if there exists a linearly dense
set (zero mean) of g ∈ C (X ) such that for each x ∈ X we have∑N


n=1 g(T rnx)g(T snx) = o(N).


for sufficiently large distinct prime numbers r , s (“sufficiently large”
depends on g and x(!)). From the (numerical) KBSZ criterion it
follows that


∑N
n=1 g(T rnx)g(T snx) = o(N) (for sufficiently large


distinct primes r , s) ⇒
∑N


n=1 g(T nx)µ(n) = o(N).


KBSZ criterion for homeomorphisms


M-disjointness of powers of T ⇒ Sarnak’s conjecture holds for T


The proof follows from the fact that if
∑N


n=1 g(T nx)µ(n) = o(N) for a
linearly dense set of g ∈ C(X ) then it holds for ALL g ∈ X .


Warning: The assumptions of the KBSZ criterion are satisfied for a
LINEARLY DENSE set of functions; they ARE FAR from being satisfied
for ALL continuous functions (already seen for irrational rotations).
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Ergodic vocabulary


Disjointness (Furstenberg, 1967)


Two automorphisms T on (X ,B, µ) and S on (Y , C, ν) are said to
be disjoint if the only T × S-invariant measure ρ whose projections
on X and Y are µ and ν respectively (ρ is a joining of T and S) is
equal to µ⊗ ν. We write then T1 ⊥ T2.


If T ∈ Aut(X ,B, µ), then on L2(X ,B, µ): UT f = f ◦ T . By σUT


we denote the maximal spectral type of UT on L2
0(X ,B, µ)


(recalling that it is the type of any maximal spectral measure
σf ,UT


: σ̂f ,UT
(n) =


∫
X f ◦ T n · f dµ for each n ∈ Z; σg ,UT


� σf ,UT


for every g ∈ L2
0(X ,B, µ)).


Definition of spectral disjointness


T1 i T2 are called spectrally disjoint, if σUT1
⊥ σUT2


. We write
then T1 ⊥sp T2.
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Collecting...


Corollary (Bourgain-Sarnak-Ziegler, 2011)


For a uniquely ergodic system (T ,X , µ):


T r ⊥sp T s for every r 6= s ∈ P ⇒
T r ⊥ T s for every r 6= s ∈ P ⇒
T has M-disjoint powers ⇒
Sarnak’s conjecture holds.
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Topological models - advantage of Furstenberg’s
disjointness


T ∈ Aut(X ,B, µ) - a measure-theoretic system; S a uniquely
ergodic homeomorphism of a compact metric space Y : with
(S ,Y , C, ν) – the corresponding measure-theoretic system.
(S ,Y , C, ν) is called a topological model of T if there exists a
measure-theoretic isomorphism θ : (X ,B, µ)→ (Y , C, ν),
θ ◦ T = S ◦ θ (θ need not be continuous(!)).


Corollary


If for a MEASURE-THEORETIC system T ∈ Aut(X ,B, µ) we
have Furstenberg’s disjointness of different prime powers, then in
each uniquely ergodic model (S ,Y , C, ν) of the automorphism T ,
Sarnak’s conjecture holds.


Example: (not easy) If T is the Chacon subshift obtained from the substitution


0 7→ 0010, 1 7→ 1


then T is uniquely ergodic, has disjoint powers, whence Sarnak’s conjecture
holds in every topological model of T .
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Sarnak’s conjecture for an irrational rotation


Tx = x + α on X = [0, 1) (modulo 1), α /∈ Q.


The powers of T are NOT disjoint in Furstenberg’s sense;
indeed, T r and T s have T rs as their common factor(!).


T has M-disjoint powers; Indeed, we check KBSZ criterion: if
χ(x) = e2πikx (k ∈ Z), then (by the Weyl criterion)


1


N


N∑
n=1


χ(T rnx)χ(T snx) =
1


N


N∑
n=1


χ(x + rnα)χ(x + snα) =


=
1


N


N∑
n=1


(
χ(α)rχ(α)


s
)n


=
1


N


N∑
n=1


e2πink(r−s)α → 0.


For trigonometric polynomials the same works for r , s sufficiently large;
KBSZ criterion does not work for an arbitrary zero mean g ∈ C(T).


It is unknown whether Sarnak’s conjecture holds in every topological
model of T .
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n=1


e2πink(r−s)α → 0.


For trigonometric polynomials the same works for r , s sufficiently large;
KBSZ criterion does not work for an arbitrary zero mean g ∈ C(T).


It is unknown whether Sarnak’s conjecture holds in every topological
model of T .
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Odometer and Sarnak’s conjecture


H = {0, 1}N with addition modulo 2 with carrying the remainder
to the right (compact metric Abelian topological group):


Rx = x + (1, 0, 0, . . .).


Corollary


R is uniquely ergodic and Sarnak’s conjecture holds for it.


The unique invariant measure is Haar measure mH .


R has a natural structure of inverse limit of (finite) cyclic
systems; Sarnak’s conjecture follows from this fact.


R r and Rs (3 ≤ r 6= s ∈ P) are ISOMORPHIC; moreover, R
HAS NO M-disjoint powers(!).


It is unknown whether Sarnak’s conjecture holds in every
topological model of R.


18 / 33







Odometer and Sarnak’s conjecture


H = {0, 1}N with addition modulo 2 with carrying the remainder
to the right (compact metric Abelian topological group):


Rx = x + (1, 0, 0, . . .).


Corollary


R is uniquely ergodic and Sarnak’s conjecture holds for it.


The unique invariant measure is Haar measure mH .


R has a natural structure of inverse limit of (finite) cyclic
systems; Sarnak’s conjecture follows from this fact.


R r and Rs (3 ≤ r 6= s ∈ P) are ISOMORPHIC; moreover, R
HAS NO M-disjoint powers(!).


It is unknown whether Sarnak’s conjecture holds in every
topological model of R.


18 / 33







Odometer and Sarnak’s conjecture


H = {0, 1}N with addition modulo 2 with carrying the remainder
to the right (compact metric Abelian topological group):


Rx = x + (1, 0, 0, . . .).


Corollary


R is uniquely ergodic and Sarnak’s conjecture holds for it.


The unique invariant measure is Haar measure mH .


R has a natural structure of inverse limit of (finite) cyclic
systems; Sarnak’s conjecture follows from this fact.


R r and Rs (3 ≤ r 6= s ∈ P) are ISOMORPHIC; moreover, R
HAS NO M-disjoint powers(!).


It is unknown whether Sarnak’s conjecture holds in every
topological model of R.


18 / 33







Odometer and Sarnak’s conjecture


H = {0, 1}N with addition modulo 2 with carrying the remainder
to the right (compact metric Abelian topological group):


Rx = x + (1, 0, 0, . . .).


Corollary


R is uniquely ergodic and Sarnak’s conjecture holds for it.


The unique invariant measure is Haar measure mH .


R has a natural structure of inverse limit of (finite) cyclic
systems; Sarnak’s conjecture follows from this fact.


R r and Rs (3 ≤ r 6= s ∈ P) are ISOMORPHIC; moreover, R
HAS NO M-disjoint powers(!).


It is unknown whether Sarnak’s conjecture holds in every
topological model of R.


18 / 33







Odometer and Sarnak’s conjecture


H = {0, 1}N with addition modulo 2 with carrying the remainder
to the right (compact metric Abelian topological group):


Rx = x + (1, 0, 0, . . .).


Corollary


R is uniquely ergodic and Sarnak’s conjecture holds for it.


The unique invariant measure is Haar measure mH .


R has a natural structure of inverse limit of (finite) cyclic
systems; Sarnak’s conjecture follows from this fact.


R r and Rs (3 ≤ r 6= s ∈ P) are ISOMORPHIC; moreover, R
HAS NO M-disjoint powers(!).


It is unknown whether Sarnak’s conjecture holds in every
topological model of R.


18 / 33







2-point extensions of the odometer


Recall: H = {0, 1}N, Rx = x + (1, 0, 0, . . .). Let
ϕ : H → Z/2Z =: Z2 = {0, 1} – measurable (cocycle):


Rϕ : H × Z2 → H × Z2, Rϕ(x , i) = (Rx , ϕ(x) + i).


Basic spectral analysis:


L2(H ×Z2,mH ⊗mZ2) = (L2(H,mH)⊗ 1)⊕ (L2(H,mH)⊗ χ)
with χ(i) = (−1)i .


σ̂χ,UHϕ
(k) =


∫
H(−1)ϕ


(k)
dmH , where


ϕ(k)(x) = ϕ(x) + ϕ(Rx) + . . .+ ϕ(Rk−1x) for k ≥ 1.


σURϕ
= σUR


+ σχ,UHϕ
∗ σUR


, where σUR
is a discrete measure


whose atoms are all roots of unity of degree 2k , k ≥ 0.
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More spectral analysis


Given r ≥ 1 and a finite (positive, Borel) measure on S1, by σ(r) we denote the
image of σ via the map z 7→ z r .


Proposition


Assume that r1 6= r2 and for some t ∈ N we have∫
H


(−1)ϕ
(rj t2n)


dmH → cj .


Then U
rj t2n


Rϕ
goes weakly to cj · Id on the subspace L2(H,mH)⊗χ. In particular,


if c1 6= c2 then σ
(r1)
χ,UTϕ


⊥ σ(r2)
χ,UTϕ


. If additionally, |c1| 6= |c2| then


σ
(r1)
UTϕ
⊥ σ(r2)


UTϕ
on L2(H,mH)⊗ χ.


What to do with this approach in the context of Sarnak’s conjecture?


For Rϕ we “loose” the inverse limit structure of the odometer (which
gave Sarnak’s conjecture for R).


Rϕ has no global disjointness properties for powers (as R has not at all).


The above proposition suggests SOME spectral disjointness which may
help.
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Sarnak’s conjecture for a function - spectral approach


Proposition


Assume (T ,X ,B, µ) is a uniquely ergodic homeomorphism and let


f ∈ C (X ) such that σ
(r)
f ,UT
⊥ σ(s)


f ,UT
, for r 6= s ∈ P sufficiently


large. Then
∑


n≤N f (T nx)µ(n) = o(N) for each x ∈ X .


Suppose that 1
Nk


∑Nk
n=1 δT rnx ⊗ δT snx → ρ, where ρ is a probability measure


on X × X . Then this measure is T r × T s -invariant, in fact, ρ is a joining
of T r and T s .


We now claim that
∫
X×X


f (y)f (z) dρ(y , z) = 0 whenever
∫
X
f dµ = 0.


To see this, note first that σ
(r)
f ,UT


= σf ,UTr . Then write f ⊗ f as the
product of f ⊗ 1 and 1⊗ f . Then


σf⊗1,U(Tr×Ts ,ρ)
= σf ,U(Tr ,µ)


and σ1⊗f ,U(Tr×Ts ,ρ)
= σf ,U(Ts ,µ)


.


By our assumption, σf ,U(Tr ,µ)
and σf ,U(Ts ,µ)


are mutually singular, so f ⊗ 1


and 1⊗ f are orthogonal as members of L2(X × X , ρ), and∫
X×X


f ⊗ f dρ = 0.
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Plan


1 The Möbius function


2 Sarnak’s conjecture


3 Katai-Bourgain-Sarnak-Ziegler (KBSZ) criterion


4 Morse sequences and Sarnak’s conjecture
Thue-Morse sequence and a skew product representation
Fourier transform of the spectral measure of the Thue-Morse
sequence. Orthogonality of powers on the continuous part of
the spectrum


5 Toeplitz sequences and Sarnak’s conjecture
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Spectral properties of Thue-Morse dynamical system


x = 01× 01× . . . = 01101001 . . . - Thue-Morse sequence;
(T ,O(x), µx) - the corresponding dynamical system (uniquely
ergodic).


f : O(x)→ R, f (y) := (−1)y(0) is continuous and


σ̂f ,UT (m) =


∫
O(x)


(−1)y(m)−y(0) dµx(y), m ∈ Z.


(T ,O(x), µx) has a representation as (Rϕ,H × Z2,mH ⊗mZ2 ) for some
ϕ : H → Z2 so that f corresponds to χ(h, i) = (−1)i and


σ̂f ,UT (m) =


∫
H


(−1)ϕ
(m)(y) dmH(y), m ∈ Z.


Since mn := (−1)x(n) is 2-multiplicative (ma2n+b = ma ·mb for b < 2n),
for each k ∈ Z, the sequence ( 1


N


∑
n≤N mn+k ·mn) is convergent, and its


limit is exactly σ̂f ,UT (k).


σ̂f ,UT (k2n) = σ̂f ,UT (k) (σf ,UT is invariant under z 7→ z2).
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Odd and even functions


Denote by τ : O(x)→ O(x), τ(y) = ỹ (interchange of 0s and 1s).
Then T ◦ τ = τ ◦ T .
A function f : O(x)→ R is called odd (even) if f ◦ τ = −f
(f ◦ τ = f )


Each function f has a (unique) representation f = fo + fe
(fo := 1


2 (f − f ◦ τ)). If f is continuous, so are fo , fe .


Odd functions from L2(O(x), µx) correspond to
L2(H,mH)⊗ χ. The function f (y) = (−1)y(0) is odd.


Even functions from L2(O(x), µx) correspond to
L2(H,mH)⊗ 1. The function y 7→ (−1)y(0)+y(1) is an
example of an even function.
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Fourier transform and spectral disjointness


Denote σ = σf ,UT
. Then


σ̂(0) = 1, σ̂(1) = −1
3 , σ̂(2n) = σ̂(n),


σ̂(2n + 1) = −1
2 (σ̂(n) + σ̂(n + 1)) for n ≥ 1.


Proposition (Abadaluoi, Kasjan, L., 2013)


Assume that max{r/s, s/r} /∈ {2a : a ∈ N}. Then there exists
t ≥ 1 such that |σ̂(tr)| 6= |σ̂(ts)|.


σ(r) ⊥ σ(s) if and only if max{r/s, s/r} /∈ {2a : a ∈ N}. Moreover,
σ(r) = σ(2ar) for each pair of integers a, r ≥ 0.


For each odd function g ∈ L2(O(x), µx), σ
(r)
g,UT
⊥ σ(s)


g,UT
for each odd


numbers r 6= s which are relatively prime.


Sarnak’s conjecture holds for any odd g ∈ C(O(x)):
1
N


∑
n≤N g(T ny)µ(n)→ 0 for each y ∈ O(x). In particular,


1
N


∑
n≤N(−1)y(n)µ(n)→ 0.


How to cope with EVEN continuous functions?
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From Morse to Toeplitz sequences


Construction of a 0,1-valued one sided sequence:
Step 1: z(0) = z(2) = . . . = z(2n) = . . . = 1 and leave odd places
undefined.
Step 2: z(1) = z(5) = . . . = z(4n + 1) = . . . = 0, that is, we fill
every second unfilled place by putting 0 here; etc.
(Garcia-Hedlund’s sequence, 1948).


z(n) = x(n) + x(n + 1) (modulo 2), n ≥ 0.


y 7→ y̌ , y̌(n) := y(n) + y(n + 1) is a surjective equivariant map from
O(x)→ O(z); τ̌y = y̌ .


(T ,O(z), µz) is uniquely ergodic. (T ,O(x), µx) is a 2-point extension of
(T ,O(z), µz).


(R,H) is a topological factor of (T ,O(z)) (so called almost 1-1
extension); the measure-theoretic dynamical systems (T ,O(z), µz) and
(R,H,mH) are measure-theoretically isomorphic.


z is a (regular) Toeplitz sequence.


The subspace of continuous even functions in C(O(x)) has a natural
identification with C(O(z)).


Sarnak’s conjecture for Toeplitz systems?
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Plan


1 The Möbius function


2 Sarnak’s conjecture


3 Katai-Bourgain-Sarnak-Ziegler (KBSZ) criterion


4 Morse sequences and Sarnak’s conjecture


5 Toeplitz sequences and Sarnak’s conjecture
A stability conjecture for Sarnak’s conjecture - basic lemma
Sarnak’s conjecture for regular Toeplitz sequences
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Basic lemma on lifting Sarnak’s conjecture


Assume that R is an ergodic automorphism of (Z ,D, κ). R is called coalescent
(Hahn-Parry, 1968) if each endomorphism W of (Z ,D, κ) commuting with R is
invertible.


Lemma (Downarowicz-L., 2013)


Assume that an ergodic automorphism R is coalescent. Let T̃ ,T (acting on


X̃ ,X , respectively) be topological models of R. Assume that T is a topological


factor of T̃ , i.e. there exists π : X̃ → X which is continuous and onto and
which satisfies π ◦ T̃ = T ◦ π. If T satisfies Sarnak’s conjecture then also T̃
satisfies it.


The odometer (R,H) is coalescent (such are all ergodic rotations).


Applying the above lemma to T = (R,H) = odometer and


T̃ = (T ,O(z)), we obtain that (T ,O(z)) satisfies Sarnak’s conjecture.


The dynamical system (T ,O(x)) given by the Thue-Morse sequence
satisfies Sarnak’s conjecture.


What about other generalized Morse sequences, Toeplitz sequences?
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Toeplitz sequences


A = {0, . . . , d − 1}, for some d ≥ 2.


Definition (Jacobs, Keane (1969))


z ∈ AN is called a Toeplitz sequence if for each n ≥ 0 there is
an ≥ 1 such that z(n) = z(n + an) = z(n + 2an) = . . .


There is an increasing sequence (pn), pn|pn+1 such that for each n ≥ 1,
z = CnCn . . . with Cn being a block over the alphabet A ∪ {?}, where the
sign “?” means an “unfilled” place (at the nth step of the construction of
z) and |Cn| = pn, n ≥ 1.


A Toeplitz sequence z is called regular if


(the number of unfilled places in Cn)/pn → 0 when n→∞.


Garcia-Hedlund’s sequence is regular; Cn = 101110 . . . 1︸ ︷︷ ︸
2n−1


?.


The dynamical system generated by a regular Toeplitz sequence is
uniquely ergodic and has zero entropy.


Whenever z is a regular Toeplitz sequence, it is measure-theoretically
isomorphic to its maximal equicontinuous factor (the (pn)-odometer).
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Sarnak’s conjecture for regular Toeplitz sequences


Lemma


If T̃ ,T are topological models of a coalescent R and T is a topological factor of T̃
then T̃ satisfies Sarnak’s conjecture whenever T does it.


All odometers are uniquely ergodic and coalescent. They satisfy Sarnak’s
conjecture.


Whenever z is a regular Toeplitz sequence, it is measure-theoretically isomorphic
its maximal equicontinuous factor which the (pn)-odometer.


Proposition


Let z be any regular Toeplitz sequence. Then the dynamical
systems (T ,O(z)) determined by z satisfies Sarnak’s conjecture.


There are non-regular Toeplitz sequences for which Sarnak’s conjecture
holds (Downarowicz, Kasjan 2013).


Is Sarnak’s conjecture true for ALL Toeplitz sequences (regardless the
entropy)?
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Sarnak’s conjecture for Thue-Morse type sequences


Definition


z ∈ {0, 1}N is called a generalized Morse sequence if z = b0 × b1 × . . . with
bi ∈ {0, 1}pi , pi ≥ 2, bi (0) = 0, i ≥ 0.


ž(n) = z(n) + z(n + 1) (modulo 2) – Toeplitz sequence associated to z.


ž = CnCn . . . with Cn = ab . . . c︸ ︷︷ ︸
p0p1...pn−1


? (in particular, ž is regular).


Definition


We say that a generalized Morse sequence z = b0 × b1 × . . . has a stabilizing
Thue-Morse subsequence if there is a subsequence k1 < k2 < . . . such that for
each K ≥ 1, (bki , bki+1, . . . , bki+K−1) = (01, 01, . . . , 01) dla i ≥ iK .


01× b1 × . . .× b`1 × 01× 01× b`1+3 × . . .× b`2 × 01× 01× 01× b`2+4 × . . .
with |bs | ARBITRARY


Theorem (Abdalauoi, Kasjan, L. 2013)


Sarnak’s conjecture holds for all generalized Morse sequences having a
stabilizing Thue-Morse subsequence.
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ž = CnCn . . . with Cn = ab . . . c︸ ︷︷ ︸
p0p1...pn−1


? (in particular, ž is regular).


Definition


We say that a generalized Morse sequence z = b0 × b1 × . . . has a stabilizing
Thue-Morse subsequence if there is a subsequence k1 < k2 < . . . such that for
each K ≥ 1, (bki , bki+1, . . . , bki+K−1) = (01, 01, . . . , 01) dla i ≥ iK .


01× b1 × . . .× b`1 × 01× 01× b`1+3 × . . .× b`2 × 01× 01× 01× b`2+4 × . . .
with |bs | ARBITRARY


Theorem (Abdalauoi, Kasjan, L. 2013)


Sarnak’s conjecture holds for all generalized Morse sequences having a
stabilizing Thue-Morse subsequence.


31 / 33







Kakutani sequences satisfying Sarnak’s conjecture


Let E ⊂ N. Set
sE (n) :=


∑
i∈E


ni ,


where n =
∑∞


i=0 ni2
i (ni ∈ {0, 1}).


Recall: Green 2012, Bourgain 2013: 1
N


∑N
n=1(−1)sE (n)µ(n)→ 0.


Corollary (Abdalauoi, Kasjan, L. (2013))


The dynamical systems (T ,O(sE )) satisfies Sarnak’s conjecture
whenever E contains arbitrarily long intervals of (consecutive)
integers.
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Does every Toeplitz sequence satisfy Sarnak’s conjecture?


Let (an)n∈N ⊂ N, an|an+1 and ρ :=
∞∑
n=1


1
an
≤ 1


4 . For instance,


an = 5n.


Proposition (Abdalaoui, Kasjan, L. (2013))


The Toeplitz dynamical system (T ,O(z)) does not satisfy Sarnak’s conjecture.
In fact, lim inf


N→∞
1
N


∑
n≤N z(n)µ(n) ≥ 6


π2 − 2ρ > 0.


The entropy of the system is positive (J. Cassaigne (unpublished),
Downarowicz, Kasjan, 2013, Abdalaoui, Ku laga-Przymus, L., de la Rue, 2013).
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Uniform distribution


Let U = {un}n≥1 be a sequence of elements in T = R/Z. For 0 ≤ α ≤ 1
we set


Z (N;α) = #{1 ≤ n ≤ N : 0 ≤ un ≤ α (mod 1)}.


We call U uniformly distributed if


lim
N→∞


1


N
Z (N;α) = α


for all 0 ≤ α ≤ 1. As a quantitative measure we define the
star-discrepancy D∗(N) of U as


D∗(N) = sup
α∈[0,1]


|Z (N;α)− Nα| .
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Weyl’s criterion


Theorem (Weyl’s criterion (1916))


The following expressions are equivalent :


1 The sequence U = {un}n≥1 is uniformly distributed.


2 D∗(N) = o(N) for N →∞.


3 If f is properly Riemann-integrable on T, then


lim
N→∞


1


N


N∑
n=1


f (un) =


∫
T


f (α)dα.


4 For 0 6= k ∈ Z we have


lim
N→∞


1


N


N∑
n=1


e(kun) = 0.
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Weyl’s theorem


Theorem (Weyl (1916))


Let P ∈ R[x ] be a polynomial of degree at least 1. The sequence
{P(n)}n≥1 is uniformly distributed if and only if at least one of the
coefficients of the polynomial P(x)− P(0) is irrational.
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Weyl’s proof


∣∣∣∣∣
N∑


n=1


e (kP(n))


∣∣∣∣∣
2


=
N∑


m=1


N∑
n=1


e (k(P(m)− P(n)))


=
N∑


n=1


N−n∑
h=1−n


e (k(P(n + h)− P(n)))


=
N−1∑


h=−N+1


∑
1≤n≤N


1−h≤n≤N−h


e (k(P(n + h)− P(n)))


= N + 2<
N−1∑
h=1


N−h∑
n=1


e (k(P(n + h)− P(n))) .
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Lemma of van der Corput


∣∣∣∣∣
N∑


n=1


e (kP(n))


∣∣∣∣∣
2


= N + 2<
N−1∑
h=1


N−h∑
n=1


e (k(P(n + h)− P(n))) .


Lemma (van der Corput (1931))


Let H be a positive integers. Then for any complex numbers y1, . . . , yN we
have∣∣∣∣∣


N∑
n=1


yn


∣∣∣∣∣
2


≤ N + H


H + 1


N∑
n=1


|yn|2 +
2(N + H)


H + 1


H∑
h=1


(
1− h


H + 1


) ∣∣∣∣∣
N−h∑
n=1


yn+hyn


∣∣∣∣∣ .
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Parameter β2


∣∣∣∣∣
N∑


n=1


yn


∣∣∣∣∣
2


≤ N + H


H + 1


N∑
n=1


|yn|2 +
2(N + H)


H + 1


H∑
h=1


(
1− h


H + 1


) ∣∣∣∣∣
N−h∑
n=1


yn+hyn


∣∣∣∣∣ .
Let Y2 be the set of all sequences {yn} such that


lim sup
N→∞


1


N


∞∑
n=1


|yn|2 ≤ 1 (1)


and


N∑
n=1


yn+hyn = o(N) (2)


for N →∞, whenever h ∈ H. We set


β2 = sup
{yn}∈Y2


lim sup
N→∞


1


N


∣∣∣∣∣
N∑


n=1


yn


∣∣∣∣∣ . (3)
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Parameter β∞


∣∣∣∣∣
N∑


n=1


yn


∣∣∣∣∣
2


≤ N + H


H + 1


N∑
n=1


|yn|2 +
2(N + H)


H + 1


H∑
h=1


(
1− h


H + 1


) ∣∣∣∣∣
N−h∑
n=1


yn+hyn


∣∣∣∣∣ .
Let Y∞ be the set of all sequences {yn} such that |yn| ≤ 1 and


N∑
n=1


yn+hyn = o(N)


for N →∞, whenever h ∈ H. We set


β∞ = sup
{yn}∈Y∞


lim sup
N→∞


1


N


∣∣∣∣∣
N∑


n=1


yn


∣∣∣∣∣ . (4)
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Theorem of van der Corput


∣∣∣∣∣
N∑


n=1


yn


∣∣∣∣∣
2


≤ N + H


H + 1


N∑
n=1


|yn|2 +
2(N + H)


H + 1


H∑
h=1


(
1− h


H + 1


) ∣∣∣∣∣
N−h∑
n=1


yn+hyn


∣∣∣∣∣ .
Theorem (van der Corput (1931))


If for every h ∈ N∗ the sequence {un+h − un} is uniformly distributed, then
also the sequence {un} is uniformly distributed.
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Parameter α


Definition


We call a set H ⊂ N∗ a van der Corput set, if the sequence {un} is
uniformly distributed, whenever the sequences {un+h − un} are uniformly
distributed for all h ∈ H.


Theorem (van der Corput (1931))


N∗ is a van der Corput set.


Let U = U(H) be the collection of all sequences {un} such that
{un+h − un} is uniformly distributed for all h ∈ H. We set


α = sup
{un}∈U


lim sup
N→∞


1


N
D∗(N). (5)
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Equivalences


Theorem (Ruzsa (1984))


Let H be a set of positive integers and let α, β2 and β∞ be defined as in
(5), (3) and (4) respectively. Then


β2
2 ≤ β∞ ≤ β2 and β∞ ≤ α ≤ β∞ log(2/β∞).
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Generalization of van der Corput’s Lemma


∣∣∣∣∣
N∑


n=1


yn


∣∣∣∣∣
2


≤ N + H


H + 1


N∑
n=1


|yn|2 +
2(N + H)


H + 1


H∑
h=1


(
1− h


H + 1


) ∣∣∣∣∣
N−h∑
n=1


yn+hyn


∣∣∣∣∣ .
Lemma


Suppose that


T (x) = a0 +
H∑


h=1


ah cos(2πhx),


such that T (x) ≥ 0 and T (0) = 1. The for any complex numbers
y1, . . . , yN∣∣∣∣∣


N∑
n=1


yn


∣∣∣∣∣
2


≤ (N + H)


(
a0


N∑
n=1


|yn|2 +
H∑


h=1


|ah|


∣∣∣∣∣
N−h∑
n=1


yn+hyn


∣∣∣∣∣
)
.
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Parameter δ


Let T = T (H) be the set of all cosine polynomials


T (x) = a0 +
∑
h∈H


ah cos(2πhx),


such that T (x) ≥ 0 for all x and T (0) = 1. We set


δ = δ(H) = inf
T∈T


a0. (6)


Theorem (Kamae and Mendes-France (1978))


Let H ∈ N∗. If δ(H) = 0, then H is a van der Corput set.
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Dual problem


Let µ be a probability measure on T. For k ∈ Z we define the k-th Fourier
coefficient of µ by


µ̂(k) =


∫
T


e(−kx)dµ(x).


Let M be the set of probability measures on T such that µ̂(k) 6= 0 only if
|k| 6∈ H. We set


γ = sup
µ∈M


µ ({0}) . (7)
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Equivalence


We have γ ≤ δ, since


µ({0}) ≤
∫
T


T (x)dµ(x) =
∑
h


T̂ (h)µ̂(−h) = T̂ (0)µ̂(0) = a0


Theorem (Ruzsa (1984))


Let H be a set of positive integers and let β2, γ and δ be defined as in (3),
(6) and (7) respectively. Then


β2
2 = γ = δ.
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Properties of van der Corput sets


Lemma


Let H ⊂ N∗ and q ∈ N∗. Then δ(qH) = δ(H), where qH = {qh : h ∈ H}.


Lemma


Let H ⊂ N∗ and q ∈ N∗. Then δ(Hq) ≤ qδ(H), where Hq = {h ∈ H : q | h}.
Moreover, δ(H) ≥ 1


q if Hq = ∅.


Theorem


Let m be a positive fixed integer. We set


H = {1, 2, . . . ,m − 1} and K = {h ∈ N∗ : m - h}.


Then
δ(H) = γ(H) = δ(K) = γ(K) = 1


m .
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Properties of van der Corput sets


Lemma


Let H1 and H2 be two disjoint set of positive integers and H = H1 ∪H2.
Then δ(H) ≥ δ(H1)δ(H2).
Therefore, if H = H1 ∪H2 is a van der Corput set, then either H1 or H2


is a van der Corput set.


Lemma


Let H be a van der Corput set. Then we can divide H into infinitely many
disjoint van der Corput sets.


Lemma


Let H be a set of positive integers. If H contains arbitrary long blocks of
consecutive integers, then H is a van der Corput set.
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Speed of convergence


Let H be a van der Corput set and HN = {h ∈ H : h ≤ N}. Then HN is
not a van der Corput set, however, we have that δ(HN)→ 0 for N →∞.
We are interested in the speed of convergence.
Let δ+ be the restriction of δ to polynomials having only positive
coefficients. Then we have the following bound.


Theorem (Slijepčević (2010))


Let H be the set of perfect squares. Then


δ+(HN)� (log N)−
1
3 .
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A sufficient condition


Theorem (Kamae and Mendès-France (1978))


Let H be a set of positive integer and let


Hq = {h ∈ H : q! | h} .


If there exist infinitely many integers q such that for every fixed irrational number
θ the sequence Hqθ is uniformly distributed, then H is a van der Corput set.


Corollary


Let P ∈ Z[X ] and suppose that P(x)→ +∞ for x → +∞. Then
H = {P(n) > 0: n > 0} is a van der Corput set, if and only if, for every integer q
the congruence P(x) ≡ 0 (mod q) has one solution.


Corollary


Let a be a fixed integer and let H = {p + a : p > −a}. Then the set H is a van
der Corput set, if and only if a = ±1.
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Intersective sets


Let A ⊂ N∗ be a set of positive integers and A(N) its counting function,
i.e.


A(N) =
∑


a∈A,a≤N
1.


We call


d(A) = lim sup
N→∞


A(N)


N


the upper density of A.


Definition


We call H ⊂ N∗ intersective if for every set A ⊂ N∗ we have that
H ∩ (A−A) = ∅ implies d(A) = 0.
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Parameter ι


We set
ι = sup


A⊂N∗
H∩(A−A)=∅


d(A).


Theorem (Kamae and Mendès France (1978))


Let H ⊂ N∗ be a sub set of positive integers. Then ι ≤ δ.


Thus every van der Corput set is also intersective. On the contrary,
Bourgain (1987) has constructed a set which is intersective but not van der
Corput. This construction has been simplified by Alon and Peres (1991).
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Poincaré sets


Bertrand-Mathis (1986) has shown that a set is intersective if and only if it
is Poincaré (recurrent).


Definition


We call a set P ⊂ N∗ Poincaré (or recurrent) if for a given dynamical
system (X ,B, µ,T ) and a given measurable set A with positive measure,
we have


∃m ∈ P : µ(T−m(A) ∩ A) > 0.


M.G. Madritsch (Université de Lorraine) Van der Corput sets 14/02/2014 26 / 40







Summary


1 Introduction


2 Van der Corput sets


3 Properties of van der Corput sets


4 The link with intersective sets


5 Our result
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The results of Furstenberg and Sárközy


Theorem (Furstenberg 1977, Sárközy 1978)


Let E ⊂ N be a set of positive upper density.


1 Let k ≥ 1 be an integer. Then one can find arbitrarily large n ∈ N
such that there exist x , y ∈ E with x − y = nk .


2 One can find arbitrarily large primes p such that there exist x , y ∈ E
with x − y = p − 1. Similarly, one can find arbitrarily large primes q
such that x − y = q + 1.
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Furstenberg correspondence


Theorem (Furstenberg 1977)


Let (X ,B, µ) be a measure-theoretical dynamical system. Let A ∈ B with
µ(A) > 0. Given g(t) ∈ Z[t] with g(0) = 0, then there exists arbitrarily
large n ∈ N such that µ(A ∩ T−g(n)A) > 0.


Theorem (Furstenberg 1977)


Let E ⊂ N be a set with positive upper density. Given g(t) ∈ Z[t] with
g(0) = 0, there exists arbitrarily large n such that


d∗(E ∩ (E − g(n))) > 0.
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Our result


Theorem ((Bergelson, Kolesnik, M, Son, Tichy))


If αi are positive integers and βi are positive and non-integers, then


D± =
{(


(p ± 1)α1 , · · · , (p ± 1)αk , [(p ± 1)β1 ], · · · , [(p ± 1)βl ]
)
| p ∈ P


}
,


are vdC sets in Zk+l .
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The Hilbert space partition theorem


Theorem (Bergelson 1996)


Let U1,U2, . . . ,Uk be commuting unitary operators in a Hilbert space H. Then
we can divide H as follows : H = Hinv ⊕Herg , where


Hinv = {f ∈ H : Ui f = f for all i},


and


Herg =



f ∈ H :


lim
N1,...,Nk→∞


∣∣∣∣∣
∣∣∣∣∣ 1


N1 · · ·Nk


N1−1∑
n1=0


· · ·
Nk−1∑
nk=0


Un1
1 · · ·U


nk
k f


∣∣∣∣∣
∣∣∣∣∣ = 0


 .
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The central theorem


Theorem


Let c1, . . . , ck be positive reals such that ci /∈ N for i = 1, 2, . . . , k. Let
U1, . . . ,Uk be unitary operators in a Hilbert space H. Then


lim
N→∞


1


N


N∑
n=1


U
[p


c1
n ]


1 · · ·U [p
ck
n ]


k f = Pf ,


where pn is the n-th prime number and P is the projection on Hinv .
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A consequence


Corollary


Let c1, c2, . . . , ck be positive non-integers. Let T1,T2, . . . ,Tk be invertible,
commuting, measure preserving functions in a probability measure space
(X ,B, µ). Then for every measurable set A ∈ B with µ(A) > 0, one has


lim
N→∞


1


N


N∑
n=1


µ(A ∩ T
−[p


c1
n ]


1 · · ·T−[p
ck
n ]


k A) ≥ µ2(A),


where pn is the n-th prime number.
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Proof.
Let f = 1A. A measure preserving transformation Ti can be considered as a unitary operator Ti f = f ◦ Ti . Denote by P the
projection on Hinv for T1, . . . ,Tk . Then we have


lim
N→∞


1


N


N∑
n=1


µ(A ∩ T
−[p


c1
n ]


1 · · ·T−[p
ck
n ]


k
A) = lim


N→∞


1


N


N∑
n=1


∫
f T


[p
c1
n ]


1 · · ·T [p
ck
n ]


k
f dµ


=


∫
fPf dµ


= 〈f , Pf 〉


= 〈f , P2f 〉
= 〈Pf , Pf 〉


≥
(∫


Pf dµ


)2
= µ


2(A).
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Another consequence


Corollary


Let c1, · · · , ck be positive non-integers. If E ⊂ Zk with d∗(E ) > 0, then there
exists a prime number p such that ([pc1 ], · · · , [pck ]) ∈ E − E. Moreover,


lim inf
N→∞


|{p ≤ N : ([pc1 ], · · · , [pck ]) ∈ E − E}|
π(N)


≥ d∗(E )2.
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Proof.
Using Furstenberg’s correspondence principle we get that for a set E ⊂ Zk with d∗(E) > 0, there exists a probability space
(X ,B, µ), invertible, commutative, measure preserving maps T1, . . . ,Tk of X and A ∈ B with d∗(E) = µ(A) such that for
any l1, l2, . . . , lk ∈ Z one has


d∗(E ∩ (E − (l1, l2, · · · , lk )) ≥ µ(A ∩ T
−l1
1 · · ·T−lk


k
A).


Note that


∣∣{p ≤ N : ([pc1 ], · · · , [pck ]) ∈ E − E}
∣∣ ≥ ∣∣{p ≤ N : d∗(E ∩ E − ([pc1 ], · · · , [pck ]) > 0}


∣∣
≥
∑
p≤N


d∗(E ∩ E − ([pc1 ], · · · , [pck ]))


≥
∑
p≤N


µ(A ∩ T
−[pc1 ]
1 · · ·T−[pck ]


k
A).


Hence,


lim inf
N→∞


|{p ≤ N : ([pc1 ], · · · , [pck ]) ∈ E − E}|
π(N)


≥ lim
N→∞


1


π(N)


∑
p≤N


µ(A ∩ T
−[pc1 ]
1 · · ·T−[pck ]


k
A)


≥ µ(A)2 = d∗(E)2
.
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The theorem of Bochner-Herglotz


lim
N→∞


1


N


N∑
n=1


U
[p


c1
n ]


1 · · ·U [p
ck
n ]


k f = Pf ,


Theorem


Let U1, · · · ,Uk be commuting unitary operators in a Hilbert space H and
f ∈ H. Then there exists a measure νf on Tk such that


< Un1
1 Un2


2 · · ·U
nk
k f , f > =


∫
Tk


e2πi(n1γ1+···+nkγk) dνf (γ1, · · · , γk),


for all (n1, n2, · · · , nk) ∈ Zk .
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The link with uniform distribution


Lemma


Let g(x) =
∑m


j=1 αj [x
θj ], where θ1, θ2, . . . , θm are distinct positive reals


and α1, α2, . . . , αm are non-zero reals. Let h be an integer.


(i) If θj /∈ Z for all j and αj /∈ Z for all j , then


lim
N→∞


1


N


N∑
n=1


e(g(pn − h)) = 0.


(ii) If one of the αj is irrational, then (g(p − h))p∈P is uniformly
distributed.
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The link with uniform distribution


Theorem


Let ξ(x) =
∑m


j=1 αjx
θj , where 0 < θ1 < θ2 < · · · < θm, αj are non-zero


reals, and suppose that if all θj ∈ Z+, then at least one of the αj is
irrational. Then the sequence (ξ(p))p∈P is uniformly distributed.
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Primes of the form a2 + b4


Friedlander and Iwaniec (1998):∑∑
a2+b4≤X


Λ(a2 + b4) = 4π−1κX 3/4


(
1 + O


(
log logX


logX


))
,


where a and b run over positive integers and


κ =


∫ 1


0
(1− t4)1/2dt = Γ(1/4)2/6


√
2π.


In particular, there exist infinitely many primes of the form a2 + b4.
The same is true if we restrict a and b to congruence classes
modulo q as long as (a2 + b4, q) = 1.







Arithmetic in quadratic number fields


Let K = Q(
√
D) be a quadratic number field of discriminant D,


and let OK denote its ring of integers.


Example: K = Q(
√
−20), OK = Z[


√
−5].


Given a non-zero prime ideal p of O = OK , the localization Op is a
discrete valuation ring: its unique non-zero prime ideal is principal.
However, p itself need not be principal.


Example: K = Q(
√
−20), OK = Z[


√
−5], p = (2, 1 +


√
−5).


Then pOp = (1 +
√
−5)Op since


2 = (1 +
√
−5)2 · −2−


√
−5


9
∈ (1 +


√
−5)Op.







Class groups of number fields


The class group ClK measures the failure of the locally principal
ideals to be globally principal. It the quotient of the group of
invertible fractional ideals of OK by the subgroup of non-zero
principal ideals.


ClK = 1 if and only if OK is a unique factorization domain.
Example: K = Q(


√
−20), 6 = 2 · 3 = (1 +


√
−5)(1−


√
−5).


ClK is a finite abelian group, and its order h = hK is called the
class number of K .
Example: K = Q(


√
−20), ClK ∼= Z/2Z, h = 2.







Gauss’s genus theory


Suppose now that K is an imaginary quadratic extension of Q.


Let CK denote the 2-primary part of ClK . It is a direct sum of
cyclic 2-groups.


Gauss proved that


CK/C2
K
∼= (Z/2Z)t−1,


where t is the number of prime factors dividing the discriminant of
OK . In other words, CK is a direct sum of t − 1 cyclic 2-groups.







The fields Q(
√
−p)


Let p ≡ 1 (mod 4) be a prime number and let K = Q(
√
−p).


Then the discriminant of OK is −4p and so CK is cyclic.


So how does the “depth” of CK depend on p?


Given an integer k , can we compute the density of primes p for
which 2k |h?







What is known?


Rédei (1935):


4|h ⇐⇒ p ≡ 1 (mod 8)
⇐⇒ p splits completely in Q(ζ8)


So the density of primes p such that 4|h is 1/4.


Barrucand and Cohn (1969):


8|h ⇐⇒ p ≡ 1 (mod 8) and 1 + i is a square modulo p
⇐⇒ p splits completely in Q(ζ8,


√
1 + i)


So the density of primes p such that 8|h is 1/8.
It is unlikely that there is a normal extension M/Q such that


16|h⇐⇒ p splits completely in M.


So it might be hard to obtain a density for k = 4.







Criteria for divisibility by 16


Williams (1981):


Let εp = T + U
√
p be the fundamental unit of the real quadratic


field Q(
√
p), and suppose that 8|h. Then


h ≡ T + p − 1 (mod 16).


Leonard and Williams (1982):


Write a prime p ≡ 1 (mod 8) as p = 2u2 − v2 with | u |≡ 1
(mod 4), and suppose that 8|h. Then


16|h ⇐⇒
(
u
p


)
4


=
(
2v
u


)







Conjecture (Stevenhagen, 1995)


Let SX be the set of quadratic number field discriminants
0 < D ≤ X not divisible by any prime ≡ 3 (mod 4).


Let S−X be the set of quadratic number field discriminants
0 < D ≤ X such that the negative Pell equation


x2 − Dy2 = −1


is solvable for x , y ∈ Z.


Then


lim
X→∞


#S−X
#SX


= 1− α,


where


α =
∞∏
j=1


(1 + 2−j)−1 = 0.4194...







Theorem (Fouvry and Klüners, 2010)


For X →∞,


5α


4
− o(1) ≤


#S−X
#SX


≤ 2/3 + o(1).







The Hilbert class field


The Hilbert class field H of K is the maximal unramified abelian
extension of K . The Artin map induces an isomorphism
ClK ∼= Gal(H/K ). Hence we can view the class group as a Galois
group of a certain canonical extension of K .


If CK is cyclic, then 2k |h if and only if there exists an unramified,
cyclic, degree 2k extension H2k of K , in which case the Artin map
induces an isomorphism


CK/C2k


K
∼= Gal(H2k/K ).







The genus field H2 and divisibility by 4


If p ≡ 1 (mod 4), the prime ideal t = (2, 1 +
√
−p) of OK lying


above 2 is not principal and its ideal class has order 2, so we see
that 2|h.


H2 = Q(i ,
√
p)


Q(
√
−p)Q(i) Q(


√
p)


Q


Recall that CK/C2
K
∼= Gal(H2/K ). Given that p ≡ 1 (mod 4), t


splits in H2 if and only if p ≡ 1 (mod 8).







The field H4 and divisibility by 8
If p ≡ 1 (mod 8), then 4|h. If p = a2 + b2, set π = a + bi . For t
to remain unramified in H4 = Q(i ,


√
p,
√
π), we must choose π so


that b is even.


H4 = Q(i ,
√
p,
√
π)


H2 = Q(i ,
√
p)Q(i ,


√
π)Q(i ,


√
π)


Q(
√
−p)Q(i)


Q


t splits completely in H4 if and only if π is a square in Q2(i), i.e., if
and only if a + b ≡ ±1 (mod 8). Replacing a by −a if necessary,
we may assume that a + b ≡ 1 (mod 8).







A lemma to detect splitting behavior of t


The completion of Q(i) with respect to the prime ideal (1 + i) is
Q2(i).


Its ring of integers Z2[i ] is a discrete valuation ring with maximal
ideal m and uniformizer m = 1 + i .


Lemma
Let ω be an invertible element of Z2[i ]. Then Q2(i ,


√
ω) is


unramified over Q2(i) if and only if ω ≡ ±1 (mod m4).


Moreover, ω is a square in Q2(i) if and only if ω ≡ ±1 (mod m5).







The field H8


Although the conditions p ≡ 1 (mod 8) and a + b ≡ 1 (mod 8)
guarantee that 8|h, it is not clear how to construct H8 in general.


However, in case p is of the form p = a2 + c4 with c even, we can
write down H8 explicitly in terms of a and c . Take π = a + c2i
with a + c2 ≡ 1 (mod 8) as before.


Set α = c(1 + i) +
√
π ∈ Q(i ,


√
π). Notice that


(c(1 + i) +
√
π)(c(1 + i)−


√
π) = 2c2i − (a + c2i) = −π.


Hence (α) is a prime ideal in Q(i ,
√
π).







The field H8 and divisibility by 16
Recall p = a2 + c4, c even, π = a + c2i ≡ 1 (mod m5) and
α = c(1 + i) +


√
π.


H8 = Q(i ,
√
p,
√
π,
√
α)


Q(i ,
√
π,
√
α)Q(i ,


√
π,
√
β) H4 = Q(i ,


√
p,
√
π)


H2 = Q(i ,
√
p)Q(i ,


√
π)


Q(
√
−p)Q(i)


Q







When is α a square in Q2(i)?


Recall α = c(1 + i) +
√
π. We now find conditions on a and c that


guarantee that α ≡ ±1 (mod m5), i.e. that 16|h.


If c ≡ 0 (mod 4), then


16|h ⇐⇒
√
π ≡ ±1 (mod m5)


⇐⇒ π ≡ 1 (mod m7)
⇐⇒ a ≡ 1 (mod 16).


If c ≡ 2 (mod 4), then


16|h ⇐⇒
√
π ≡ ±1− 2m (mod m5)


⇐⇒ π ≡ 1 + m5 + m6 (mod m7)
⇐⇒ a ≡ −3 (mod 16).







Statement of the theorem


Theorem
Suppose p is a prime of the form a2 + c4, where a and c are
integers. Let h denote the class number of Q(


√
−p).


(i) If a ≡ ±1 (mod 16) and c ≡ 0 (mod 4), then 16|h.


(ii) If a ≡ ±3 (mod 16) and c ≡ 2 (mod 4), then 16|h.


(iii) If a ≡ ±7 (mod 16) and c ≡ 0 (mod 4), then 8|h but 16 - h.


(iv) If a ≡ ±5 (mod 16) and c ≡ 2 (mod 4), then 8|h but 16 - h.







Primes of the form a2 + c4


Friedlander and Iwaniec (1998): There exist infinitely many primes
of the form a2 + c4. In fact, we can even restrict a and c to
congruence classes modulo q as long as (a2 + c4, q) = 1.


Corollary


There are infinitely many primes p for which h is divisible by 16,
and also infinitely many primes p for which h is divisible by 8 but
not by 16.







What next?


- Primes of the form 4a4 + Db2


- Friedlander and Iwaniec (1998): Write each prime p ≡ 1 (mod 4)
as p = r2 + s2 with s even and r + s ≡ 1 (mod 4). Then∑


p≤X


p≡1 (mod 4)


(
s


| r |


)
� X 76/77.


- What about ∑
p≤X


p≡1 (mod 8)


(
2v


u


)(
u


p


)
4
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Definition


Given coprime integers a and n, the multiplicative order of a,


orda(n),


is the order of a in the group (Z/nZ)∗.
Thus, it is the smallest positive integer k such that


ak ≡ 1(mod n).


Euler’s theorem: aϕ(n) ≡ 1(mod n).


The exponent of the group (Z/nZ)∗ is Carmichael’s function
λ(n). Thus aλ(n) ≡ 1(mod n). The order divides λ(n).


For p ≥ 3 or k ≤ 2 we have λ(pk ) = pk−1(p − 1) = ϕ(pk ).
For k ≥ 3 we have λ(2k ) = 2k−2.


λ(n) = λ(pk1
1 pk2


2 · · · p
kt
t ) = lcm(λ(pk1


1 ), λ(pk2
2 ), . . . , λ(pkt


t ))







-How often is the order maximal?


If orda(n) = λ(n), then a is a λ-root modulo n.
If n is prime, then a is a primitive root modulo n.


I Composite case: Carl Pomerance and Shuguang Li.
I Prime case: ‘Artin primitive root conjecture’.


-How often is the order even? (Easier question!)


Is closely related to prime divisors of xk = bk + ck , b, c ∈ Z.


-Prime divisors of xk+1 = dxk + exk−1, d ,e ∈ Z.


-Distribution of the order over residue classes.


Mostly we fix the base number a and let n range over the
primes p ≤ x .







Artin’s primitive root conjecture


An integer a is a primitive root modulo a prime p if we have


F∗p = 〈a mod p〉.


Suppose a ∈ Z is is not an exact power.


Artin’s conjecture (1927):
The set of primes p for which a is a primitive root modulo p is
infinite, with natural density∏


` prime


(1− 1
`(`− 1)


) ≈ .3739558.







Heuristic derivation


For p > 2, the index


[F∗p : 〈a mod p〉]


is divisible by a prime ` if and only if p splits completely in the
number field


K` = Q(ζ`,
√̀


a) = SplitQ(X ` − a),


of degree [K` : Q] = `(`− 1).


For fixed `, a fraction 1
`(`−1) of all primes p is eliminated.


Now “take the limit” over all primes `.







Why is this still a conjecture?


Artin’s conjecture has not been proved for a single value of a.


Imposing the condition for finitely many ` is fine:
use Chebotarev for primes with prescribed splitting in


Kn = Q(ζn,
n
√


a),


with n the product of the `’s involved.


Dealing with infinitely many ` is much harder.


Throwing away one prime at the time (0%), we may be left in
the end with the empty set....







History


Erdős tried in vain (1935) to combine infinitely many `.


Hasse and his student Bilharz proved function field analogues
of Artin’s conjecture (late 1930s).


In this setting, the Riemann hypothesis was obvious (for Fp[X ]),
or being proved around that time by Weil.


For number fields, good remainder terms in density theorems
only exist under GRH.







Current status


Under GRH, one can handle infinitely many ` and obtain
densities for the primes p with F∗p = 〈a mod p〉.


This is non-trivial: Hooley (1967), Cooke-Weinberger (1975).


Unconditionally, we still do not know whether (say) 2 is a
primitive root modulo infinitely many primes p.


Gupta & Ram Murty (1984), Heath-Brown (1986):
there are at most two prime values of a that are not primitive
root modulo infinitely many p.


Unconditionally, no densities can be obtained.







Dependence of conditions


The version of the conjecture as originally stated by Artin is
actually wrong - but this went unnoticed for 30 years.


It was discovered numerically in 1957 by Derrick (1905-1991)
and Emma Lehmer (1906-2007), who used a computer to
extend tables of Kraitchik.







Artin had consulted the Kraitchik tables to see if his conjecture
made sense.


He now realized conditions at different ` may be dependent:


“I was careless but the machine caught up with me.”


(Letter to Emma Lehmer, January 1958)







An entanglement problem


We want p that do not split completely in any of the fields


K` = Q(ζ`,
√̀


a).


The quadratic field K2 = Q(
√


a) is abelian, hence cyclotomic.


For K2 = Q(
√


a) of prime discriminant ±q we simply have


K2 ⊂ Q(ζq) ⊂ Kq.


The condition at ` = q can be left out, and we gain a factor


1 +
1


q2 − q − 1
.


For a = −3 or a = 5 this is numerically visible.







Correcting the density


The density (under GRH) is the inclusion-exclusion-value


δ(a) =
∞∑


n=1


µ(n)


[Kn : Q]
,


which can be different from the naive value∏
`


(
1− 1


[K` : Q]


)
.


Dependency between conditions at ` occurs only when
K2 = Q(


√
a) is quadratic of odd discriminant d :


K2 ⊂ Kd = (compositum of K` with `|d).







The corrected density


Theorem. For a ∈ Q∗ \ {±1} we have


δ(a) = E ·
∏
`


(
1− 1


[K` : Q]


)
,


with E = 1 if d = disc(Q(
√


a)) is even, and


E = 1− µ(|d |)
∏
`|d


1
[K` : Q]− 1


if d is odd.


The correction factor E for odd d comes out of a calculation
found in Hooley (1967).


Note the nice multiplicative structure!







Lots of Artin conjectures


After the proof of Hooley (under GRH), people have considered
many variants of the conjecture.


Among the variants over Q one finds:


I primes in arithmetic progressions with given primitive root;
I near-primitive roots: [F∗p : 〈a〉] = t ∈ Z>0;
I two-variable Artin: 〈a1〉 ⊂ 〈a2〉 ⊂ F∗p
I higher-rank Artin: F∗p = 〈a1,a2, . . . ,ar 〉
I multiple primitive roots: F∗p = 〈a1〉 = 〈a2〉 = . . . = 〈ar 〉.
I same order: 〈a1〉 = 〈a2〉 = . . . = 〈ar 〉 ⊂ F∗p.







Character sum method


H.W. Lenstra, jr., P. Moree and P. Stevenhagen, Character
sums for primitive root densities, arXiv:1112.4816, submitted.


P. Moree and P. Stevenhagen, Computing higher rank primitive
root densities, Acta Arith., to appear.


P. Stevenhagen, The correction factor ..., J. Théor. Nombres
Bordeaux 15 (2003), 383-391.







Character sum method, continued


Densities exist under GRH, but their computation from
inclusion-exclusion sums soon gets very messy.


The factors correcting some naive density that arise after
lengthy calculations tend to exhibit multiplicative structure.


Conceptual way to arrive at these structures.


The resulting method to compute correction factors is so much
simpler that it can be applied in many more cases.







The rank one main result


The rank one main result states that for a large class of Artin
type problems, under GRH, the density exists and is of the form


A1


(
1 +


∏
p


Ep),


with
−1 ≤ Ep ≤ 1,


and A1 the analogue of the Artin constant (‘the generic
density’).


The Ep are averages of certain real characters.


For only finitely many p we have Ep 6= 1.







The rank one main result, continued


No field degree computations necessary, one directly arrives at
the multiplicative structure of the density.


We have A1 = A · c with c rational (depending on input data).


Easy in this approach to determine when the density is zero.


I c = 0 (explained by trivial reasons)
I
∏


p Ep = −1 (explained by radical entanglement)







The higher rank main result


Now we have
δ = E · Ar ,


with E the error correction term and r the rank.


We have
E =


∑
χ∈X


∏
p


Eχ,p,


with X a set of quadratic characters.


With χ0 = 1 we can write


E = 1 +
∑


χ∈X , χ6=χ0


∏
p


Eχ,p,







The higher rank main result, continued


We have for example Ar = Cr · rational, with


Cr =
∏


p


(
1− 1


(p − 1)pr


)
the rank-r Artin constant, or


Ar = Dr · rational, with


Dr =
∏


p


(
1− 1− (1− 1/p)r


p − 1


)
,


the Artin constant for r primitive roots.







Even/odd order


Let S = {xn}∞n=1 be an integer sequence.


Definition: We say that p|S iff p divides at least one non-zero
term of S.


Suppose orda(p) = 2k , then ak ≡ −1(mod p).


If am ≡ −1(mod p), then orda(p)|2m and orda(p) - m.


Thus we see that


2|orda(p) ⇐⇒ p|{an + 1}∞n=1







Some claims of Fermat (1641)


P. de Fermat, letter to Mersenne, 15th June 1641:


1) If p|3k + 1, then p 6≡ −1(mod 12).
2) If p|3k + 1, then p 6≡ +1(mod 12).
3) If p|5k + 1, then p 6≡ −1(mod 10).
4) If p|5k + 1, then p 6≡ +1(mod 10).


Claim 1: True
Claim 2: False. 37,61,73,97,157,193,241,337,349 . . .
Claim 3: False. 29,89,229,349,449,509,709,769 . . .
Claim 4: False. 41,61,241,281,421,521,601,641 . . .


Sierpinski: Infinitely many counter-examples ?


Schinzel (1959): YES


Moree and B. Sury (2007)
Explicitly determined, given integers a,b, c,d , the density of
primes p ≡ c(mod d) such that p|ak + bk and p ≡ c(mod d).


Corollary: The densities are, respectively, 1
6 ,


1
12 ,


1
12 .







Odd multiplicative order


p odd prime. There is an unique j ≥ 1 such that
p ≡ 1 + 2j(mod 2j+1). Note that


2 - orda(p) ⇐⇒ a
p−1


2j ≡ 1(mod p).


Put


Pj = {p : p ≡ 1 + 2j(mod 2j+1), a
p−1


2j ≡ 1(mod p)}.


The set Pj consists of the primes that split completely in
Q(ζ2j ,a1/2j


), but do not split completely in Q(ζ2j+1 ,a1/2j
).We


expect
{p : 2 - orda(p)} = ∪∞j=1δ(Pj) =


∞∑
j=1


( 1
[Q(ζ2j ,a1/2j ) : Q]


− 1
[Q(ζ2j+1 ,a1/2j ) : Q]


)
.







Similar results in quadratic fields, I


Lagarias (1986) established that the natural density of the
Lucas sequence 2,1,3,4,7,11, . . . is 2/3. This sequence is of
the form {εn + εn}∞n=0, with ε = (1 +


√
5)/2 and Nε = −1.


This result is a special case of:
Theorem. (M., 1996). For P any nonzero integer let {Ln(P)}∞n=0
be the Lucas sequence defined by L0(P) = 2, L1(P) = P, and,
for n ≥ 2, Ln(P) = PLn−1(P) + Ln−2(P). Then the natural
density of this sequence exists and equals 2/3, unless
|P| = Ln(2) for some odd n ≥ 1, then the density equals 17/24.


In particular the Pell sequence, Ln(2) = {2,2,6,14,34, . . .} has
density 17/24.


For Ln(P) = PLn−1(P)− Ln−2(P) infinitely many possibilities for
the density occur.







Similar results in quadratic fields, II


Theorem. (M. and S., Acta A., 1997). Let ε = a + b
√


D be a
fundamental unit of norm +1. Let


{εk + εk}∞k=0


Then one has δ(U) = 5/12 if a + 1 is square and δ(U) = 1/3
otherwise.


Method was extended by S. to sequences {αk + αk}∞k=0 with α
an algebraic integer from a quadratic field.


Density is always positive and rational.


This solves what Ribenboim calls the ‘main conjecture about
Lucas sequences’.







Applications I: Stufe


Let K be a field. Then the Stufe of K, s(K ), is defined as the
smallest s (if it exists) such that


−1 = α2
1 + . . .+ α2


s , αi ∈ K .


Pfister: if s(K ) <∞, then s(K ) = 2m.


Define s(m) = s(Q(ζm)).
For m ≥ 3, Hilbert proved that s(m) ≤ 4.
If 4|m, then i ∈ Q(ζm) and hence s(m) = 1.


Theorem. (Fein, Gordon, Smith, 1971). If 4 - m, then s(m) = 2
iff m is divisible by some prime divisor of the sequence
{2k + 1}∞k=1.







Applications II: coding theory


Theorem. (Kanwar, Lopez-Permouth.) Let p - n be a prime and
m ≥ 2 be even. Then non-trivial self-dual cyclic Zpm -codes of
length n exist iff n does not divide {pk + 1}∞k=0.


M. (Acta A., 1997) gave a precise formula for the number of
integers m ≤ x that divide the sequence {ak + bk}∞k=0 and also
provided an asymptotically exact heuristic for this (J. Integer
Seq., 2006).







p|{an − b}


If ordb(p)|orda(p), then 〈b mod p〉 ⊆ 〈a mod p〉. This is
equivalent with p|{an − b}∞n=0.


Theorem. (M. and S., 2000). Assume GRH. Let a and b be
multiplicatively independent rational numbers. Then δ(a,b)
exists and one has


δ(a,b) = ca,b
∏


l


(
1− l


l3 − 1
)
,


with ca,b a positive rational number.


Example: c2,5 = 9343/9520.
If the discriminant of both Q(


√
a) and Q(


√
b) are even, then


ca,b = cb,a.


Extends and corrects earlier work by P.J. Stephens (1976).


Artin type constant involved we call Stephens constant,
S = 0.5759599688...







A challenge of Lagarias


Consider the linear recurrence xn+1 = xn + xn−1 and the initial
values x0 = 3 and x1 = 1.


Lagarias (1985): compute the density of prime divisors.


Theorem. (M. and S.). Under GRH the set of prime divisors
has a density. It is given by


1573727
1569610


∏
l


(
1− l


l3 − 1


)
= 0.57747 . . . .


First example of non-torsion second order recurrent sequence
with irreducible recurrence relation for which we can determine
the associated density of prime divisors.







Second order recurrent sequences


Are of the form xn+2 = axn+1 + bxn, b 6= 0.


Characteristic polynomial:
f (X ) = X 2 − aX − b = (X − α1)(X − α2).


We have xn = c1α1
n + c2α2


n.


p|xn ⇐⇒ (
α1


α2
)n = −c2


c1
∈ (O/pO)∗


O is ring of integers of Q(α1, α2).


q := α1/α2 is root coefficient, r := −c2/c1, initial cofficient.


p|xn ⇐⇒ 〈r〉 ⊂ 〈q〉 ⊆ (O/pO)∗.


If r is torsion in Q(q)∗/〈q〉, we are in the torsion case.







Classification


Assume q is not a root of unity, then we are in the
non-degenerate case


I f is reducible and torsion
an + bn ...Hasse, Odoni, Wiertelak, Ballot, M., Sury.


I f is reducible and non-torsion
Two variable Artin conjecture
an − b...Polya (1921), P. J. Stephens, M. and S.


I f is irreducible and torsion
p|Ln...Lagarias, M., M. and S., S. (in preparation).


I f is irreducible and non-torsion.
Lagarias challenge (M. and S.).
xn+1 = xn + xn−1, x0 = 3 and x1 = 1.







Equidistribution of the order


Let δ(p, c,d) be the density in F∗p of elements of order
congruent to c(mod d). The average over p, δ(c,d), turns out to
exist.


Under GRH, Pa(c,d) has a density δa(c,d).


Chinen and Murata: Wrote δa(c,d) as a seven fold sum!


M.: as a two fold sum....


M.: δa(c,d) will be close to δ(c,d)


δ(c,d), δa(c,d) do not show equidistribution.


The Lenstra.-M.-S. method does not apply: δa(c,d) does not
have a nice multplicative structure.







Put ∆ = δa(3,4)− δa(1,4).
Experimental is for first 100 million primes p
(so for all p ≤ 2038074743)
B = 0.643650679662 · · · , Artin type constant.


a ∆ theoretical experimental
2 = 21 B/4 0.16091266 . . . +0.16088852
4 = 22 0 0 +0.00001122
8 = 23 B/28 0.02298752 . . . +0.02301736


512 = 29 3B/28 0.06896257 . . . +0.06897632
2048 = 211 489B/2396 0.13136276 . . . +0.13134226


9 = 32 0 0 −0.00001977
81 = 34 0 0 −0.00002044
6 = 61 3B/28 0.06896257 . . . +0.06890056


216 = 63 9B/28 0.20688771 . . . +0.20687020
69 B/4 0.16091266 . . . +0.16088478
627 23B/84 0.17623768 . . . +0.17620628







Relevant papers


M.: 75 pages in J. Number Theory (2005-2006)


Murata and Chinen: Series of 4 papers (2004-2006)


M.’s approach was generalized by Volker Ziegler (2006) to
number fields


Survey


I M., On the distribution of the order over residue classes,
Electron. Res. Announc. Amer. Math. Soc. 12 (2006),
121-128.


I M., Die multiplikativen Ordnung, MPIM-Jahrbuch, 2005.







Survey paper


Version 2004: 30 pages, 65 references.
Version 2011: 80 pages, 450 references.


Final version: 111 pages, 512 references.
Artin’s primitive root conjecture -a survey
Integers 12 (2012), 1305-1416


The survey has 40 Open Problems.


Partial progress by Jean Bourgain (Fields medal, 1994).


Contributions by:


I Alina Cojocaru: Elliptic Artin.
I Wojcik Gajda: Artin and K-theory.
I Hester Graves: Euclidean algorithms.







MOTTO


“On revient toujours à ses premières amours”







Thank you!
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We write µ(n) for the Möbius function.
Let ψ(x) is the sawtooth function given by


ψ(x) = 1
2 − {x}.


We use e(x) to denote e2πix .
The notations A = O(B), A� B, A = Oε(B) and
A�ε B mean that there is a constant c > 0 such that


|A| ≤ cB


and in the last two cases, the constant c might depend
on ε
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We define the error term E (X , q, a) for (a, q) = 1 by the
formula


∑
n≤X


n≡a (mod q)


µ2(n) = 6
π2


∏
p|q


(
1− 1


p2


)−1 X
q + E (X , q, a),


Trivially, one has


|E (X , q, a)| ≤ X
q + 1.
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The first nontrivial result is
Theorem (Hooley, 1975)
Let (a, q) = 1, then we have


E (X , q, a) = Oε


(X
q


)1/2


+ q1/2+ε


 ,
uniformly for 1 ≤ q ≤ X .


This remains to this day the best result available for fixed a.


Question
Can we do better on average over a (mod q)?
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For instance, consider the square mean of the E (X , q, a)


V2(X , q) =
∑


a (mod q)


∗ |E (X , q, a)|2 ,


where the ∗ symbol means we only sum over the classes that
are relatively prime to q.
We have
Theorem (Blomer, 2007)


V2(X , q)� X ε


(
X +min


(
X 5/3


q , q2
))


,


for every ε > 0, uniformly for 1 ≤ q ≤ X .
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Question
What happens if we do an extra average over q ≤ Q?


Let
V ′


2(X , q) =
∑


a (mod q)
|E (X , q, a)|2 ,


where


E (X , q, a) =
∑
n≤X


n≡a(mod q)


µ2(n)


− µ2(d)q0


ϕ(q0)


6
π2


∏
p|q


(
1+ p−1


)−1 X
q ,


where d = (a, q) and q0 = q/d when a is not necessarily
relatively prime to q.
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Theorem (Croft, 1975)


∑
q≤Q


V ′


2(X , q) = BX 1/2Q3/2


+ O
(
X 2/5Q3/5 log13/5 X + X 3/2 log7/2 X


)
, Q ≤ X .


where B is an explicit constant.


For X 2/3+ε ≤ Q ≤ X 1−ε, formula above gives an asymptotic
formula for ∑


q≤Q
V ′


2(X , q).
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Ignoring for the moment the difference between V ′
2(X , q) and


V2(X , q), Croft’s result can be interpreted as saying that, at
least on average over q ≤ Q,


V ′


2(X , q) � X 1/2q1/2,


which could not be observed from the bound of Blomer.
Question
Can we obtain a similar result without the need of the extra
sum over q ≤ Q?
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Theorem 1
Let ε > 0 arbitrary. Then, uniformly for X 1/2 ≤ q ≤ X , we
have


V2(X , q) = C
∏
p|q


(
1+ 2p−1


)−1


X 1/2q1/2


+ Oε


(
X 2/5+εq3/5 + X 23/15+εq−13/15


)
,


where


C =
ζ
(


3
2


)
πζ(2)


∏
p


(
1+ 2


p2 + p


)
= 0, 6917...
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Corollary
Let ε > 0 arbitrary. Then as X →∞, we have


V2(X , q) ∼ C
∏
p|q


(
1+ 2p−1


)−1


X 1/2q1/2


uniformly for X 31/41+ε ≤ q ≤ X 1−ε and where again


C =
ζ
(


3
2


)
πζ(2)


∏
p


(
1+ 2


p2 + p


)
= 0, 6917...
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Remark
This asymptotic formula gives an average order of magnitude
of (X/q) 1


4+ε for the terms E (X , q, a). This remark goes in the
direction of the following conjecture due to Montgomery


E (X , q, a) = Oε


(
(X/q) 1


4+ε
)


, ε > 0 arbitrary


uniformly for (a, q) = 1, X θ1 < q < X θ2 where the values of
the constants θ1 and θ2 have to be precised.
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Developping the squares in V2(X , q), we obtain the equality


V2(X , q) =
∑
n≤X


(n,q)=1


µ2(n) + 2S2(X , q)


− 2C(q)X
q


∑
n≤X


(n,q)=1


µ2(n) + C(q)2ϕ(q)X 2


q2 ,


where, by definition, S2(X , q) is the shifted sum


S2(X , q) =
∑


n,`≥1
n+`q<X
(n,q)=1


µ2(n)µ2(n + `q).


and


C(q) = 6
π2


∏
p|q


(
1− 1


p2


)−1


.
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Theorem 2


Let X > 2, ε > 0 arbitrary and X 1/2 ≤ q ≤ X , we have


S2(X , q) =
ϕ(q)
2


(
C(q)X


q


)2


− ϕ(q)
2


(
C(q)X


q


)


+
C
2
∏
p


(
1+ 2


p


)−1


X 1/2q1/2


+ Oε


(
X 2/5+εq3/5 + X 23/15+εq−13/15


)
,


where again


C(q) = 6
π2


∏
p|q


(
1− 1


p2


)−1


.
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Theorem 15 above can be seen as an average version of
Heath-Brown’s result
Theorem (Heath-Brown, 1984)
For every X > 2, one has


∑
n<X


µ2(n)µ2(n + 1) = C2X + O(X 7/11(logX )7),


where C2 is given by


C2 =
∏
p


(
1− 2p−2


)
= 0, 3226..
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Blomer attacked the problem by means of


Proposition (Blomer, 2007)
Let q, h be positive integers, with q | h. Then one has∑


n≤x
(n,q)=1


µ2(n)µ2(n + h) = fq(h)x + O
(
d(h)x2/3 + h1/3


)
,


where fq(h) = C2
∏
p|q


(
1− p − 2


p2 − 2


) ∏
p2|h
p-q


(
1+ 1


p2 − 2


)
.


Ramon M. Nunes | Square-free numbers in arithmetic progressions 18/40







Introduction Ideas of the proof of Theorem 2 Other Results


One direct consequence is
∑


`<X/q


∑
n≤X−`q
(n,q)=1


µ2(n)µ2(n + `q) =
∑


`≤X/q
fq(`q)(X − `q)


+ O
(


d(q)X 2/3
(


X
q


)
logX


)
.


Using Heath-Brown’s square sieve, we were able to obtain a
better error term
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Proposition
Let X ≥ 2 be a real number. Then, uniformly for q positive
integer, X 1/2 ≤ q ≤ X , we have


∑
`<X/q


∑
n≤X−`q
(n,q)=1


µ2(n)µ2(n + `q) =
∑


`≤X/q
fq(`q)(X − `q)


+ O
d(q)X 2/3


(
X
q


)13/15


(logX )15



The importance of a good error term at this point is to enlarge
the range of validity of the asymptotic formula


V2(X , q) ∼ C
∏
p|q


(
1+ 2p−1


)−1


X 1/2q1/2.
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Next, we rewrite fq(`q) as


fq(`q) = C2
∏
p|q


(
1− p − 2


p2 − 2


) ∏
p2|h
p-q


(
1+ 1


p2 − 2


)


=
ϕ(q)


q C2h(q)
∑
d2|`


(d ,q)=1


µ2(d)h(d)
d2 ,


where


h(m) =
∏
p|m


(
1− 2


p2


)−1


.


Ramon M. Nunes | Square-free numbers in arithmetic progressions 21/40







Introduction Ideas of the proof of Theorem 2 Other Results


Let
T2(X , q) =


∑
`≤X/q


fq(`q)(X − `q).


We calculate further


T2(X , q) = q
∑


`≤X/q
fq(`q)


∫ X
q


`
1du


= q
∫ X


q


0


∑
`≤u


fq(`q)du.


Using the formula


fq(`q) =
ϕ(q)


q C2h(q)
∑
d2|`


(d ,q)=1


µ2(d)h(d)
d2 ,


and inverting the order of summation, we obtain
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T2(X , q) = C2ϕ(q)h(q)
∫ X


q


0


∑
d≥1


(d ,q)=1


µ2(d)h(d)
d2


⌊ u
d2


⌋
du


= C2ϕ(q)h(q)
∫ X


q


0


∑
d≥1


(d ,q)=1


µ2(d)h(d)
d2


( u
d2 −


1
2 + ψ


( u
d2


))
du.


As we calculate the integrals, we have
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T2(X , q) =
C ′(q)
2 ϕ(q)X 2


q2 −
C ′′(q)


2 ϕ(q)X
q +C2ϕ(q)h(q)G(X , q),


where 


C ′(q) = C2h(q)
∑
d≥1


(d ,q)=1


h(d)
d4 = C(q)2,


C ′′(q) = C2h(q)
∑
d≥1


(d ,q)=1


h(d)
d2 = C(q),


G(X , q) =
∑
d≥1


(d ,q)=1


µ2(d)h(d)
∫ X


d2q


0
ψ(v)dv .
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All is left to do is to obtain a formula for G(X , q).
Indeed, we have


Lemma
Let ε > 0. We have, uniformly for 1 ≤ q ≤ X, that


G(X , q) = C1
∏
p|q


(
1+ p(p2 − 2)−1


)−1
(


X
q


)1/2


+ Oε


(X
q


)2/5+ε
 ,


where


C1 =
ζ
(


3
2


)
2πζ(2)


∏
p


(
1+ 2(p + 1)−1(p2 − 2)−1


)
.


Ramon M. Nunes | Square-free numbers in arithmetic progressions 25/40







Introduction Ideas of the proof of Theorem 2 Other Results


Sketch of the proof of the lemma:


We write


G(X , q) =
∑


(d ,q)=1
µ(d)2h(d)


∫ X/d2q


0
ψ(v)dv


=
∫ X/q


0
ψ(v)


 ∑
d≤(X/qv)1/2


(d ,q)=1


µ(d)2h(d)


 dv .
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For the sum between brackets, we use Perron’s Formula.
In our case it gives


∑
d≤Y


(d ,q)=1


µ2(d)h(d) = 1
2πi


∫ c+iT


c−iT
fq(s)Y s ds


s


+ O
(


Y c
∞∑


d=1


1
d c (1+ T | log(Y /d)|)


)
,


where c = 1+ (log(X + 2))−1 and


fq(s) =
∑
d≥1


(d ,q)=1


µ2(d)h(d)d−s , for <(s) > 1.
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If we make Y =
(


X
qv


)1/2
in formula above, multiply by ψ(v)


and we integrate with respect to v , we obtain the equality


G(X , q) = M(X , q, c) + error term,


where,


M(X , q, c) = 1
2πi


∫ X/q


0
ψ(v)


∫ c+iT


c−iT
fq(s)


(
X
qv


)s/2 ds
s dv


and the error term can be proved to be � X log(X + 2)
qT .
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The integral 1
2πi


∫ c+iT


c−iT
fq(s)Y s ds


s can be calculated by
means of the calculus of residues.
We have


1
2πi


∫ c+iT


c−iT


Y s


s fq(s)ds = Ress=1 fq(s)Y


+
1
2πi


(∫ 1
2+iT


1
2−iT


+
∫ c+iT


1
2+iT


−
∫ c−iT


1
2−iT


)
Y s


s fq(s)ds


= Ress=1 fq(s)Y +
1
2πi (I1 + I2 − I3),


by definition.
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Once again, we make Y =
(


X
qv


)1/2
, multiply by ψ(v) and we


integrate with respect to v . So we have


M(X , q, c) = Ress=1 fq(s)X 1/2
∫ X/q


0
ψ(v)v−1/2dv


+ E1 + E2 − E3 + O
(


X log(X + 2)
qT


)
,


where Ej is the term coming from the integration of Ij .
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From the definition of fq, we get the factorization


fq(s) = kq(s)Fq(s)
ζ(s)
ζ(2s) ,


where


kq(s) =
∏
p|q


(
1+ p−s


)−1
, Fq(s) =


∏
p-q


(
1+ 2


(p2 − 2)(ps + 1)


)
.


We note that if σ ≥ 1
2 , we have
|kq(s)| � 2ω(q),


|Fq(s)| � 1,


Ramon M. Nunes | Square-free numbers in arithmetic progressions 31/40







Introduction Ideas of the proof of Theorem 2 Other Results


Our last input for the proof of the lemma is the following
∫ Z


0
ψ(v)v−s/2dv =


ζ( s
2 − 1)


( s
2 − 1) + O


(
Z−σ2 + |t2|Z−σ2−1


)
,


which holds true for Z , t > 1, 0 < σ < 2, where
s = σ + it.
Next, we estimate the terms Ej with the help of the
formula above and classical bounds for ζ(s).
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That will give us


G(X , q) = C1
∏
p|q


(
1+ p(p2 − 2)−1


)−1
(X/q)1/2


+ Oε


(XT )ε


 X
qT +


(
X
qT


)1/2


+


(
XT
q


)1/4


+
qT 9/4


X


 .
where


C1 =
ζ
(


3
2


)
2πζ(2)


∏
p


(
1+ 2(p + 1)−1(p2 − 2)−1


)
.


Ramon M. Nunes | Square-free numbers in arithmetic progressions 33/40







Introduction Ideas of the proof of Theorem 2 Other Results


Finally, by choosing


T = (X/q)3/5,


we have


G(X , q) = C1
∏
p|q


(
1+ p(p2 − 2)−1


)−1
(X/q)1/2+Oε((X/q)2/5+ε).


The lemma is now proved. Theorem 2 is then a direct
consequence.
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3 Other Results
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Independence of the E (X , q, a)
Theorem (-, under preparation)
Let ε > 0 arbitrary. Then,∑


a (mod q)


∗ E (X , q, a)E (X , q, a + 1) = o
(
X 1/2q1/2


)
,


uniformly for X 7/9+ε ≤ q ≤ X 1−ε
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Relative dependence of the E (X , q, a)
Theorem (-, under preparation)
Let ε > 0 arbitrary. Then, as X →∞, we have


∑
a (mod q)


∗ E (X , q, a)E (X , q, 2a) ∼ C
∏
p|q


(
1+ 2p−1


)−1


X 1/2q1/2


uniformly for X 7/9+ε ≤ q ≤ X 1−ε
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Moments of higher order
Fouvry-Ganguly-Kowalski-Michel were able to caculate all
the moments for the error terms of the divisor function in
arithmetic progressions when


X 1/2 logX ≤ q ≤ 2X 1/2 logX .


One very important feature in their work is the classical
Voronoi formula which fails to have an equivalent in our
context.
In our case, we were able to partially work out the third
moment.
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Theorem (-, under preparation)
Let ε > 0 arbitrary. Then, uniformly for X 1/2 ≤ q ≤ X 1−ε, we
have


∑
a (mod q)


∗ E (X , q, a)3 = Oε


X (logX )3 + X 3/4+ε
(


X
q


)2
 .
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Thank you for your attention !
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Notation: p, p′, p∗ ∈ P (the set of primes)


pn: the nth prime, but p∗i any prime
dn := pn+1 − pn the nth difference between consecutive primes
Def: An even number 2k is a Polignac number if dn = 2k infinitely
often (i.o.)
Def: n is y -smooth if p | n→ p ≤ y
Def: n is an E2-number if it has exactly two prime divisors


Def: n is a P2-number if it has at most two prime divisors


µ(n) =


{
(−1)m if n is square-free and has m prime factors
0 otherwise


Abbreviation: i.o. means infinitely often.
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2 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES


1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES
(Goldston–Pintz–Yıldırım–Motohashi–Zhang)


TWIN PRIME CONJECTURE: dn = 2 i.o.


POLIGNAC’S CONJECTURE (1849): ∀k ∈ Z+ : dn = 2k i.o.


SMALL GAPS CONJECTURE: ∆= lim inf
n→∞


dn


log n
=0


BOUNDED GAPS CONJECTURE: ∃C dn ≤ C i.o.


REMARK: Bounded gaps conjecture ⇔ There is at least one
Polignac number ⇔ ∃k ∈ Z+: dn = 2k i.o.
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3 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES


Hardy–Littlewood (1926): GRH =⇒ ∆ ≤ 2/3.


Erdős (1940): ∃c1 > 0 (unspecified, small, but effectively
computable) such that ∆ < 1− c1
...
Bombieri–Davenport (1966): ∆ < 0.466 · · · < 1/2
(Motivation for the large sieve; Bombieri–Vinogradov theorem)
...
H. Maier (1988): ∆ < 0.2486 · · · < 1/4
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4 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES


D. Goldston – J. Pintz – C. Yıldırım (2005–2006–2009):
Small gaps conjecture is true, that is, ∆ = 0.


D. Goldston – J. Pintz – C. Yıldırım (2005–2010):


dn < C
√


log n
/


(log log n)2 i.o.


J. Pintz (2011–2013): dn < C (log n)3/7(log log n)4/7 i.o.
and this is the limit of the original GPY-method (without some sort
of improvement of the Bombieri–Vinogradov theorem) as shown by
B. Farkas – J. Pintz – Sz. Gy. Révész (2013)
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5 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES


Definition: Primes have an admissible distribution level ϑ


(1)
∑


q≤Xϑ−ε


max
a


(a,q)=1


∣∣∣∣ ∑
p


p≡a(q)
p≤X


log p − X
ϕ(q)


∣∣∣∣ ≤ C (A, ε)
X


(logX )A


holds for any A > 0, ε > 0 and X > 0
[
⇔ EH(ϑ)


]
.


Bombieri–Vinogradov Theorem (1965): ϑ = 1/2 is admissible.
Elliott–Halberstam Conjecture (1966): ϑ = 1 is admissible.
Hypothesis EH (ϑ): ϑ is an admissible level for primes.


Theorem (GPY 2005–2006–2009): If EH(ϑ) is true for some


ϑ >
1
2
, then dn ≤ C (ϑ) i.o. Furthermore C (1) = 16.
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6 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES


Dickson’s Conjecture (1904): If ain + bi are linear forms with


ai , bi ∈ Z, ai > 0,
k∏


i=1
(ain + bi ) has no fixed prime divisor, then


{ain + bi}ki=1 ∈ Pk for infinitely many n (i.o.).


Definition: A k-tuple Hk = {hi}ki=1, 0 ≤ h1 < h2 < · · · < hk is
admissible if it covers νp < p residue classes mod p for any prime p.
Hardy–Littlewood’s Conjecture (1923): If Hk is admissible,
then
(2)∑


n<x
{n+hi}∈Pk


1∼S(Hk)
x


logk x


(
S(Hk)=


∏
p


(
1− νp


p


)(
1− 1


p


)−k


>0


)
.


Conjecture DHL (k): If Hk is admissible, then {n + hi}ki=1 ∈ Pk


i.o.
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Definition: A k-tuple Hk = {hi}ki=1, 0 ≤ h1 < h2 < · · · < hk is
admissible if it covers νp < p residue classes mod p for any prime p.


Hardy–Littlewood’s Conjecture (1923): If Hk is admissible,
then
(2)∑


n<x
{n+hi}∈Pk


1∼S(Hk)
x


logk x


(
S(Hk)=


∏
p


(
1− νp


p


)(
1− 1


p


)−k


>0
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7 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES


Conjecture DHL (k , 2): If Hk is admissible, then n +Hk contains
at least two primes i.o.


Remark. DHL (k , 2) for any k = k0 implies the Bounded Gap
Conjecture. (Gap size ≤ hk − h1 ≈ k log k with optimal Hk).


Theorem (GPY, 2005–2006–2009): If EH(ϑ) is true, ϑ >
1
2
,


then ∃k0 = C1(ϑ) such that DHL(k , 2) is true for any k ≥ k0.


Corollary: If EH(ϑ) is true for some ϑ >
1
2
, then dn < C2(ϑ) i.o.


However, it suffices to show a conjecture weaker than EH(ϑ) for


some ϑ >
1
2
and still obtain DHL(k0, 2) and thus bounded gaps i.o.
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8 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES


Theorem: Y. Motohashi – J. Pintz, A smoothed GPY-sieve, arXiv:
math/0602599, Feb 27, 2006, Bull. London Math. Soc. 40 (2008),
no. 2, 298–310 and www.renyi.hu/∼pintz, MR2414788
(2009d:1132) (proved again by Yitang Zhang 2013, Ann. of Math.,
to appear).


It is sufficient to prove the analogue of EH(ϑ) with some ϑ >
1
2
for


smooth moduli q (satisfying p | q → p > qb with an arbitrary fixed


b > 0) and for solutions a of the congruence
k∏


i=1
(a + hi ) ≡ 0


(mod q) as residue classes mod q.
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9 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES


Y. Zhang’s Theorem (2013, Ann. of Math., to appear). EH(ϑ) is


true for ϑ =
1
2


+
1
584


for smooth moduli and solutions of the


congruence
k∏


i=1
(a + hi ) ≡ 0(mod q).


Corollary 1: DHL(k , 2) is true for k ≥ 3.5 · 106.
Corollary 2: dn = pn+1 − pn < 7 · 107 i.o.
Remark. 70 million was improved to 4680 (T. Tao’s blog and
Polymath project).
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10 2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES


2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES
(Goldston–S.W.Graham–Pintz–Yıldırım–Maynard–Tao)


Theorem A (Maynard–Tao): We have for any m


(3) lim inf
n


(pn+m − pn)� m3e4m.


Remark. m3 can be deleted (Tao + Polymath).
Theorem B (Maynard–Tao): A positive proportion of all
admissible k-tuples H = {hi}ki=1 satisfies Dickson’s k-tuple
conjecture, i.e.,


(4) {n + hi}ki=1 ∈ Pk for infinitely many n.
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11 2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES


Theorem C (Maynard): lim inf
n→∞


(pn+1 − pn) ≤ 600.


Theorem D (Tao + Polymath 8): lim inf
n→∞


(pn+1 − pn) ≤ 270.


Theorem E (Maynard): EH =⇒ lim inf
n→∞


(pn+1 − pn) ≤ 12.
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12 3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES


3. ARITHMETIC PROGRESSIONS IN DENSE SETS
AND IN THE SET OF PRIMES


Waring and Lagrange (more than 200 years ago):
How long arithmetic progressions (AP’s) are within P.


Erdős–Turán Conjecture 1 (1936): For every k we have
infinitely many k-term AP within P.
Erdős–Turán Conjecture 2: If A ⊂ Z+ has positive upper density,
then we have infinitely many k-term AP’s within A for every k.
Solutions: k = 3 K.F. Roth (1952–53)


k = 4 E. Szemerédi (1968–70)
k arbitrary: E. Szemerédi (1973–75) Abel prize 2012


H. Fürstenberg (1977) Wolf prize 2006/7
T. Gowers (1998) Fields medal 1998
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13 3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES


Van der Corput 1939 ∃ infinitely many 3-term AP’s in P


(Method: Vinogradov’s method for the ternary Goldbach problem)
B. Green – T. Tao (2004–2008) ∀k ∃k-term AP in P. T. Tao
Fields medal 2006
Methods (ergodic – Fürstenberg, harmonic analysis – Gowers,
combinatorial – Szemerédi + number theoretical –
Goldston–Yıldırım)
Erdős Conjecture (USD 3000): If


∑
ai∈A


1/ai =∞, then A


contains infinitely many k-term AP’s for any k.
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14


4. ARITHMETIC PROGRESSIONS OF GENERALIZED
TWIN PRIMES


Theorem 1 (J. P., arXiv 2013): There exists an absolute
constant C0 and an even d ≤ C0 with the following property. For
every k there is a k-term AP of primes such that for each element
p of the progression p + d is also a prime, more exactly, the prime
following p.
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15


Remark. The result is based (with C0 = 4680) on earlier ideas and
results of
(i) Szemerédi–Furstenberg–Gowers–Green–Tao


(ii) Selberg–Heath-Brown–Bombieri–A.I.Vinogradov–Goldston–
Pintz–Yıldırım


(iii) Motohashi–Pintz
(iv) Bombieri–Friedlander–Iwaniec–Fouvry–Deligne–Birch–Weyl–


Zhang
Using the Maynard–Tao approach we obtain Theorem 1 with
C0 = 270 without (iii) and (iv).
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16 5. POLIGNAC NUMBERS


5. POLIGNAC NUMBERS


Def: 2k is a Polignac number if dn = 2k i.o.


Polignac’s Conjecture: Every positive even number is a Polignac
number.


Proposition. Bounded Gaps Conj. ⇔ ∃ at least one Pol. number.


Theorem 2 (J.P., arXiv 2013): There are infinitely many
Polignac numbers, and their lower asymptotic density is at least
5 · 10−5.
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17 5. POLIGNAC NUMBERS


Corollary: For ∀k ∃ k-term AP of Polignac numbers.


Theorem 3 (J.P., arXiv 2013): If dn is the nth Polignac number,
then dn+1 − dn ≤ C (C ineffective).


67 / 135







18 6. THE NORMALIZED VALUE DISTRIBUTION OF dn


6. THE NORMALIZED VALUE DISTRIBUTION OF dn


(5) Prime Number Theorem: ⇒ 1
N


N∑
n=1


dn


log n
= 1.


Conjecture (Erdős): dn/ log n is everywhere dense in [0,∞], i.e.


(6) J =


{
dn


log n


}′
= [0,∞].


Theorem (Ricci 1954, Erdős 1955): J has a positive (Lebesgue)
measure.
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(6) J =


{
dn


log n


}′
= [0,∞].
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19 6. THE NORMALIZED VALUE DISTRIBUTION OF dn


However, no finite limit point was known till 2005.


Theorem (Goldston–Pintz–Yıldırım, 2005–9): 0 ∈ J.


Theorem 4 (J. P., arXiv 2013): ∃c (ineffective) such that
[0, c] ⊂ J.


Theorem 5 (J. P., arXiv 2013): If f (n) ≤ log n, f (n)↗∞,
Jf = {dn/f (n)}′, then ∃cf (ineffective) such that [0, cf ] ⊂ Jf .


71 / 135







19 6. THE NORMALIZED VALUE DISTRIBUTION OF dn


However, no finite limit point was known till 2005.


Theorem (Goldston–Pintz–Yıldırım, 2005–9): 0 ∈ J.


Theorem 4 (J. P., arXiv 2013): ∃c (ineffective) such that
[0, c] ⊂ J.


Theorem 5 (J. P., arXiv 2013): If f (n) ≤ log n, f (n)↗∞,
Jf = {dn/f (n)}′, then ∃cf (ineffective) such that [0, cf ] ⊂ Jf .


72 / 135







19 6. THE NORMALIZED VALUE DISTRIBUTION OF dn


However, no finite limit point was known till 2005.


Theorem (Goldston–Pintz–Yıldırım, 2005–9): 0 ∈ J.


Theorem 4 (J. P., arXiv 2013): ∃c (ineffective) such that
[0, c] ⊂ J.


Theorem 5 (J. P., arXiv 2013): If f (n) ≤ log n, f (n)↗∞,
Jf = {dn/f (n)}′, then ∃cf (ineffective) such that [0, cf ] ⊂ Jf .


73 / 135







19 6. THE NORMALIZED VALUE DISTRIBUTION OF dn


However, no finite limit point was known till 2005.


Theorem (Goldston–Pintz–Yıldırım, 2005–9): 0 ∈ J.


Theorem 4 (J. P., arXiv 2013): ∃c (ineffective) such that
[0, c] ⊂ J.


Theorem 5 (J. P., arXiv 2013): If f (n) ≤ log n, f (n)↗∞,
Jf = {dn/f (n)}′, then ∃cf (ineffective) such that [0, cf ] ⊂ Jf .


74 / 135







20 7. COMPARISON OF CONSECUTIVE VALUES OF dn


7. COMPARISON OF CONSECUTIVE VALUES OF dn


Erdős (1948) lim inf
n→∞


dn+1


dn
< 1 < lim sup


dn+1


dn


Erdős (1956) “One would of course conjecture that
(7)


lim inf
dn+1


dn
= 0 and lim sup


n→∞


dn+1


dn
=∞


(
⇔ lim inf


n→∞


dn


dn+1
= 0
)


but these conjectures seem very difficult to prove.”
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21 7. COMPARISON OF CONSECUTIVE VALUES OF dn


Theorem 6 (J. P., arXiv 2013): Erdős’s conjecture (7) is true,
we have even


(8) lim inf
n→∞


dn+1 log n
dn


<∞, lim sup
n→∞


dn+1


dn log n
> 0


(9) lim sup
n→∞


min(dn−1, dn+1)


dn(log n)c =∞ with c = 10−2
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22 8. CONJECTURES OF ERDŐS AND ERDŐS–MIRSKY


8. CONJECTURES OF ERDŐS AND ERDŐS–MIRSKY
ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS


Conjecture A: d(n) = d(n + 1) i.o. (Erdős–Mirsky 1952)


Conjecture B: Ω(n) = Ω(n + 1) i.o. (Erdős)


Conjecture C: ω(n) = ω(n + 1) i.o. (Erdős)


Def: Ω(n) and ω(n) denote the number of prime divisors of n with
(Ω(n)) or without (ω(n)) multiplicity.
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23 8. CONJECTURES OF ERDŐS AND ERDŐS–MIRSKY


Remark (J. R. Chen 1966). 2p + 1 ∈ P or 2p + 1 = p1p2 i.o.


We conjecture that 2p + 1 = p1p2 i.o. Then for these primes
(10)
d(2p) = d(2p+1) = 4, ω(2p) = ω(2p+1) = Ω(2p) = Ω(2p+1) = 2


Parity phenomenon (Selberg): Sieve methods (alone) can not
distinguish between numbers with an odd or even number of prime
factors.
Erdős’s conjectures were considered as difficult as the twin prime
conjecture.
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24 8. CONJECTURES OF ERDŐS AND ERDŐS–MIRSKY


C. Spiro (1981) d(n) = d(n + 5040) i.o.


Heath-Brown (1984) d(n) = d(n + 1) i.o. and Ω(n) = Ω(n + 1)
i.o.
J. C. Schlage-Puchta (2001–2005) ω(n) = ω(n + 1) i.o.
In joint work with S. W. Graham, D. Goldston, C. Yıldırım we
showed
Theorem 7 (GGPY 2009): Let qn denote the sequence of E2
numbers which have exactly two prime divisors. Then
qn+1 − qn ≤ 6 i.o.


86 / 135







24 8. CONJECTURES OF ERDŐS AND ERDŐS–MIRSKY


C. Spiro (1981) d(n) = d(n + 5040) i.o.
Heath-Brown (1984) d(n) = d(n + 1) i.o. and Ω(n) = Ω(n + 1)
i.o.


J. C. Schlage-Puchta (2001–2005) ω(n) = ω(n + 1) i.o.
In joint work with S. W. Graham, D. Goldston, C. Yıldırım we
showed
Theorem 7 (GGPY 2009): Let qn denote the sequence of E2
numbers which have exactly two prime divisors. Then
qn+1 − qn ≤ 6 i.o.


87 / 135







24 8. CONJECTURES OF ERDŐS AND ERDŐS–MIRSKY


C. Spiro (1981) d(n) = d(n + 5040) i.o.
Heath-Brown (1984) d(n) = d(n + 1) i.o. and Ω(n) = Ω(n + 1)
i.o.
J. C. Schlage-Puchta (2001–2005) ω(n) = ω(n + 1) i.o.


In joint work with S. W. Graham, D. Goldston, C. Yıldırım we
showed
Theorem 7 (GGPY 2009): Let qn denote the sequence of E2
numbers which have exactly two prime divisors. Then
qn+1 − qn ≤ 6 i.o.


88 / 135







24 8. CONJECTURES OF ERDŐS AND ERDŐS–MIRSKY


C. Spiro (1981) d(n) = d(n + 5040) i.o.
Heath-Brown (1984) d(n) = d(n + 1) i.o. and Ω(n) = Ω(n + 1)
i.o.
J. C. Schlage-Puchta (2001–2005) ω(n) = ω(n + 1) i.o.
In joint work with S. W. Graham, D. Goldston, C. Yıldırım we
showed


Theorem 7 (GGPY 2009): Let qn denote the sequence of E2
numbers which have exactly two prime divisors. Then
qn+1 − qn ≤ 6 i.o.


89 / 135







24 8. CONJECTURES OF ERDŐS AND ERDŐS–MIRSKY


C. Spiro (1981) d(n) = d(n + 5040) i.o.
Heath-Brown (1984) d(n) = d(n + 1) i.o. and Ω(n) = Ω(n + 1)
i.o.
J. C. Schlage-Puchta (2001–2005) ω(n) = ω(n + 1) i.o.
In joint work with S. W. Graham, D. Goldston, C. Yıldırım we
showed
Theorem 7 (GGPY 2009): Let qn denote the sequence of E2
numbers which have exactly two prime divisors. Then
qn+1 − qn ≤ 6 i.o.


90 / 135







25 8. CONJECTURES OF ERDŐS AND ERDŐS–MIRSKY


Theorem 8 (GGPY): For every B ≥ 0 (B ∈ Z+) ∃ inf. many n’s
with


(11)
ω(n) = ω(n + 1) = 4 + B, Ω(n) = Ω(n + 1) = 5 + B,


d(n) = d(n + 1) = 24 · 2B


Theorem 9 (GGPY 2011, GGPY 2011):


(12) ω(n) = ω(n + 1) = 3 i.o.,


(13) Ω(n) = Ω(n + 1) = 4 i.o.


Theorem 10 (J. P. 2011): ∀k ∃ k-term AP of natural numbers n
such that (11) is true. The same assertion holds for (12) and (13).
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26 9. SOME IDEAS OF PROOF BEHIND THEOREMS 7–9


9. SOME IDEAS OF PROOF BEHIND THEOREMS 7–9
The following Basic Theorem forms the basis for the proofs of
Theorems 7–10.
BASIC THEOREM (S.W.
Graham–Goldston–Pintz–Yıldırım): If Li (x) = aix + bi
(i = 1, 2, 3, ai , bi ∈ Z, ai > 0) are three linear forms such that
3∏


i=1
Li (x) has no fixed prime divisor, then we have at least two


indices i , j ∈ (1, 2, 3) such that for any C and infinitely many n
(14)
Li (n), Lj(n) have exactly two prime divisors, both larger than C .


Corollary: Take {n, n + 2, n + 6} ⇒ qn+1 − qn ≤ 6 i.o.
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27 9. SOME IDEAS OF PROOF BEHIND THEOREMS 7–9


Proof of (12) of Theorem 9 from the BASIC THEOREM
Let L1(m) = 6m + 1, L2(m) = 8m + 1, L3(m) = 9m + 1.


This is clearly admissible since
3∏


i=1
Li (0) ≡ 1 (mod p). We have


4L1 = 3L2 + 1, 3L1 = 2L3 + 1, 9L2 = 8L1 + 1.
Suppose, e.g., L1(n) and L2(n) are E2-numbers i.o. If x = 3L2(n),
x + 1 = 4L1(n), n 6≡ 1(mod 3), then ω(x) = ω(x + 1) = 3 i.o.
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28 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM


10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM
The proof relies on three theorems:
(i) GPY (2005–6–9). If ∃ϑ > 1/2 s.t. EH(ϑ) is true, i.e. for any
A, ε > 0


(15)
∑


q≤Xϑ−ε


max
a


(a,q)=1


∣∣∣∣∣ ∑
p≤X , p≡a(q)


log p − X
ϕ(q)


∣∣∣∣∣ ≤ C (A, ε)
X


(logX )A ,


then DHL(k , 2) is true for k ≥ k0 = C3(ϑ), i.e. we have for any
admissible Hk at least two primes among {n + hi}ki=1 i.o.


(ii) MOTOHASHI–PINTZ (2005–8): It is sufficient to have (15) for
smooth moduli (p | q → p > qb, b > 0 arbitrary) and a’s satisfying
k∏


i=1
(a + hi ) ≡ 0(mod q).


(iii) ZHANG (to appear): (15) is true if restricted by (ii).
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29 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM


Ideas to prove (i) go back to Selberg and Heath-Brown. Since


n +Hk contains just
k


logN
primes if n ∼ N (n ∈ [N, 2N)) on


average, we look for an average which gives large weights an if


n +H contains many primes. Let PH(n) =
k∏


i=1
(n + hi ).


1. a1(n) =


{
1 if {n + hi}ki=1 ∈ Pk (tautology)
0 otherwise


2. a2(n) = Λk
(
PH(n)


)
=


∑
d |PH(n)


µ(d)


(
log


PH(n)


d


)k


is a reformulation of a1(n) (a2(n) = a1(n)): we cannot evaluate
S(N) =


∑
n∼N


an.
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30 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM


3. a3(n) = Λk,R(n) =
∑


d |PH(n)
d≤R


µ(d) logk R
d


(Selberg’s idea). Problem: a3(n) may be negative.


4. a4(n) = (a3(n))2. First chanceful choice!
S(N) can be evaluated; further if


χP(n) =


{
1 if n ∈ P
0 otherwise,


then S∗(N) =
k∑


i=1


∑
n∼N


anχP(n + hi )


can be evaluated as well if R ≤ N1/4−o(1).


We obtain
S∗(N)


S(N)
=


1
2


+ ok(1) primes “on average”.
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31 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM


5. All attempts 1–4 simulate the full DHL(k) conjecture, i.e. to
obtain k primes in a k-tuple i.o. (Dickson’s conjecture). Let’s be
more modest. We are contented if we approximate DHL(k , 2), i.e.


if we have k + ` prime factors of
k∏


i=1
(n + hi ) for some ` ≤ k − 2.


(16)


a5(n) = Λ2
k+`,R(n) =


 ∑
d |PH(n)


d≤R


µ(d)


(
log


R
d


)k+`



2


, R ≤ N
1
4−ε.


We obtain


(17)
S∗(N)


S(N)
= 1− O


(
`


k


)
− O


(
1
`


)
primes on average over n ∼ N (unconditionally).
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32 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM


With some additional ideas this leads to the Small Gaps


Conjecture, i.e. ∆ = lim inf
n→∞


dn


log n
= 0.


(i) However, conditionally, if ϑ >
1
2
, EH(ϑ) is true, then


(18)
S∗(N)


S(N)
= 2ϑ


(
1− O


(
`


k


)
− O


(
1
`


))
> 1.


(ii) MOTOHASHI–PINTZ: If we can show EH(ϑ) for a ϑ > 1
2 for


smooth moduli (p | q → p > qb) and instead of the worst residue


class mod q for solutions of the congruence
k∏


i=1
(a + hi ) = 0, then


we obtain under the condition b ≥ C`/k


(19)
S∗(N)


S(N)
= 2ϑ


(
1− O


(
`


k


)
− O


(
1
`


)
+ O(e−kb/3)


)
> 1.
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33 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM


(iii) ZHANG: It is possible to show the above mentioned restricted
improvement of the Bombieri–Vinogradov theorem using methods
of Fouvry–Iwaniec, Bombieri–Friedlander–Iwaniec, Weil,
Friedlander–Iwaniec (with an appendix of Bombieri–Birch) which
apply a technique based on the theory of Kloosterman sums. It
turned out later that the most useful idea is in Fouvry–Iwaniec
(1980) which proves the following theorem. For every a ≤ X∑


q≤X 11/21


∣∣∣∣ ∑
n≡a(mod q)


n≤X
p|n→p≤z


1− Exp. Main Term
∣∣∣∣ ≤ C (A)


X
logA X


where z = X 1/883, A > 0, X > 0 arbitrary.


109 / 135







34 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM


ANALOGY: The moduli are here arbitrary (rigid) but the numbers
n are well factorable. In case of prime gaps we have a “dual”
problem. By the Motohashi–Pintz theorem we can factorise q
arbitrarily, and while the primes seem to be rigid, they might be
written in a multilinear form using Linník’s or Heath-Brown’s
identity. Crucial role is still played by Friedlander–Iwaniec (1985):
a ≤ X , d3(n) =


∑
n=n1n2n3


1, (a, q) = 1, q ≤ X 1/2+1/230


∣∣∣∣ ∑
n≤x


n≡a(mod q)


d3(n)− Exp. Main Term
∣∣∣∣ ≤ C (A)


X
logA X


.
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35 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM


Crucial idea behind the proof of Theorems 1–5 (apart from earlier
mentioned results)


MAIN LEMMA (J. P. 2010): The total sum of weights a5(n) for
numbers for which at least one of the numbers n + hi


(i = 1, 2, . . . , k) has a divisor < nb is negligible
(
< ε


2N∑
n=N


a5(n)


)
if


b < εc(k).
Corollary (GPY 2010): Given any η > 0 a positive proportion of
primegaps dn satisfy dn < η log n.
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36 10. SOME IDEAS BEHIND THE PROOF OF ZHANG’S THEOREM


Theorem 10. If k ≥ k0, H = {hi}ki=1 is an admissible k-tuple,
then for N > N0(k) the number of n ∈ [N, 2N) for which
{n + hi}ki=i contains at least two primes and almost primes in all
other components with all prime factors > nc1(k) is at least


c2(k)
N


logk N


if 0 ≤ hi � logN.
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37 11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD–TAO THEOREMS


11. SOME IDEAS BEHIND THE PROOF


OF THE MAYNARD–TAO THEOREMS


An immediate generalization of the weight


(20) a5(n) =


 ∑
d |Π(n+hi )


d≤R


µ(d)


(
log


R
d


)k+`



2


is


(21) a6(n) =


 ∑
d |Π(n+)


d≤R


µ(d)F
(
log d
logR


)
2


with a smooth function F .
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38 11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD–TAO THEOREMS


The optimal choice ` = C
√
k yields


(22)
S∗` (N)


S`(N)
= 2ϑ− C ′√


k


(
= 1− C ′√


k
unconditionally


)
primes on average over n ∈ [N, 2N) (with ϑ = 1


2 [BV]).
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39 11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD–TAO THEOREMS


Soundararajan showed that any function F yields


(23)
S∗F (N)


SF (N)
< 2ϑ (= 1 unconditionally)


primes on average.
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40 11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD–TAO THEOREMS


Based on some results of Conrey, in a joint work with B. Farkas and
Sz. Gy. Révész we showed that for the optimal function F we
obtain


(24)
S∗F (N)


SF (N)
= 2ϑ− C


k2/3


(
= 1− C


k2/3 unconditionally
)


primes on average over n ∈ [N, 2N).
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41 11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD–TAO THEOREMS


The idea of Maynard and Tao was to use


(25) a7(n) =


( ∑
d=d1...dk
di |n+hi
d≤R


µ(d)F
(
log d1


logR
, . . . ,


log dk


logR


))2


.
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42 11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD–TAO THEOREMS


Maynard–Tao’s Theorem. One can choose F in such a way that
we have


(26)
S∗F (N)


SF (N)
=
ϑ


2
log k − O(log log k)


primes on average if n runs between [N and 2N).


Corollary 1. Instead of ϑ = 1/2 [BV, 1965] it is sufficient to work
with any ϑ > 0 [Rényi 1948].
Corollary 2. Instead of just two primes (bounded gaps) we obtain
(log k)/4 primes in any admissible k-tuple infinitely often (if
k > k0), i.e., bounded gaps between pn and pn+r for any r i.o.
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43 11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD–TAO THEOREMS


Let F : Rk −→ R be a bounded measurable function.


Rk :=
{


(t1, . . . , tk) ∈ [0,+∞)k : t1 + · · ·+ tk ≤ 1
}
⊆ Rk ,


Ik(F ) :=


∫
Rk


F (t1, . . . , tk)2dt1 . . . dtk ,


J(m)
k (F ) :=


∫
Rk−1


( 1−
∑
i 6=m


ti∫
0


F (t1, . . . , tk)dtm


)2


dt1 . . . dtm−1dtm+1 . . . dtk ,


Gk(F ) =


k∑
m=1


J(m)
k (F )


Ik(F )
, rk(F ) =


ϑGk(F )


2
.
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44 11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD–TAO THEOREMS


Then we get
S∗F (n)


SF (n)
= rk(F ) + o(1) primes on average if


n ∈ [N, 2N), consequently


lim inf
n→∞


(pn+r−1 − pn) ≤ C (k) if r = drk(F )e.


Remark. F (t1, . . . , tk) =
k∏


i=1


1
1 + Bti


B = (log k − 2 log log k)k


yields Gk(F ) ≥ log k − log log k − 2 if k > k0.
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Comments and variations around:


Theorem (OR, 2014)
X large, a prime to q ď X1{9,


ÿ


nďX ,
pn,qq“1


µpnq epna{qq ! X{
?


q.


Features?
History?


Primes?
Consequences?


Proof?
Optimality?
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A CONSEQUE
NCE


Select χ real, (O.R. 2010)


Assume Lp1, χq ď c1
q


ϕpqq{ log q for small c1


Hecke„1923: D real zero β ą 1´ c2{ log q


Corollary
Lp1, χqďc1


q
ϕpqq{ log q ñ L 1pβ, χq ěc3


` q
ϕpqq


˘1´ε


@ε ą 0, Dc1, c3 ą 0 such that


(Pintz, 1976)
Lp1, χq ! 1{ log q ñ L 1p1, χq " q{ϕpqq.


(Fluch, 1964)
L 1p1, χq ď 1 ñ Lp1, χq " 1{ log q.
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HISTORY , I
Short!


(Vinogradov, 1937) introduced
the systematic use of bilinear
form decompositions for primes


(Davenport, 1937) immediately
recognized the power and de-
rived a result on the Moebius
function.


Subsequent developments: That’s folklore!


(Karatsuba & Voronin, 1992, Chapter II.6)
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PRIMES


Theorem
gcdpa, qq “ 1 and 20 ď q ď X1{24 :


ˇ


ˇ


ˇ


ÿ


nďX


Λpnq epna{qq
ˇ


ˇ


ˇ
ď 14000


?
q


ϕpqqX .


§ It is sharp (change 13000 to 1´ δ proves no Siegel zero)


§ Method is flexible (bilinear decomposition + Barban & Vehov)


§ It is “explicitable” (bilinear decomposition + Barban & Vehov)
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PRIMES (history)


§ (Vinogradov, 1954), plog qq10{
?


q for plog qq2 ď log log X


§ (Karatsuba, 1983),
?


q{ϕpqq for plog qq2 ď log X


§ (Daboussi, 2001),
b


τpqqplog qq3{ϕpqq for plog qq3 ď log X


§ (OR, 2010),
?


q{ϕpqq for plog qq3 ď log X


§ (Wang & Chen, 1994), Explicit


§ (Daboussi & Rivat, 2001), Explicit


§ (Helfgott, 2012), Explicit


Ö


Ok for µ,
Bilinear Dec.


Ð


Not Ok for µ,
Analytical


Ð
Ok for µ,
Bilinear Dec.


ÐNot Ok for µ,
Bil. Dec. + Pos.


Ô


Ö


Ð
Ok for µ,
Bilinear Dec.
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ANOTHER PROOF


(Gallagher, 1970)
log-free density estimate à la Linnik (Turán)


Theorem
ÿ


1ăqďQ


ÿ


χmod˚q


ˇ


ˇ


ˇ


x`h
ÿ


x


χppq log p
ˇ


ˇ


ˇ
! h exp


´


´a
log x
log Q


¯


provided x{Q ď h ď x, exp
a


log x ďQ ď xb .


Exist a, b ą 0 such that
r


r ÝÑ adapt if exceptional character exists.


ä A true explicit challenge! ä Not valid for µ?
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Gallagher PNT for Moebius?


Not done, but ...


use (Motohashi, 1978)!


And believe me, it works !! Save for two problems ...


Exceptional contribution ÝÑ Problem no 1 –
Bound is larger by q


ϕpqq ÝÑ Problem no 2 –
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PRE PROOF


λ
p1q
d “


$


’


&


’


%


µpdq when d ď z,


µpdq logpz2{dq
log z when z ă d ď z2,


0 when z2 ă d.


Theorem
ÿ


nďx


´


ÿ


d|n


λ
p1q
d


¯2
{n ď 5200


log x
log z


.


We have, when x ě z ě 2,


Condition x ě z2 is absent !


(Barban & Vehov, 1968) (Graham, 1978) (Motohashi, 1983)
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BILINEAR DECOMPOSI
TION , I


Select r ď R
Vrpsq “


ÿ


nąz


crpnq
´


ÿ


d|n


λ
p1q
d


¯


{ns


Mrpsq “
ÿ


1ďnďrz2


hrpnq{ns


Ramanujan sum


! nε


Multiply 1 “ ´Vr ` ζMr by 1{ζ.


Mpsq “
ÿ


kďz


µpk q
k s


1
ζ
“ ´


´1
ζ
´M


¯


Vr ´MMrζ `Mr `M.


For Gallagher PNT: 1 “ V2
r ` 2ζMr ´M2


r ζ
2
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BILINEAR DECOMPOSI
TION , II


Assume Rz2 ď X .
Let f be any function e.g. fpnq “ epna{qq


ÿ


Xănď2X


µpnqfpnq


“ ´
ÿ


Xă`mď2X ,
ză`,mď2X{z


µp`q
´


ÿ


d|m


λ
p1q
d


¯


crpmqfp`mq


´
ÿ


kďz,
`ďrz2


µpk qhrp`q
ÿ


Xăk`mď2X


fpk`mq
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AMPLIFICAT
ION We have a family of


decompositions!


ÿ


rďR


µ2prq
ϕprq


ˇ


ˇ


ˇ


ˇ


ÿ


n„X


µpnqe
´an


q


¯


ˇ


ˇ


ˇ


ˇ


Step 1
ÿ


rďR


µ2prq
ϕprq


ˇ


ˇ


ˇ


ˇ


ÿ


`„L ,
m„M


µp`q
´


ÿ


d|m


λ
p1q
d


¯


crpmqe
´a`m


q


¯


ˇ


ˇ


ˇ


ˇ


Step 2
ÿ


rďR


µ2prq
ϕprq


ÿ


bmod˚q


ˇ


ˇ


ˇ


ˇ


ÿ


m„M


´


ÿ


d|m


λ
p1q
d


¯


crpmqe
´b`


q


¯


ˇ


ˇ


ˇ


ˇ


2
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We now save the summation over r :


Theorem
Let q ě 1, T ě 10.
ÿ


rďR{q,
pq,rq“1


1
ϕprq


ÿ


b mod q


ż T


´T


ˇ


ˇ


ˇ


ˇ


ÿ


m


um crpmq


mit
e
´ma


q


¯


ˇ


ˇ


ˇ


ˇ


2


dt


ď 43
ÿ


m


|um|
2
pm ` R2Tq.
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Simple use with r “ 1 + no Barban & Vehov:


Theorem
ˇ


ˇ


ˇ


ÿ


nďX


µpnqepna{qq
ˇ


ˇ


ˇ
ď


30 X p1` log Xq7{2
a


minpq,X{qq
.


When q ď X and pa, qq “ 1


(Iwaniec & Kowalski, 2004)


!
X1`ε


a


minpq,X{qq
` X4{5`ε
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Explicit aspect, one of the difficulties:


Theorem


ÿ


nďX


´


ÿ


d|n


λ
p1q
d


¯2
{n ď 5200


log X
log z


.


When x ě z ě 2
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MOEBIUS AN
D EXCEPTION


AL ZEROS ,I


Conditional!


Dc5, c6 ą 0, such that, if |L 1pβ, χq| ă c5 , then, by
Gallagher-Motohashi Moebius Theorem, one has,
when X „ qc6


ÿ


nďX ,
pn,qq“1


µpnqe
´an


q


¯


—


?
q X


ϕpqqL 1pβ, χq


But this is ! X{
?


q ñ |L 1pβ, χq| not too small!
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MOEBIUS AN
D EXCEPTION


AL ZEROS ,II


Conditional!


Dc7, c8 ą 0, such that, if β ě 1´ c7{ log q , then,
by Gallagher-Motohashi Moebius Theorem, one
has, when X ě qc6 log log q


ÿ


nďX ,
pn,qq“1


µpnqe
´an


q


¯


—


?
q Xβ


ϕpqqL 1pβ, χq
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MOEBIUS AN
D EXCEPTION


AL ZEROS ,III


Conditional!


Theorem


If
ÿ


a mod q,
pa,qq“1


ˇ


ˇ


ˇ


ÿ


`”brqs,
`„L


µp`q
ˇ


ˇ


ˇ


2
!


L2


q
{plog qqc11


for qc9 log log q ď L ď qc10 log log q,


Then no exceptional zeros.


Exist c9, c10, c11 ą 0 such that
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Theorem
ż T


´T


ˇ


ˇ


ˇ


ˇ


ÿ


`ďX


Λp`q
ep`a{qq


`it


ˇ


ˇ


ˇ


ˇ


dt ! log minpq,Tq
?


q X
ϕpqq


q ď X1{6, T ď X2{15


q4{5 , gcdpa, qq “ 1


Theorem


ÿ


Xă`ďX`X θ


Λp`q ep`a{qq !
?


q X θ


ϕpqq
log q


η ă 1{6, q ď Xη, gcdpa, qq “ 1


@θ P pθ0, 1s where X θ0 “ X13{15q4{5
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Prime numbers : new perspectives
CIRM, February 2014


The distribution of nuclear numbers


O. Robert


(Joint work with G. Tenenbaum, and C. Stewart)







Introduction


→ The kernel k(n) of an integer n : k(pa11 pa22 . . . parr ) := p1p2 . . . pr .


→ k(n) is the largest squarefree divisor of n.


→ The kernel occurs in many arithmetic problems and statement,
such as the abc Conjecture (Masser & Oesterlé, 1985).


→ We introduce the distribution function


N(x , y) :=
∑
n6x


k(n)6y


1 (2 6 y 6 x).


→ An integer with small kernel is said to be nuclear,


→ An integer n such that k(n) 6 y is said to be y -nuclear.







Historic about N(x , y)


Squalli (1985) : let
v = log(x/y),


F (t) =
6


π2


∑
m>1


min(1, et/m)


ψ(m)
(t > 0), ψ(m) :=


∏
p|m


(p + 1),


- Elementary methods :


N(x , y) = yF (v)1+O(1/ log(v+2)) (x > 16, e(log x)
1/2+ε


6 y 6 x).


- Analytic methods : for x > 16


N(x , y) = yF (v)


{
1+O


(√ log(v + 2)


log x


)} (
e(log x)


3/4+ε
6 y 6 x


)
- Where does F (t) come from ? The function log(n/k(n)) is
additive and vanishes at the primes :
Erdős & Wintner’s theorem → this function has a density.







Project, Methods


→ Asymptotic estimates for N(x , y) in the largest possible range


What is the precise validity domain for N(x , y) ∼ yF (v) ?


Give some applications to Arithmetic problems,


→ Consider three ranges


log y ≫ (log x)1/2,


log y ≪ (log x)1/2 ,


log y ”close” to (log x)1/2.


→ Three methods (Essentially) :


”Elementary” method : (Large values of y),


Saddle-point method in two variables : direct method.
(Small values of y )


Saddle-point method : indirect method.
(Intermediate values of y).







Elementary method


Recall : v = log(x/y) and F (v) =
6


π2


∑
m>1


min(1, ev/m)


mψ(m)
.


Apply the saddle-point method to F (v) :


F (v) ∼ evσvG (σv )


σv
√


2πg ′′(σv )
� evσvG (σv )


( log v


v


)1/4
Saddle-point : σv �


√
1


v log v and G (s) =
∑
m>1


1


ψ(m)ms
.


By elementary techniques,


N(x , y) = yF (v) + O
(
ϑ(v)y1−σv evσvG (σv )


)
so that N(x , y) ∼ yF (v) as soon as log y > (log x)1/2+ε







Saddle-point in two variables


Dirichlet series


F (s, z) =
∑
n>1


1


k(n)zns
=
∏
p


(
1 +


1


pz(ps − 1)


)
for <e (s) > 0, <e (s + z) > 1.


Theorem 1 (OR, G. Tenenbaum, 2012)


For 2 6 y < x/6, the function (s, z) 7→ x sy zF (s, z) has a unique
real saddle-point (α, β) =


(
α(x , y), β(x , y)


)
: it satisfies


∑
p


pα log p


(1 + pβ(pα − 1))(pα − 1)
= log x∑


p


log p


1 + pβ(pα − 1)
= log y







Small values of y


Perron’s formula


N(x , y) =
1


(2iπ)2


∫
α+iR


∫
β+iR


F (s, z)x sy z
ds


s


dz


z
(x , y 6∈ N)


Truncate the integral to restrict to neighbourhood of
(α, β) : bounds of |F (α + iτ, β + it)| for τ, t large.


Taylor expansion
log F (α + iτ, β + it) + (α + iτ) log x + (β + it) log y


= log F (α, β) + α log x + β log y − Q(τ, t) + error


For log y 6 (log x)1/2−ε, things work fine !


N(x , y) ∼ xαyβF (α, β)


2παβ
√
δ


where δ is the hessian of log F at (α, β).







Intermediate values of y : indirect method


(log x)1/2−ε 6 log y 6 (log x)1/2+ε


→ Start again with


N(x , y) =
1


(2π)2


∫ α+iη1


α−iη1


∫ β+iη2


β−iη2
F (s, z)


x s


s


y z


z
dsdz + error


→ In that domain, produce a ”factorisation”


x sy zF (s, z)


sz
≈ yesvG (s)


s2
Γ
(


1 +
z − 1


s


)
e−(s+z−1)P0(s)


with P0 polynomial with coefficients depend at most on (α, β).
Recall


G (s) =
∑
m>1


1


ψ(m)ms
.


→ Move the α segment of integration to σv







Use estimate of F (v) by the saddle-point method


N(x , y) ∼ y
evσvG (σv )


σv
√


2πg ′′(σv )
e− expD(λ/α) ∼ yF (v)e− expD(λ/α)


where D := Γ′/Γ and λ := α + β − 1.


In the considered domain


yF (v)e− expD(λ/α) ∼ xαyβF (α, β)


2παβ
√
δ


Φ(λ/α)


where


Φ(u) :=


√
2πD ′(u)


Γ(u)
euD(u)−expD(u) � 1 (u > 0).


One has


Φ(u)→ 1 (u → +∞), Φ(u)→
√


2π


e
(u → 0+)







Main result


Recall


Φ(u) :=


√
2πD ′(u)


Γ(u)
euD(u)−expD(u) (u > 0).


Let E ∗ :=
log2 x


(log y)1/2−ε
+


(log2 x)5/6


(log x)1/6
+


√
log(v + 2)


v + 2
.


Theorem 2 (OR, G. Tenenbaum, 2012)


Let 0 < ε < 1/24. As


x > 16, e(log2 x)
3+ε


6 y < x ,


one has


N(x , y) =
xαyβF (α, β)


2παβ
√
δ


Φ(λ/α) exp
(
O(E ∗)


)
.







Refinement of the abc Conjecture


Conjecture 1 ( Masser et Oesterlé (1985) )


For each ε > 0, there exists Mε such that whenever a ∈ N∗,
b ∈ N∗, (a, b) = 1, one has


c := a + b 6 Mεk(abc)1+ε.


Heuristic supporting this conjecture : assume that k(a), k(b)
et k(c) essentially behave like independent random
variables when a, b, c are of a fixed order of magnitude.


We use the recent results about N(x , y).


This refinement of the abc conjecture is joint work with C.
Stewart and G. Tenenbaum. We use a Borel-Cantelli type
argument.







Conjecture 2 (O.R, C. Stewart, G. Tenenbaum)


There exist C0,C1,C2 > 0 such that for any triplet of positive
integers (a, b, c) such that (a, b) = 1, c = a + b, k = k(abc), one
has


c < C0k exp


(
4


√
3 log k


log2 k


(
1 +


log∗3 k


2 log2 k
− C1


log2 k


))
.


Moreover,


c > k exp


(
4


√
3 log k


log2 k


(
1 +


log∗3 k


2 log2 k
− C2


log2 k


))
occurs for infinitely many triplets.


Here, log∗3 k = log3 k if k > exp(ee), and 1 if 1 6 k 6 exp(ee).







The method gives a more precise result :


→ Keep the notation F (v). The proof involves a function H(k)
such that


logH(k) = o
(


log F (23 log k)
)


(k → +∞).


Conjecture 3 (abc version RST )


For each triplet of positive integers (a, b, c) such that (a, b) = 1,
c = a + b, k = k(abc), one has


c � kF (23 log k)3H(k)(log k)10.


Moreover, c > kF (23 log k)3H(k)(log k)−4 occurs for infinitely
many triplets.








EXTENSIONS OF THREE THEOREMS OF NAGELL


A. SCHINZEL (WARSZAWA)


Abstract. Three theorems of Nagell of 1923 concerning integer values
of certain sums of fractions are extended.


Nagell [3] has proved the following theorems.


1. If m, n and x are integers, m > 0, n > 0, x ≥ 0, then except for m = 1,


x = 0, the sum
∑x


k=0
1


m+kn is never an integer.


2. Let a, b, c be integers. Then the sum
∑x


k=0
c


b+ka is an integer only for


finitely many integers x.


3. Let a, b, c and d be integers, a > 0, c2 + d2 > 0 and −ab be not a perfect


square. Then the sum


x
∑


k=1


ck + d


ak2 + b


is an integer for only finitely many integers x.


In theorem 2 it was probably meant that a, b, c, x are positive integers.


Otherwise, the theorem is not true, e.g. for c = 0 or b = −xa
2 (x odd).


The aim of this paper is to extend the above theorems as follows.


Theorem 1. If m, n and x are integers, m > 0, n > 0, x ≥ 0, εk ∈ {−1, 1}


(0 ≤ k ≤ x), then except for m = 1, x = 0 the sum


S1 =
x


∑


k=0


εk


m + kn


is never an integer.


Theorem 2. Let c be a positive integer. Then the sum


S2 =
x


∑


k=0


ck


b + ka
,


where a, b are positive integers, ck are integers satisfying 0 < |ck| ≤ c


(k = 0, 1, . . . , x), is an integer only for finitely many positive integers x


and possibly infinitely many pairs (a, b).
1
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The following example shows that for c = 2 the sum S2 can be an integer


for x = 1 and infinitely many pairs (a, b): c0 = 1, c1 = −2, a = b.


Theorem 3. Let a, b, c, d be integers, a > 0, c2 + d2 > 0, and −ab be not a


perfect square. Then the sum


S3 =
x


∑


k=1


ckx + dk


ak2 + b


is an integer for only finitely many positive integers x, where ck and dk are


integers satisfying |ck| ≤ c, |dk| ≤ d, c2
k + d2


k > 0 (1 ≤ k ≤ x).


The proofs follow Nagell’s arguments supplemented by the following lem-


mas, in which P (N) denotes the greatest prime factor of N and π(x) is the


number of primes ≤ x.


Lemma 1. If x > 0, (m, n) = 1,


(m + n)(m + 2n) . . . (m + (x − ν1)n) > x!,(1)


where ν1 is the number of primes not exceeding x and not dividing n, then


P
(


(m + n)(m + 2n) . . . (m + xn)
)


> x.(2)


Proof. See Sylvester [4], p. 688, in which paper we changed i to n and n to x


to be in agreement with Nagell’s notation. �


Lemma 2. If (m, n) = 1, m ≥ x > 0, then (2) holds.


Proof. This is Sylvester’s theorem ([4], p. 703) quoted also by Dickson ([1],


p. 437). �


Lemma 3. For x ≥ 14 we have π(x) < 3
8 x + 1.


Proof. The primes are 2, 3 or 6k ± 1 (k > 0). The number of such numbers


up to x does not exceed x−1
3 + 2. Now


x − 1


3
+ 2 <


3


8
x + 1 for x > 16.


For x = 14, 15, 16 the lemma is verified directly. �


Lemma 4. For x ≥ 14 the function
(


x+1
3


(


x − t
2 + 1


))t−1
is a strictly in-


creasing function of t ≤ 3
8x + 1.


Proof. By differentiation. �


Lemma 5. If 3n ≥ x + 2, 2 |n and (m, n) = 1, then (2) holds.
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Proof. By Descartes’s rule of signs the polynomial
(x + 1


3


)5
−


(13


16
x +


1


2


)3


has only one positive zero. Hence the inequality
(14 + 1


3


)5
>


(13


16
· 14 +


1


2


)3


implies
(x + 1


3


)5
>


(13


16
x +


1


2


)3


for all x ≥ 14. Hence
(x + 1


3


)x
>


(x + 1


3


(13


16
x +


1


2


))
3


8
x
.


By Lemmas 3 and 4 the right-hand side is greater than
(x + 1


3


(


x −
π(x)


2
+ 1


))π(x)−1
,


thus we obtain
(x + 1


3


)x−π(x)+1
>


(


x −
π(x)


2
+ 1


)π(x)−1
.


By the assumption the left hand side is less than nx−π(x)+1, on the other


hand by the inequality of the arithmetic and geometric mean the right hand


side ≥ x!
(x−π(x)+1)! =


∏π(x)−2
i=0 (x − i). Thus we obtain


nx−π(x)+1(x − π(x) + 1)! > x!.


However, by the assumption 2 |n we have ν1 ≤ π(x)− 1, hence the left hand


side is less than or equal to


n · 2n · . . . · (x − ν1)n < (m + n)(m + 2n) . . . (m + (x − ν1)n)


and by Lemma 1 we obtain (2) for all x ≥ 14. For x < 14 it is enough to


prove (2) for x prime, i.e., for x = 2, 3, 5, 7, 11, 13. In each case by Lemma 1


it is enough to check even n in the interval


x + 2


3
≤ n <


( x!


(x − π(x) + 1)!


)1/(π(x)−1)
,


and by Lemma 2 it is enough to check m < x. A finite computation completes


the proof. �


Proof of Theorem 1. It is enough to assume that (m, n) = 1, m > 1, x > 0.


Consider first n odd. Then there is at least one even number in the sequence


m, m + n, . . . , m + xn.(3)
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Let 2µ be the highest power of 2 which divides any number of the se-


quence (3), let further m+ kn be the first number of the sequence (3) which


is divisible by 2µ.


m + kn = 2µ(2h + 1).


The next number of the form m + tn that is divisible by 2µ is


m + (k + 2µ)n = 2µ(2h + n + 1).


Since n is odd, this number is divisible by 2µ+1, hence it does not belong to


the sequence (3). Therefore in the sum S1 there exists only one term with


the denominator divisible by 2µ, namely εk


m+kn . We obtain


1


2
(m + kn)S1 =


a


b
±


1


2
,


where b is odd. It follows that S1 is not an integer, thus Theorem 1 is proved


for n odd.


Now consider n even, thus m is odd ≥ 3.


Let q be a prime factor of m + kn, where 0 ≤ k ≤ x. If no other term of


the sequence (3) is divisible by q, then we obtain


1


q
(m + kn)S1 =


a


c
±


1


q
,


where q /| c. Hence S1 is not an integer. In order that S1 be an integer at


least two terms of the sequence (3) should be divisible by q, thus q ≤ x.


Taking q = P
(


(m+n)(m+2n) . . . (m+xn)
)


, by Lemma 2 we obtain x > m


and, by Lemma 5, x ≥ 3n − 1.


By Chebyshev’s theorem there exists a prime q such that


1


2
(x + 3) < q ≤ x + 1.(4)


Then there is a term of the sequence (3) divisible by q, since we have


q >
1


2
(x + 3) ≥ 3


n


2
+ 1 > n,(5)


and the numbers of the sequence (3) represent all residues mod q.


Let m + kn be the least term of the sequence (3) divisible by q, then


m + kn = qT,(6)


where k < q.
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According to a previous remark, also the number m + (k + q)n =: m + ln


occurs in the sequence (3), thus


m + ln = q(T + n).(7)


The number m + (k + 2q)n does not occur in the sequence (3), since by (4)


k + 2q ≥ 2q > x. Therefore, the numbers (6) and (7) are the only terms of


the sequence (3) divisible by q. We have


εk


m + kn
+


εl


m + ln
=


εk


qT (T + n)
·


{


2T + n if εl = εk,


n if εl = −εk,


T (T + n)S1 =
a


b
±


{


2T+n
q if εl = εk,


n
q if εl = −εk,


where q /| b. If S1 is an integer, we have q |2T + n or q |n. The latter is


impossible by (5) and the former, since n is even, gives q |T + n
2 . However,


since x > m, q > k and q > 1
2(x + 3) we obtain


T =
m + kn


q
<


2x


x + 3
+ n < 2 + n, i.e. T ≤ n + 1


and by (5)


T +
n


2
≤ 3


n


2
+ 1 < q.


The obtained contradiction proves Theorem 1. �


Proof of Theorem 2. The proof follows in general the proof of Theorem 1.


However, the first part of this proof fails, thus it is not possible to assume


a even. Hence instead of T + a
2 we have to deal with 2T + a and instead


of the inequality x ≥ 3a − 1 we have to assume x ≥ 6a + 1. Moreover,


ν1 ≤ π(x) instead of ν1 ≤ π(x) − 1. Therefore, instead of Lemma 3 we use


the inequality π(x) ≤ 3
8x for x ≥ 24 and in order to apply the assertion of


Lemma 5 we have instead of the inequality
(x + 1


3


)5
>


(13


16
x +


1


2


)3


valid for x ≥ 14 to use the inequality
(x


6


)5
>


(13


16
x
)3


valid for x ≥ 65. Thus the proof of Theorem 1 works for


x ≥ max{65, 2c − 3}.







6 A. SCHINZEL


Finitely many x consist of


x < max{65, 2c − 3}. �


Proof of Theorem 3. Let x0 be the least positive solution of the congruence


ax2 + b ≡ 0 (mod p),(8)


where p is an odd prime, not a divisor of ab, thus 0 < x0 < 1
2p. Then the


next positive solution of (8) is p − x0, hence > 1
2p. Now, Nagell’s theorem


([3], §1) implies that for all sufficiently large x


Px = P


( x
∏


k=1


(ak2 + b)


)


> 2x.


Therefore, if x is large enough only one of the numbers ak2 + b (1 ≤ k ≤ x)


is divisible by Px. Let it be the number ax2
0 + b. Then Px | cx0


x0 + dx0


implies Px |ad2
x0


+ bc2
x0


. By the assumptions ad2
x0


+ bc2
x0


6= 0, hence 2x ≤


|ad2
x0


+ bc2
x0
| ≤ ad2 + |b|c2. If 2x > ad2 + |b|c2, then we obtain


1


Px
(ax2


0 + b)S3 =
cx0


x0 + dx0


Px
+


T


N


where Px /| (cx0
x0 + dx0


)N . Thus S3 cannot be an integer. �
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