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Notation

e P*(n) = the largest prime factor of n > 2, and P*(1) =1
@ P~(n) = the smallest prime factor of n > 2, and P~(1) =1
o V(x,y):=#{n<x:Pi(n) <y} (2<y<x)
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o w(n)=3_,,L and w(1) =0
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e P*(n) = the largest prime factor of n > 2, and P*(1) =
@ P~(n) = the smallest prime factor of n > 2, and P~(1) =1

o V(x,y):=#{n<x:Pi(n) <y} (2<y<x)

0 0(xy) = #{n<x:P(n)>y} (<y<x)

o w(n)=3_,,L and w(1) =0

A stands for the set of additive functions f with (1) =0

@ M stands for the set of multiplicative functions g with g(1) =1
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*(n) = the largest prime factor of n > 2, and P*(1) =
P~(n) = the smallest prime factor of n > 2, and P~(1) =1
V(x,y)=#{n<x:P7(n) <y} (2<y<x)

Ox,y) = #{n<x: P (M >y} (2<y<x)

w(n) =>_,,1 and w(1) =0

@ A stands for the set of additive functions f with f(1) =0

@ M stands for the set of multiplicative functions g with g(1) =1

e f € Ais said to be strongly additive if f(p®) = f(p), Vo € N;
A* = {f € A: f strongly additive}
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P~(n) = the smallest prime factor of n > 2, and P~(1) =1
Vix,y) =#{n<x:Pf(n)<y} (2<y<x)

O(xy) = #n<x:P () >y} (2<y<x)

w(n) =>_,,1 and w(1) =0

@ A stands for the set of additive functions f with f(1) =0

@ M stands for the set of multiplicative functions g with g(1) =1
e f € Ais said to be strongly additive if f(p®) = f(p), Vo € N;

A* = {f € A: f strongly additive}

@ g € M is said to be strongly multiplicative if g(p®) = g(p),
Va € N; M* = {g € M : g strongly multiplicative}

Jean-Marie De Koninck, Univei On the proximity of additive and multiplicative functions





*(n) = the largest prime factor of n > 2, and P*(1) =
P~(n) = the smallest prime factor of n > 2, and P~(1) =1
Vix,y) =#{n<x:Pf(n)<y} (2<y<x)

O(xy) = #n<x:P () >y} (2<y<x)

w(n) =>_,,1 and w(1) =0

@ A stands for the set of additive functions f with f(1) =0

@ M stands for the set of multiplicative functions g with g(1) =1
e f € Ais said to be strongly additive if f(p®) = f(p), Vo € N;

A* = {f € A: f strongly additive}

@ g € M is said to be strongly multiplicative if g(p®) = g(p),

Va € N; M* = {g € M : g strongly multiplicative}

o ForfeA geM,E(f,g;x):=#{n<x:f(n)=g(n)}
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@ We only consider those functions f € A where f(n) # 0 for at
least one integer n > 1.

@ For all f € A, there exists g € M with E(f, g; x) > x/ log x
(choose g(p®) = f(p*) =1 for all primes p and a € N).
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Elementary results

@ We only consider those functions f € A where f(n) # 0 for at
least one integer n > 1.

@ For all f € A, there exists g € M with E(f, g; x) > x/ log x
(choose g(p®) = f(p*) =1 for all primes p and a € N).

@ There exist f € A and g € M such that E(f, g; x) > cx.
Indeed, let S C @ (here p = {2,3,5,...}) such that
Y pes 1/p < ocand let f € A" be defined by

1 if pes,
f(”)_{o if pep\S.
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@ We only consider those functions f € A where f(n) # 0 for at
least one integer n > 1.
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Indeed, let S C @ (here p = {2,3,5,...}) such that
Y pes 1/p < ocand let f € A" be defined by

1 if pes,
f(”)_{o if pep\S.

Then f(n) =0 Vn € R with R C N of density ¢ = H (1—l).
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Elementary results

@ We only consider those functions f € A where f(n) # 0 for at
least one integer n > 1.

@ For all f € A, there exists g € M with E(f, g; x) > x/ log x
(choose g(p®) = f(p*) =1 for all primes p and a € N).

@ There exist f € A and g € M such that E(f, g; x) > cx.
Indeed, let S C @ (here p = {2,3,5,...}) such that
Y pes 1/p < ocand let f € A" be defined by

1 if pes,
f(”)_{o if pep\S.

Then f(n) =0 Vn € R with R C N of density ¢ = H (1 - 1)
peS

Let g € M* be defined by g(p) = f(p) for p€ p\ S.
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Elementary results

@ We only consider those functions f € A where f(n) # 0 for at
least one integer n > 1.

@ For all f € A, there exists g € M with E(f, g; x) > x/ log x
(choose g(p®) = f(p*) =1 for all primes p and a € N).

@ There exist f € A and g € M such that E(f, g; x) > cx.
Indeed, let S C @ (here p = {2,3,5,...}) such that
Y pes 1/p < ocand let f € A" be defined by

1 if pes,
f(p)_{O if pep\S.

Then f(n) =0 Vn € R with R C N of density ¢ = H (1 - 1)
peS

Let g € M* be defined by g(p) = f(p) for p€ p\ S.
Then, g(n) = f(n) for n € R, and E(f, g; x) > cx.
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The case f(n) = w(n)

@ letf =w

@ For each integer k > 2, there exists a function g € M* such
that

x  (loglog x)k1

Clogx T (k—1)!

(%) E(w,g;x) > (x > x0)
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that
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The case f(n) = w(n)

@ letf =w

@ For each integer k > 2, there exists a function g € M* such
that

x  (loglog x)k1

Clogx T (k—1)!

(%) E(w,g;x) > (x > x0)

Indeed, choose g(p) = k*/*.
For all integers n such that w(n) = k, we have

g(n) = (kM) = k = w(n).
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The case f(n) = w(n)

@ letf =w
@ For each integer k > 2, there exists a function g € M* such
that
x  (loglog x)k1
Clogx T (k—1)!

(%) E(w,g;x) > (x > x0)

Indeed, choose g(p) = k*/*.
For all integers n such that w(n) = k, we have

g(n) = (kM) = k = w(n).

Therefore, (x) follows from the fact that

x (loglog x)k1

logx (k—1)!

#{n<x:w(n)=k}>c (x > xo).
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Lower and upper bounds for E(w, g; x)

Theorem 1. Given any € > 0, there exists a multiplicative function

g such that
X
E ; —_
(. gix) > (log log x)1+=
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Lower and upper bounds for E(w, g; x)

Theorem 1. Given any € > 0, there exists a multiplicative function

g such that
X

E ; —_—.
(. gix) > (log log x)1+e

Theorem 2. Given any ¢ > 0, there exists a multiplicative function
g and a sequence x, — oo such that

Xr
> (ioglog x,) 77+

E(w, g %)

Jean-Marie De Koninck, Univei On the proximity of additive and multiplicative functions





Lower and upper bounds for E(w, g; x)

Jean-Marie De Koninck, Univei On the proximity of additive and multiplicative functions





Lower and upper bounds for E(w, g; x)

Theorem 3.

(this result will tamper our ambitions)
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Lower and upper bounds for E(w, g; x)

Theorem 3.

(this result will tamper our ambitions)

Theorem 4. For all multiplicative functions g, we have

E(w, g;x) = o(x) (x = 00).
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A non trivial lower bound for E(w, g; x)

Theorem 1. Given any € > 0, there exists a multiplicative function

g such that
X
E ; —_
(. gix) > (log log x)1+=
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A non trivial lower bound for E(w, g; x)

Theorem 1. Given any € > 0, there exists a multiplicative function

g such that
X
E ; —_
(. gix) > (log log x)1+=

Sketch of proof : ‘
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A non trivial lower bound for E(w, g; x)

Theorem 1. Given any € > 0, there exists a multiplicative function

g such that
X
E ; —_
(. gix) > (log log x)1+=

Sketch of proof : ‘
Let 6 > 0.
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A non trivial lower bound for E(w, g; x)

Theorem 1. Given any € > 0, there exists a multiplicative function

g such that
X
E ; —_
(. gix) > (log log x)1+=

‘Sketch of proof : ‘
Let 6 > 0.

Let s; = 2, and for j > 2, let s; be the smallest prime number larger
than max(s;_1,;1?).
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Theorem 1. Given any € > 0, there exists a multiplicative function

g such that
X

E ; —_
(. gix) > (log log x)1+=

‘Sketch of proof : ‘
Let 6 > 0.

Let s; = 2, and for j > 2, let s; be the smallest prime number larger
than max(s;_1,;1?).

Let S = {s1,%,...}.
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A non trivial lower bound for E(w, g; x)

Theorem 1. Given any € > 0, there exists a multiplicative function

g such that
X

E ; —_
(. gix) > (log log x)1+=

‘Sketch of proof : ‘
Let 6 > 0.

Let s; = 2, and for j > 2, let s; be the smallest prime number larger
than max(s;_1,;1?).

Let S = {s1,%,...}. Wehave Y 2, 1/s; < 0.
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A non trivial lower bound for E(w, g; x)

Theorem 1. Given any € > 0, there exists a multiplicative function
g such that

X
E(w,g;x) >» —————.
(. £:x) (log log x)t+=

‘Sketch of proof : ‘
Let 6 > 0.

Let s; = 2, and for j > 2, let s; be the smallest prime number larger
than max(s;_1,;1?).

Let S = {s1,%,...}. Wehave Y 2, 1/s; < 0.
Define g € M* by

| Jj if p=s;forsomes; €S,
g(p)—{ 1 ifpgs.
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Sketch of the proof of Theorem 1

Let m € N be fixed. The proportion P,,(S) of positive integers
divisble by s, but by no other elements of S is

S ) et

a>1 "M k>1 k>1
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Sketch of the proof of Theorem 1

Let m € N be fixed. The proportion P,,(S) of positive integers
divisble by s, but by no other elements of S is

S ) et

a>1 "M k>1 k>1

Let x be large and set

{1 := |loglog x — (loglog x)*3], £, := |loglog x + (log log x)*/3|
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Sketch of the proof of Theorem 1

Let m € N be fixed. The proportion P,,(S) of positive integers
divisble by s, but by no other elements of S is

S ) et

a>1 "M k>1 k>1

Let x be large and set

{1 := |loglog x — (loglog x)*3], £, := |loglog x + (log log x)*/3|

We have

#{n < x:w(n) =g(n} > #{n<x:w(n)=g(n) =}

Jj=t
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Sketch of the proof of Theorem 1
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Sketch of the proof of Theorem 1

Moreover, for each j > 1,

#{n < x:g(n)=j, w(n) =}
> #{n < x:s;n, s, tnforeach k # j, w(n)=j}

2#{m§§:skfmforeachsk68, w(m):j—l}.

J
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Sketch of the proof of Theorem 1

Moreover, for each j > 1,

#{n < x:g(n)=j, w(n) =}
> #{n < x:s;n, s, {nforeach k # j, w(n) =/}

2#{m§§:skfmforeachsk68, w(m):j—l}.

J

For x sufficiently large, we have for each j € [¢1, (5],

s; < j1% < (loglog x + (log log x)?/3)**2% < (log log x)**39.
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Sketch of the proof of Theorem 1

Moreover, for each j > 1,

#{n < x:g(n)=j, w(n) =}
> #{n < x:s;n, s, {nforeach k # j, w(n) =/}

2#{m§§:skfmforeachsk68, w(m):j—l}.

J

For x sufficiently large, we have for each j € [¢1, (5],

s; < j1% < (loglog x + (log log x)?/3)**2% < (log log x)**39.

Therefore, for each j € [(1, (5],
#{n<x:g(n)=j, w(n)=Jj}
> # {m <

W:skfm,vaes, w(m):j_l}‘
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Sketch of the proof of Theorem 1
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Sketch of the proof of Theorem 1

Therefore, for all j € [, (5],

#{n<x:g(n)=j, w(n) =,}

2#{m§ x st mVs, €8S, w(m):j—l}

(log log x)1+30
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Sketch of the proof of Theorem 1

Therefore, for all j € [, (5],

#{n<x:g(n)=j, w(n) =,}

2#{m§ x st mVs, €8S, w(m):j—l}

(log log x)1+30

Summing for j € [{1, (5], we obtain

#{n < x:w(n)=g(n)}

2#{m§ X csktm Vs, €8, wim) el — 1,0, —1

(log log x)1+30
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Sketch of the proof of Theorem 1
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Sketch of the proof of Theorem 1

On the other hand,

#l{ms s wm ¢ - 16 - 1)

(log log x)1+39
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Sketch of the proof of Theorem 1

On the other hand,

#l{ms s wm ¢ - 16 - 1)

X
=o| +————].
(log log x)1+30
It follows that

#{n < x:w(n)=g(n)}

X
> < ——r— —_—
=7 {m = (loglog x)13 > tm Ve & S} e ((log |ogX)”35>

> (1+ 0(1))C(5)W-
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Sketch of the proof of Theorem 1

On the other hand,

#l{ms s wm ¢ - 16 - 1)

X
=o| +————].
(log log x)1+30
It follows that

#{n < x:w(n)=g(n)}

X
> < ——r— —_—
=7 {m = (loglog x)13 > tm Ve & S} e ((log |ogX)”35>

> (1+ 0(1))C(5)W-

We only need to choose § = ¢/3.
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Theorem 2

Theorem 2. Given any € > 0, there exists a multiplicative function
g and a sequence x, — oo such that

XI’
(log log x,)1/2+="

E(w,g;x) >
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Theorem 2

Theorem 2. Given any € > 0, there exists a multiplicative function
g and a sequence x, — oo such that

XI’
(log log x,)1/2+="

E(w,g;x) >

Sketch of proof : |
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Theorem 2

Theorem 2. Given any € > 0, there exists a multiplicative function
g and a sequence x, — oo such that

Xr

E : .
(0, g1 x) > (log log x, )1/2+e

Sketch of proof : |
Let § > 0.
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Theorem 2

Theorem 2. Given any € > 0, there exists a multiplicative function
g and a sequence x, — oo such that

Xr

E : .
(0, g1 x) > (log log x, )1/2+e

| Sketch of proof :|
Let 0 > 0.

Let s; = 2, and for j > 2, let s; be the smallest prime number larger
than max(s;_1, ;).
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Theorem 2

Theorem 2. Given any € > 0, there exists a multiplicative function
g and a sequence x, — oo such that

Xr

E : .
(0, g1 x) > (log log x, )1/2+e

| Sketch of proof :|
Let 0 > 0.

Let s; = 2, and for j > 2, let s; be the smallest prime number larger
than max(s;_1, ;).

Set S = {s1,5,...}.
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Theorem 2

Theorem 2. Given any € > 0, there exists a multiplicative function
g and a sequence x, — oo such that

Xr

E : .
(0, g1 x) > (log log x, )1/2+e

| Sketch of proof :|
Let 0 > 0.

Let s; = 2, and for j > 2, let s; be the smallest prime number larger
than max(s;_1, ;).

Set S = {s1,5,...}.

Let;*j:eezJ forj=1,2,...
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Sketch of the proof of Theorem 2
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Sketch of the proof of Theorem 2

For each j > 1, let z; be the integer that maximizes the quantity

#{mggzskfmforeachskes, w(m):zj—l}.

J
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Sketch of the proof of Theorem 2

For each j > 1, let z; be the integer that maximizes the quantity

#{mggzskfmforeach sk €S, w(m):zj—l}.
j
Let g € M* be defined by

_J z if p=sjforsomes; €S,
g(”)—{1 if pgS.
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Sketch of the proof of Theorem 2

For each j > 1, let z; be the integer that maximizes the quantity

#{mggzskfmforeachskeé’, w(m):zj—l}.

J

Let g € M* be defined by

_J z if p=sjforsomes; €S,
g(”)—{1 if pgS.

Let [; := [log log 1; — (log log 1;)*/**¢, log log r; + (log log r;)'/**<].
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Sketch of the proof of Theorem 2

For each j > 1, let z; be the integer that maximizes the quantity

#{mggzskfmforeach sk €S, w(m):zj—l}.
j
Let g € M* be defined by
_J z if p=sjforsomes; €S,
g(”)—{ 1 if pgS.
Let /; := [loglog r; — (log log r;)/>*¢ log log r; + (log log r;)Y/?*=].
We know that
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Sketch of the proof of Theorem 2
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Sketch of the proof of Theorem 2

and therefore, as j — oo,

#{mggzskfmforeachskeé’}

d]

:Z#{ gg'skfmforeachskGS,w(m):y}
J

vel;

+o (Q> .
5
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Sketch of the proof of Theorem 2

and therefore, as j — oo,

#{mggzskfmforeachskeé’}

d]

—Z#{ §Q'skfmforeachskGS,w(m):y}
J

vel;

+o (Q> .
5

By the nature of (z;), we have

S#{m<Liatmynes, wm =}

vel;

< 2(loglog r;)/?" 4 {m < G sk{m,Vse €S, w(m) =2z — 1}
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Sketch of the proof of Theorem 2
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Sketch of the proof of Theorem 2

It follows that

#{mgg:skfmforeachskeS,w(m):zj—l}
d]
#{m < Z : s { m for each s, € S} + o(2)

- 2(log log r;)1/2+¢
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Sketch of the proof of Theorem 2

It follows that

#{mgg:skfmforeachskeS,w(m):zj—l}
d]
#{m < Z : s { m for each s, € S} + o(2)

- 2(log log r;)1/2+¢

On the other hand,

#{m < ;_, s { m for each s, € S} = (1+ 0(1))C(8) 2 (j — o0).

2] Sj
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Sketch of the proof of Theorem 2
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Sketch of the proof of Theorem 2

Therefore, as j — o0,

#{mgg:skfmforeachskES,w(m):zj—l}

J

1 fj
- (5 " O(l)) O loglog )z
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Sketch of the proof of Theorem 2

Therefore, as j — o0,

#{mgg:skfmforeachskES,w(m):zj—l}
d]

> (1 + o(l)) C(é)sj

i
(log log r;)t/2+e"

N

By writing each n < rj as n = s; - m, we have

E(w.gin) = #{n<r:g(n) =z, w(n) =z}
> #{n<rsin, st nfor k£, w(n) =z}
> #{m§g:skfm,VskES,w(m):zj—l}
d]
> i

<% + 0(1)> C(5)5j(|0g log r;)1/2+
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Sketch of the proof of Theorem 2
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Sketch of the proof of Theorem 2

On the other hand, for j sufficiently large,

s; < j7T < (2)° = (loglog )7,
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Sketch of the proof of Theorem 2

On the other hand, for j sufficiently large,

s; < j7T < (2)° = (loglog )7,

so that

4]
(log log r;)1/2+=

1
Ewain) > (—+o(1)) c(s)
2 Sj
fj
(loglog ) V27

>
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Theorem 3

Theorem 3. Let g be a multiplicative function for which the
corresponding set S, := {p € p : g(p) # 1} is such that

1
E — < 00.
pGSg'D

Then, for each € > 0, the exists a sequence x;, — oo such that

Xk

E : < -
(0, g:x) < (log log x, )1 —=

(k=1,2,..).

Jean-Marie De Koninck, Univer On the proximity of additive and multiplicative functions





Sketch of proof of Theorem 3
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Sketch of proof of Theorem 3

Let
A:={neN:pn=>pecS,} e B:={neN:pn=p&S,}.
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Sketch of proof of Theorem 3

Let
A:={neN:pn=>pecS,} e B:={neN:pn=p&S,}.

Since ZpGSg ,% < 00, there exists a real number C; such that

1
Cg:Z;

ae
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Sketch of proof of Theorem 3

Let
A:={neN:pn=>pecS,} e B:={neN:pn=p&S,}.

Since ZpGSg ,% < 00, there exists a real number C; such that

1
Cg:Z;

ae

Define the constants ¢; implicitly by

1
Z SZCJCg’

[e.o]
so that Z ¢ <L
=1
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Sketch of the proof of Theorem 3
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Sketch of the proof of Theorem 3

Fix £ € (0,1). For each integer k > 1, let y, = k*° and define

J = (yk — y;/zﬁ,yk —|—y;/2+6 (k=1,2,3,...).
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Sketch of the proof of Theorem 3

Fix £ € (0,1). For each integer k > 1, let y, = k*° and define

J = (yk — y;/zﬁ,yk —|—y;/2+6 (k=1,2,3,...).

For k large enough, say for k > kg, the intervals J, are disjoint.
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Sketch of the proof of Theorem 3

Fix £ € (0,1). For each integer k > 1, let y, = k*° and define
J = (yk — y;/zﬁ,yk —|—y;/2+6 (k=1,2,3,...).

For k large enough, say for k > kg, the intervals J, are disjoint.
let Dy =Y ¢ (k> ko).

JE€Jk
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Sketch of the proof of Theorem 3

Fix £ € (0,1). For each integer k > 1, let y, = k*° and define

J = (yk — y;/zﬁ,yk —|—y:/2+5 (k=1,2,3,...).

For k large enough, say for k > kg, the intervals J, are disjoint.
let Dy =Y ¢ (k> ko).

JE€Jk

Since Z D, < 1, for infinitely many k's we have D, < —.
k> ko

x|
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Sketch of the proof of Theorem 3

Then, for each of these integers k, setting x, = e,

E(w,g;xx) = Z#{n <xx:w(n)=j,g(n) =}

JE€Jk

+0 (xx exp(—(log log x¢)**/3)) ,

where we used the result (a consequence of Th. 3.8 in the book of
Tenenbaum) :

Uniformly for x > 3 and 0 < {(x) < 4/log log x,

#{n < x : lw(n)—loglog x| > &(x)\/loglog x} < xe ¢X)*/3,
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Sketch of the proof of Theorem 3

Jean-Marie De Koninck, Univei On the proximity of additive and multiplicative functions





Sketch of the proof of Theorem 3

For each j € Ji, we have
#{n < xicrw(n) =j,&(n) =j}
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Sketch of the proof of Theorem 3

For each j € Ji, we have
#{n < xicrw(n) =j,&(n) =j}
- Z#{ng—;:be%,w(b):j—w(a)}.

ae
g(a)=j

We use the following result (which follows from one of Balazard) :

The maximal value of wi(x) := #{n < x : w(n) = k} is
attained when k = ko log log x + O(1), in which case

Tk (X) = (co + 0(1))x/+/log log x as x — oo.
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Sketch of the proof of Theorem 3

For each j € Ji, we have
#{n < xicrw(n) =j,&(n) =j}

We use the following result (which follows from one of Balazard) :

The maximal value of wi(x) := #{n < x : w(n) = k} is
attained when k = ko log log x + O(1), in which case

Tk (X) = (co + 0(1))x/+/loglog x as x — oc.

There exists a positive constant ¢ such that

#{n<x:w(n)=j, g —j}<CZ \/m

g(a)=j
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Sketch of the proof of Theorem 3
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Sketch of the proof of Theorem 3

It follows that

E(w,gixk) < ¢G> ¢
; J\/Ioglogxk

¢ CyDy———c + O (i exp(—(log log x)>*/3))

\/log log x

¢ Cg Xk +0 (Xk exp(—(log |°ng)2a/3)) :

k+/log log x;

+ O (xx exp(—(log log x¢)*/3))
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Sketch of the proof of Theorem 3

It follows that

E(w,gixk) < ¢G> ¢
; J\/Ioglogxk

¢ CyDy———c + O (i exp(—(log log x)>*/3))

\/log log x

¢ Cg Xk +0 (Xk exp(—(log |°ng)28/3)) :

k+/log log x;

+ O (xx exp(—(log log x¢)*/3))

Since k = y:/(2+66) > y:/2725 = (log log x)/?72¢, we have
¢ Cg Xk e
E(w gix) < + O (x exp(—(log log x¢)*/3))
log log xx
¢ Cg Xk

(log log x )1—2¢ +0 (Xk exp(—(log log Xk)2€/3)) ,
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Theorem 4

Theorem 4. Given any multiplicative function g,

E(w, g;x) = o(x) (x — 00).
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Theorem 4

Theorem 4. Given any multiplicative function g,

E(w, g;x) = o(x) (x — 00).

Sketch of proof ‘
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Theorem 4

Theorem 4. Given any multiplicative function g,

E(w, g;x) = o(x) (x — 00).

Sketch of proof ‘

We only need to consider those integers n < x such that

lw(n) — log log x| < (log log x)*/®.
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Theorem 4

Theorem 4. Given any multiplicative function g,

E(w, g;x) = o(x) (x — 00).

Sketch of proof ‘

We only need to consider those integers n < x such that

lw(n) — log log x| < (log log x)*/®.

For D,k € N, let
Tox :={n€N:P*(n) <D and p*"*{ n for all primes p} .
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Theorem 4

Theorem 4. Given any multiplicative function g,

E(w, g;x) = o(x) (x — 00).

Sketch of proof ‘

We only need to consider those integers n < x such that

lw(n) — log log x| < (log log x)*/®.

For D,k € N, let
Tox :={n€N:P*(n) <D and p*"*{ n for all primes p} .

For each D and k, the set Tp x is finite.
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Sketch of the proof of Theorem 4
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Sketch of the proof of Theorem 4

Tok :={neN:PT(n) <D and p*™* { n for all primes p}.
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Sketch of the proof of Theorem 4

Tok :={neN:PT(n) <D and p*™* { n for all primes p}.

Let Up :=={n € N: P~ (n) > D},
so that #{n < x:neUp} = ®(x, D).
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Sketch of the proof of Theorem 4

Tok :={neN:PT(n) <D and p*™* { n for all primes p}.

Let Up :=={n € N: P~ (n) > D},
so that #{n < x:neUp} = ®(x, D).

Let Sk = {n € N : pk¥*1|n for aome prime p}.
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Sketch of the proof of Theorem 4

Tok :={neN:PT(n) <D and p*™* { n for all primes p}.

Let Up :=={n € N: P~ (n) > D},
so that #{n < x:neUp} = ®(x, D).

Let Sk = {n € N : pk¥*1|n for aome prime p}.
For each integer k > 1,

X

Sk(x):{ngx:nGSk}Szk.
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Sketch of the proof of Theorem 4
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Sketch of the proof of Theorem 4

Lemma. Let g € M. Write each integer n € [2, x| satisfying
lw(n) — log log x| < (log log x)3/° as

n= H p? - H p? = u(n) - t(n).

p?|ln p?||n
PQTD,k PETDJ(

Let n; and n, be two positive integers such that g(n;) = w(ny) and
g(n2) = w(ny). Let uj = u(n;) and t; = t(n;) for j =1,2.
If uy = up, then w(ty) = w(tn).
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Sketch of the proof of Theorem 4

Lemma. Let g € M. Write each integer n € [2, x| satisfying
lw(n) — loglog x| < (log log x)3/® as

n= H p? - H p? = u(n) - t(n).

p?|ln p?||n
PQTD,k PETDJ(

Let n; and n, be two positive integers such that g(n;) = w(ny) and

g(n2) = w(ny). Let uj = u(n;) and t; = t(n;) for j =1,2.
If uy = up, then w(ty) = w(tn).

In other words, if two integers n < x such that g(n) = w(n) have the
same u(n) part, then their t(n) parts have the same number of
distinct prime factors.
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Proof of Lemma
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Proof of Lemma

Since Tp « is a finite set and assuming that g(n) # 1 for some n € N,
then, for D sufficiently large (and depending only on g), the quantity

Vox = _min ||g((n))!|
m,n , m
\g(n)\>|gD(r,;')\ g

is well defined, in which case Vp x > 1. Let x be large enough so that

1

14+ ——=% < Vpi.
- (log log x)1/3 Dk
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Proof of Lemma

Since Tp « is a finite set and assuming that g(n) # 1 for some n € N,
then, for D sufficiently large (and depending only on g), the quantity

Vox = _min ||g((n))!|
m,n , m
\g(n)\>|gD(r,;')\ g

is well defined, in which case Vp x > 1. Let x be large enough so that

1+ ! <V
(log log x)1/3 Dk

We first show that g(t;) = g(t2). Indeed, it is clear that

w(ny) _ g(m) _ g(uity) _ g(t)
w(m) g(m) glwt) glt)
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Proof of Lemma
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Proof of Lemma

If g(t1) # g(t2), we have

g(t1) g(t2) 1
mex (g(tz)’ g(n)) = Yok = T Goglog )17
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Proof of Lemma

If g(t1) # g(t2), we have

« (g(tl) g(t2)
(t2) g(t1)

Assume say that w(n2) > w(ny), then we have
2)

)
w(m) = w(m)- :Enl) (log log x — (log IogX)3/5) (1 ’ (|0g|01gx)1/3>

> loglog x + (log log x)

1
(log log x)1/3"

)ZVD,k>1+

2/3
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Proof of Lemma

If g(t1) # g(t2), we have

« <g(t1) g(t2)
(t2) g(t1)

Assume say that w(n2) > w(ny), then we have
2) o

)
wln = win w(
(n2) (m)- ()

> loglog x + (log log x)

)ZVD,k>1+

2/3

w(n)

w(n) = w(m)- () < <|og log x + (Ioglogx)3/5) (1 +

< loglogx — (loglog x)2/3,
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(Iog log x — (log Iogx)3/5) (1 +

(log log x)1/3"

1
(log log x)1/3 )

1 -1
(log logX)1/3>






Proof of Lemma
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Proof of Lemma

Assume say that w(n2) > w(ny), then we have

(log log x)1/3
> loglog x + (log log x)/3

and

w 1 -
wim) = w(n)- WEZS < (Iog log x + (Iog|0gx)3/5) (1 + (Ioglogx)1/3>

< loglogx — (loglog x)%/3,
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Proof of Lemma

Assume say that w(n2) > w(ny), then we have

wim) = w(n)- ZEZ?; > (Iog log x — (log IOgX)3/5) (1 + (Iog|01gx)1/3>
> loglog x + (loglog x)?/3
and
w 1 B
wim) = w(n)- WEZS < (|0g log x + (|0g|ogX)3/5) (1 + (,Ogng)l/3>

< loglogx — (loglog x)%/3,

thus implying that w(n) — w(ny) > (log log x)%/3, a contradiction.
We must therefore have that g(t;) = g(t,). It follows that
w(n) = w(ny) and therefore that w(t;) = w(ty).
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Sketch of proof of Theorem 4
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Sketch of proof of Theorem 4

We have
E(w,g:%) Z#{ % ite Tosg(u-t) = wlu- ) }+0 (5 )+o(x)
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Sketch of proof of Theorem 4

We have
E(w,g;x) = Z #{t < % ct€Tpk glu-t)=w(u- t)}+0 (%)+O(X)
ik

The Lemma allows us to write

E(w,g;x) < Zmax#{tgg:te%yk, w(t):z}
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Sketch of proof of Theorem 4

We have
E(w,g;x) = Z #{t < % ct€Tpk glu-t)=w(u- t)}+0 (%)+O(X)
ik

The Lemma allows us to write

E(w,g;x) < Z max#{t§ % ct € Tpx, w(t):z}
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Sketch of the proof of Theorem 4

ueUp
X/D|°g4 D<u§x/D

X
5= Y max#{tSEZtGTD,h w(t)ZZ}>
uEUp
x/D<u<x/log D

x/ log D<u<x
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Sketch of the proof of Theorem 4

We have

ueUp
x/D<u<x/log D

Since t < % and u > x/D, it follows that t < D et P™(t) < D, in
which case

Lo 2 ma{rs 0=z}

ueUp
x/D<u<x/log D

We use the following result (which follows from one of Balazard) :

The maximal value of wi(x) := #{n < x : w(n) = k} is
attained when k = ko log log x + O(1) and

Tk (X) = (co + 0(1))x/+/loglog x, as x — oc.
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Sketch of the proof of Theorem 4

Therefore, for some constant ¢ > 0,

Y3 = Z max#{tg)—;:w(t)

z>1
ueUp
x/D<u<x/log D

x/u

C e —
X/D<;x/logD V |og IOg(X/U)

P~ (u)>D

IN

cx 1
< == 2
|Og3 D x/D<u<x/log D u

P~ (u)>D

cx  c(log D — loglog D)

\/logs D log D

X

Vlogs D

IN

<
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Sketch of the proof of Theorem 4
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Sketch of the proof of Theorem 4

We obtain
X x log, D
PRI , 1) KL —,
' logy D 2 \/log, D
X xlog, D
23K —m—m, PR &2 )
\/logs D log D
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Sketch of the proof of Theorem 4

We obtain
X x log, D
Y€ —, Yo ———,
' logy D 2 \/log, D
x log, D

It follows that

X
21+ 4+ K ——m—,
\/logz D
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Sketch of the proof of Theorem 4

We obtain
X x log, D
Y€ —, Yo ———,
' logy D 2 \/log, D
x log, D

It follows that

X
21+ 4+ K ——m—,
\/logz D

so that N
+ o(x)

X
E(w, g x) < ———= + =
(w,g:x) gD | 2F
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Sketch of the proof of Theorem 4

We obtain
X x log, D
Y€ —, Yo ———,
' logy D 2 \/log, D
x log, D

It follows that

X
21+ 4+ K ——m—,
\/logz D

so that N
+ o(x) = o(x).

X
E(w, g x) < ———= + =
(w,g:x) gD | 2F
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Generalization of Theorem 1

Let S := {s1,,...} be an infinite set of primes such that

o0
s1<s<---and Z — < 0o. Assume that f is a strongly additive
S.
j=t"
integer valued function and that A\(x) is a function which tends to
infinity with x in such a way that

# {n : S(A)((xﬂ lihe /\(X)} —° (S(A)((xﬂ) (x = o).

Then, if g is the strongly multiplicative function defined by

[ j+f(s) if p=s;forsomes; €S,
g(p)—{l if peS,

we have

E(f,g;x)> :
STAGT
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Corollary

Given an integer k > 1 and a real number n > 0, there exists a
multiplicative function g such that

X

E(w,g;x) > p :
(Hr:l log, 1 X> (logy o x)HH7

In particular, for any € > 0, there exists a multiplicative function g

such that
X

E : _—
(w, g1 x) > (log log x)t+e
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Proof of Corollary

Set f =w. Let n > 0and S := {s1,s,...} be an infinite set of
primes defined as follows : let s; = 2 and, for each j > 2, let s; be the
smallest prime larger than

K
max (sjl,j (H |Og,j> (|ng+1j)1+n> :
r=1

It is enough to choose A(x) = loglog x 4+ £(x)+/log log x, where &(x)
is a function tending to infinity with x.

Jean-Marie De Koninck, Univei On the proximity of additive and multiplicative functions






Final remarks

Jean-Marie De Konin Univer On the proximity of additive and multiplicative functions





Final remarks

Most likely, the bound E(w, g; x) = o(x) can be replaced by a better
one.

Jean-Marie De Koninck, Univer On the proximity of additive and multiplicative functions





Final remarks

Most likely, the bound E(w, g; x) = o(x) can be replaced by a better
one.

Most likely, the bound E(w, g; x) = o(x) still holds if the condition
g(n) = w(n) is relaxed to a condition of the form “g(n) is close to
w(n)".
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Final remarks

Most likely, the bound E(w, g; x) = o(x) can be replaced by a better
one.

Most likely, the bound E(w, g; x) = o(x) still holds if the condition
g(n) = w(n) is relaxed to a condition of the form “g(n) is close to

w(n)".
In other words, we conjecture that it is impossible for a multiplicative
function to be close to w on a set of positive density.
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Final remarks

Most likely, the bound E(w, g; x) = o(x) can be replaced by a better
one.

Most likely, the bound E(w, g; x) = o(x) still holds if the condition
g(n) = w(n) is relaxed to a condition of the form “g(n) is close to
w(n)".

In other words, we conjecture that it is impossible for a multiplicative
function to be close to w on a set of positive density.

Perhaps lim,_,o 2#{n < x : |g(n) — w(n)| < (loglog x)'} = 0 for
any given multiplicative function g and any small number ¢ > 0.
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Thank you!
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Thank you!

www. jeanmariedekoninck.mat.ulaval.ca
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Summary

% Thue-Morse sequence

* Gelfond problems

% Automatic sequences

* Generalized Thue-Morse sequences
% Subsequences along squares

% Subsequences along primes
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% Thue-Morse sequence

Thue-Morse sequence (th)n>o:
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

0
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

01
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

0110
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

01101001
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

0110100110010110
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

01101001100101101001011001101001
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

011010011001011010010110011010011001011001101 - --

to =0, t2n+k:1—tk (0<k<2n)
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

011010011001011010010110011010011001011001101 - --

to =0, t2n+k:1—tk (0<k<2n)

‘tn = s(n) mod 2‘

n= ei(nN)g" &(n)e{0,1,...,q9—1}, sq(n):- &i(n)
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% Thue-Morse sequence

@ TM sequence is not periodic and cubefree.

@ TM sequence is almost periodic:
Every appearing consecutive block appears infinitely many times
with bounded gaps.

@ Subword complexity is linear: px < %Ok
pk ... subword complexity (number of different consecutive blocks
of length k that appear in the TM sequence).

@ Zero topological entropy of the corresponding dynamical
system:
h=1limg_, & logpx =0
@ Linear subsequences (tahip)n=0 have the same properties.

@ The TM sequence and their linear subsequences are automatic
sequences.

Michael Drmota Automatic Sequences along Squares and Primes





% Thue-Morse sequence

Automaton for the Thue-Morse sequence: t, = ;-4 ¢j(n) mod 2

0 1 0

&y oy
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

011010011001011010010110011010011001011001101 - - -
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

01
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

10
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

10
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% Thue-Morse sequence
Thue-Morse sequence (tn)n>o:

011010011001011010010110011010011001011001101 - - -

#{0<n<N:tn:0}~g
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% Thue-Morse sequence

Thue-Morse sequence (th)n>o:

0110100110010110100101100110100110010110011

N
#{0<n<N:tn:0}~E
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% Thue-Morse sequence

Thue-Morse sequence (th)n>o:

0O 0O 0OOOOO1 0O O O O0OTO0TI12
N
#{0<n<N:t, =0}~ =

N
#{0<Nn<N:tgp =0}~ -
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

011010011001011010010110011010011001011001101 - - -
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

1010011001011010010110 001 1100110
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:
100 1 11 01 O 01 1 10---

Mauduit and Rivat (2010):

m(N)
2

#{0<p<N:t, =0}~
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

011010011001011010010110011010011001011001101 - - -
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

01101 0 1 1 0

Michael Drmota Automatic Sequences along Squares and Primes





% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

01 1 0 1 1 0
Mauduit and Rivat (2009):

N
#{0<n<N:tn2:0}~§
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% Thue-Morse sequence
Thue-Morse sequence (th)n>o:

01 1 0 1 1 0
Mauduit and Rivat (2009):

N
#{0<n<N:tn2:0}~§

D., Mauduit and Rivat (2013+):

N
#{0<nNn<N:t.= bo,t(n+1)2 = b1>-~-at(n+k—1)2 =bg_ 1}~ oK
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% Gelfond Problems

Gelfond 1967/1968
a, m ... positive integers, b, ¢ ... non-neg. integer, (m,q — 1) = 1.

= |#{n<N: sq(an+b)zﬁmodm}:%+O(NA)

with0 < A < 1.
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% Gelfond Problems

Gelfond 1967/1968
a, m ... positive integers, b, ¢ ... non-neg. integer, (m,q — 1) = 1.

= |#{n<N: sq(an+b)zﬁmodm}:%+O(NA)

with 0 < A < 1.
In particular:
#{N <N :tagnp =0} =#{n <N :sy(an+b) =0mod 2}
N A
=35 + O(N%)
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% Gelfond Problems

g 01,92,...,0d P> 21 (qhqj): 1fori #J! (mqu _l): 1.

#{n <N :sq(n)=4modm;, 1<j<d} = ——— +O(N')
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% Gelfond Problems

© 01,02,...,0dq > 2, (gi,qj) = 1 fori #j, (mj,q; — 1) = 1: Kim 1999

#{N<N:sg(n)=4modmy, 1<j<d} =

mq---

N

Mgy

+ O(N1=m)
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% Gelfond Problems

Q 01.02,....0q > 2, (qi,05) =1 fori #j, (mj, g — 1) = 1: Kim 1999

— ; N 1-n
#{n <N :sq(n)=¢ modmy, 1<]j gd}:erO(N D

Q@ (mg-1)=1

#{primes p < N :sq(p) =¢ mod m} = ﬂT + O(N1=m)
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% Gelfond Problems

Q 01.02,....0q > 2, (qi,05) =1 fori #j, (mj, g — 1) = 1: Kim 1999

— ; N 1-n
#{n <N :sq(n)=¢ modmy, 1<]j gd}:erO(N D

@ (m,q - 1) = 1: Mauduit, Rivat 2010

#{primes p < N :sq(p) =¢mod m} = FT + O(N1=m)
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% Gelfond Problems

Q 01.02,....0q > 2, (qi,05) =1 fori #j, (mj, g — 1) = 1: Kim 1999

— ; N 1-n
#{n <N :sq(n)=¢ modmy, 1<]j gd}:erO(N D

@ (m,q - 1) = 1: Mauduit, Rivat 2010

#{primes p < N :sq(p) =¢mod m} = FT + O(N1=m)

© (m,qg-1)=1,P(x) € N[x:

#{n <N :s4(P(n)) =¢mod m} = % + O(N™™)
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% Gelfond Problems

Q 01.02,....0q > 2, (qi,05) =1 fori #j, (mj, g — 1) = 1: Kim 1999

— ; N 1-n
#{n <N :sq(n)=¢ modmy, 1<]j gd}:erO(N D

@ (m,q - 1) = 1: Mauduit, Rivat 2010

#{primes p < N : sq(p) = ¢ mod m} = w + O(N1=m)

Q (m,q-1)=1,P(x) € N[x]: Mauduit, Rivat 2009 for P(x) = x?

#{n <N :s4(P(n)) =¢mod m} = % + O(N™™)
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% Gelfond Problems

Q 01.02,....0q > 2, (qi,05) =1 fori #j, (mj, g — 1) = 1: Kim 1999

— ; N 1-n
#{n <N :sq(n)=¢ modmy, 1<]j gd}:erO(N D

@ (m,q - 1) = 1: Mauduit, Rivat 2010

#{primes p < N : sq(p) = ¢ mod m} = w + O(N1=m)

Q (m,q-1)=1,P(x) € N[x]: Mauduit, Rivat 2009 for P(x) = x?
Drmota, Mauduit, Rivat 2011 for large bases q > qo(deg(P))

#{n <N :s4(P(n)) =¢mod m} = % + O(N™™)
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.

32 = (1012)3
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.

32 = (1012)3
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.

32 = (1012)3
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.

32 = (1012)3
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.

32 = (1012)3 Uz = a,
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.

32 =(1012); us = a, 61 = (2021)3
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.

32 =(1012); us = a, 61 = (2021)3
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.

32 =(1012); us = a, 61 = (2021)3
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.

32 =(1012); us = a, 61 = (2021)3
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.

32 = (1012)3 Uz = a, 61 = (2021)3 U1 = b
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% Automatic sequences

Definition
A sequence (up)n>o is called a g-automatic sequence, if uj is the
output of an automaton when the input is the g-ary expansion of n.

32 = (1012)3 Uz = a, 61 = (2021)3 U1 = b

(un)n>o0 : aaaaabaabaabaaabbaaabaaabbaaabaaabbaaaaaaba. ..
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s;/a

o4

1 00
Mpo=(0 1 O
0 01
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100 010
Mo=|[0 1 0 Mi=[1 00
001 001
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100 010 001
Mo=[0 1 0 Mi=[1 0 0 M= (1 0 0
001 001 010
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1
32 = (1012); : ( 0 )
0
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1 0
0 0
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1 0
32 = (1012)3 : MO o Ml 0 = 1
0 0

Michael Drmota Automatic Sequences along Squares and Primes





Michael Drmota Automatic Sequences along Squares and Primes





Michael Drmota Automatic Sequences along Squares and Primes





Michael Drmota Automatic Sequences along Squares and Primes





1 0 0 010 0 01
Mo=|0 1 0O Mi=[1 0 0 My=[1 0 0

0 01 0 01 010
Definition

A g-automatic sequence is called invertible if there exists an
automaton such that all transition matrices are invertible and Mg is the
identity matrix.
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* Examples of automatic sequences

Thue-Morse sequence (invertible): t, = ;- &j(n) mod 2

0 1 0

Sy oy

1
Rudin-Shapiro sequence (not invertible): rn = >, €j(n)ej+1(n) mod 2

0
1 1 0 0

Sy W w Wy

1 1
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* Examples of automatic sequences

Sum-of-digits-function (invertible): u, = sq(n) mod m
g-additive function modulo m (invertible): u, = f(n) mod m

f(n)=> f(g(n)) and f(0)=0.

j=0
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% Subsequences along squares

Theorem (D. and Morgenbesser, 2012)
Letg > 2 and (un)n>0 @n invertible g-automatic sequence. Then the

densities exist for each letter a € A.
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% Subsequences along squares

Theorem (D. and Morgenbesser, 2012)
Letg > 2 and (un)n>0 @n invertible g-automatic sequence. Then the

densities exist for each letter a € A.

This generalizes a result of Mauduit and Rivat, 2009, for

Un = Sq(Nn) mod m

(solution of the Gelfond problem).
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% Subsequences along squares

Theorem (D. and Morgenbesser, 2012)
Letg > 2 and (un)n>0 @n invertible g-automatic sequence. Then the

densities exist for each letter a € A.

This generalizes a result of Mauduit and Rivat, 2009, for
Un = Sq(n) mod m | (solution of the Gelfond problem).

Theorem (D., Mauduit and Rivat, 2013+)

Let (tn)n>0 denote the Thue-Morse sequence. Then the sequence
(t2)n=0 is normal on the alphabet {0, 1}.
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% Subsequences along squares

Theorem (D. and Morgenbesser, 2012)
Letg > 2 and (un)n>0 @n invertible g-automatic sequence. Then the

densities exist for each letter a € A.

This generalizes a result of Mauduit and Rivat, 2009, for
Un = Sq(n) mod m | (solution of the Gelfond problem).

Theorem (D., Mauduit and Rivat, 2013+)

Let (tn)n>0 denote the Thue-Morse sequence. Then the sequence
(t,2)n>0 is normal on the alphabet {0, 1}.

Theorem (Mauduit and Rivat, 2013+)
Let r(n) denote the Rudin-Shapiro sequence. Then
dens(r(n?),a) = 1/2|fora € {0,1}.
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Theorem (Deshouillers, D. and Morgenbesser, 2012)

Let u, be a g-automatic sequence (on an alphabet A) and

1 <c < 7/5| Then for each a € A then asymptotic density
dens(u|qc|,a) of a in the subsequence u| ¢ exists if and only if the

asymptotic density of « in up exists and we have

dens(U|ne|,a) = dens(un,a) |.
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Theorem (Deshouillers, D. and Morgenbesser, 2012)

Let u, be a g-automatic sequence (on an alphabet A) and

1 <c < 7/5| Then for each a € A then asymptotic density

dens(u|qc|,a) of a in the subsequence u| ¢ exists if and only if the
asymptotic density of « in up exists and we have

dens(U|ne|,a) = dens(un,a) |.

Theorem (D., Mauduit and Rivat, 2011)

For every d > 2 there exists go(d) > 2 such that for all prime
g > go(c) | and all integer polynomials P(x) of degree d (where the
leading coefficient if coprime to q)

#{1 <n<N:sq(P(n))=amodm} = % +0 (Nl—n)

for some n > 0 and all integers m with (m,q — 1) = 1.

Michael Drmota Automatic Sequences along Squares and Primes





% Subsequences along primes

Theorem (D., 2013)

Letg > 2 and (un)n>0 @n invertible g-automatic sequence. Then the
densities dens((up)pep, @) exist for each letter a € A.
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% Subsequences along primes

Theorem (D., 2013)

Letg > 2 and (un)n>0 @n invertible g-automatic sequence. Then the
densities dens((up)pep, @) exist for each letter a € A.

This generalizes a result of Mauduit and Rivat, 2010, for
Un = Sq(n) mod m | (solution of the Gelfond problem).
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% Subsequences along primes

Theorem (D., 2013)

Letg > 2 and (un)n>0 @n invertible g-automatic sequence. Then the
densities dens((up)pep, @) exist for each letter a € A.

This generalizes a result of Mauduit and Rivat, 2010, for
Un = Sq(n) mod m | (solution of the Gelfond problem).

Theorem (Mauduit and Rivat, 2013+)
Let r, denote the Rudin-Shapiro sequence. Then we have

1

dens((rp)pep, 0) = dens((rp)pep, 1) = >
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% Generalized Thue-Morse sequences

@ H ... compact (Hausdorff) group
@ g >2andgo,01,...,9q—1 € H with gg = e (identity element)

@ G < H...closure of the subgroup generated by go,91,...,09q-1
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% Generalized Thue-Morse sequences

@ H ... compact (Hausdorff) group

@ g >2andgo,01,...,9q—1 € H with gg = e (identity element)

@ G < H...closure of the subgroup generated by go,91,...,09q-1
-1 _
n=> &(n)'
i=0
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% Generalized Thue-Morse sequences

@ H ... compact (Hausdorff) group

@ g >2andgo,01,...,9q—1 € H with gg = e (identity element)

@ G < H...closure of the subgroup generated by go,91,...,09q-1
-1 _
n=> &(n)'
i=0

Generalized Thue-Morse sequence:

T(N) := Geo(n)Ges(n) " Yepsn)
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% Generalized Thue-Morse sequences

@ H ... compact (Hausdorff) group

@ g >2andgo,01,...,9q—1 € H with gg = e (identity element)

@ G < H...closure of the subgroup generated by go,91,...,09q-1
-1 _
n=> &(n)'
i=0

g-multiplicative function:

T(+an)=gT(n)=T(j)T(n) 0<j<q
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% Generalized Thue-Morse sequences

Examples
o H= <Z/2Z7+>1q =2, 90:07 91:1:

‘T(n) =sy(n) mod 2 =ty |.
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% Generalized Thue-Morse sequences

Examples
o H= <Z/2Z7+>1q =2, 90:07 91:1:

‘T(n) =sy(n) mod 2 =ty |.

@ H=(Z/mZ,+),9,=j(0<j<q):
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% Generalized Thue-Morse sequences

Examples
o H= <Z/2Z7+>1q =2, 90:07 91:1:

‘T(n) =sy(n) mod 2 =ty |.

@ H=(Z/mZ,+),9,=j(0<j<q):

@ H=(R/Z,+),9=0j (0<j<q):

T(n) =asq(n) mod 1|
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* Automatic Sequences and Generalized Thue-Morse sequences

@ U, ... invertible automatic sequence

= |un =f(S(n)e1)

9

where S(n) is a generalized Thue-Morse sequence on
H = SL(m,R)
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% Generalized Thue-Morse sequences

Theorem

Let . denote the Haar measure of G. Then (T (n))n>o is u-uniformly
distributed in G, that is,

1 N—-1
N > oty = pe
n=0
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% Generalized Thue-Morse sequences

Theorem

Let . denote the Haar measure of G. Then (T (n))n>o is u-uniformly
distributed in G, that is,

1 N—1
N;f(T(n))%/(gfdu

(for all continuous functions f : G — R.)

Michael Drmota Automatic Sequences along Squares and Primes






% Generalized Thue-Morse sequences

Theorem

Let . denote the Haar measure of G. Then (T (n))n>o is u-uniformly
distributed in G, that is,

1 N—1
N;f(T(n))%/(;fdu

(for all continuous functions f : G — R.)

Remark. Equivalently, a sequence (Xp) in G is p-uniformly distributed if
1
N]{n<N:xneB}\—>u(B)

holds for all u-measurable sets B C G with ;(9B) = 0.
Automatic Sequences along Squares and Primes






Theorem (D. and Morgenbesser, 2012)

Leta > 1and b > 0 be integers and set m’ = gcd(a, m) (where
m = m(d, do, - -.,0q—1) can be defined in a proper way). Set

/ /
dv' ' =m'"- 1T(b)U’ du,
where
@ 4 ... Haar measure on G,

@ U’ =cl({T(m’'n) :n > 0})... normal subgroup of G of index m’.

Then (T (an + b))n>0 is /-uniformly distributed in G, that is,

L N1
N > Or(anin) =V
n=0
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Theorem (D. and Morgenbesser, 2012)

There exists a positive integer m = m(q, o, - . - , dg—1) such that the
following holds: Set

m
dv = 1g,u-Q(v,m)dy,
v=0
where

@ 4 ... Haar measure on G,
@ U =cl({T(mn):n >0})...normal subgroup of G of index m,
@ Q(v,m)=#{0<n<m:n?=vmodm}.

Then (T (n?))ns0 is v-uniformly distributed in G, that is,

1 N-—1
N Z 51—(“2) — V|
n=0
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Theorem (D. , 2013)

There exists a positive integer m = m(q, o, - . - , gq—1) such that the
following holds: Set
m
dv = —— 1,,u dy,
cp(m) ov<m Z = ’
= ) ng(V,m)—l
where
@ 4 ... Haar measure on G,

@ U =cl({T(mn) :n > 0})... normal subgroup of G of index m.

Then (T (p))per is v-uniformly distributed in G, that is,

1
— Z 5T(p) — V|
T(N) et pen
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A unitary group representation is a continuous homomorphism
D:G— U, forsomen > 1.

Up ... group of unitary n x n matrices over C

D is irreducible if there is no proper subspace W of C" with
D(x)W C W forallx € G
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A unitary group representation is a continuous homomorphism
D:G — U, forsomen > 1.

Up ... group of unitary n x n matrices over C

D is irreducible if there is no proper subspace W of C" with
D(x)W C W forallx € G

Lemma

Let G be a compact group and v a regular normed Borel measure on
G. Then a sequence (Xn)n>0 is v-uniformly distributed in G iff

1 N-1
N nZ:_OD(xn) —>/GDdz/

holds for all irreducible unitary representations D of G.
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Remarks:
@ The integer m = m(q, do, - . .,dq-1) is the largest integer such that
m | g — 1 and such that there exists a representation D of G with

D(qu) = e 2 forallu e {0,1,...,9 — 1}.

@ (T (an+ b))n=o is uniformly distributed in G (i.e., v/ = p) iff
m’ = gcd(a,m) = 1.

@ (T(n?))ns0 is uniformly distributed in G (i.e., v = p) iff m < 2.

@ (T(p))per is uniformly distributed in G (i.e., v = p) iffm = 1.

@ If G is connected, then T (an + b), T(p), and T (n?) are uniformly
distributed in G.
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% Properties of the Fourier term

TA(N) := Gzo(n)Bes(n) "~ 9e, ,(n) (periodic with period at)

1 B
Fa(h) = =5 e P D(T,(u))

q o<u<g?
Lemma
Set

Up(t) = > e(tu)D(gu),
0<u<q

then

-5 ) w(3)
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* Properties of the Fourier term

Lemma

Suppose that D ¢ {Dy,...,Dn_1} is an irreducible and unitary
representation of G. Then there exists a constant ¢ > 0 such that

max |[Fa(h)[2 < q=¢*|
heZ
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% Exercise on linear subsequences

> D(T(an+b))
n<N
1 h b —
>, ZD(T(U))'q—A > e( (an;iA U)>

0<u<g¥ n<N 0<h<g?
h(an + b
> R Y (M),
0<h<g? n<N
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% Exercise on linear subsequences

ZD (an + b))

n<N
1 h(an+b—u
PDIEUOE-3S e(%)
0<u<g¥ n<N 0<h<g?
h(an +b
3 Fx(h)ze<¥>'
o<h<g? n<N q
i 1
> D(T(@n+b))|| < > [Fa(h)l-min [N, — hal |
n<N 2 O<h<g? SN “gx
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% Sketch of the proof for squares
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% Sketch of the proof for squares

S 2> D(T(n?)

0<n<N

@ The representation D, ...,Dm_1 are special but easy:
De(gu) = e 2mmY  forall0<u<gand0<k <m

Dk(T(n?)) = e~2"n"”  Gauss sums

@ For all other irreducible unitary representations . ..
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Van der Corput type inequality:

1/2
dN Ir H f
ST zm)| < = Z( —ﬁ> > zZ(n+r1)Z(n) +5R
0<n<N . Ir|<R o<ngN
- o<n+r<N
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Van der Corput type inequality:

> oot <| F 3 (1-F) | X oo+ oprey”

o<n<N F Ir|<R o<n<N
0<n+r<N F

Michael Drmota Automatic Sequences along Squares and Primes
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N| —





Van der Corput type inequality:

Z D(T (n?

0<n<N

< %Z(l—%) > D(T(n+r)*)D(T(n?)"

Ir|<R o<ngN
0<n+r<N F

F

T (N) = 9ep(n)Bey(n) * sy (m)Yer(n) Y=gy (n)

Michael Drmota Automatic Sequences along Squares and Primes

1/2

N| —+





Van der Corput type inequality:

Z D(T (n?

0<n<N

< %Z(l—%) > D(T(n+r)*)D(T(n?)"

Ir|<R o<ngN

F o<n+r<N F

Tx(N) = Geom)9ey(n) - - 9=y 1 (n)

Michael Drmota Automatic Sequences along Squares and Primes
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N| —+





Van der Corput type inequality:

1/2
dN Ir 2\\H f
3 o) < FZ< _E> S D(T(n+1)?)D(T(n) +2R
0<n<N F [r|<R 0<n<N
0<n+r<N F
Tx(N) = Geom)9ey(n) - - 9=y 1 (n)
(n + r)z = (56—156—2 o EN .)q, n? = (6[_16[_2 Lo EN .)q
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Van der Corput type inequality:

> DY) < %N > (1—%) > D(T(n+r)*)D(T(n?)" l/z—k%R
osnet F <R 0ShITeN .
Ta(N) = Geo(m)ey(n) - " Gy _1(n)
(N+1)2=(er160-2---€x-)q N? = (g 16¢-2---6x--)q
D(T ((n +r)?))D(T (n?))"
= D(TA((N+71)*))D(Ge,) - - D(Ge,_1)D ()™ - - - D(9e, )" D(T(n?))"
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Van der Corput type inequality:

> DY) < %N > (1—%) > D(T(n+r)*)D(T(n?)" l/z—k%R
osnet F <R 0ShITeN .
Ta(N) = Geo(m)ey(n) - " Gy _1(n)
(N+1)2=(er160-2---€x-)q N? = (g 16¢-2---6x--)q
D(T ((n +r)?))D(T (n?))"
I
= D(TA((N+71)*))D(Ge,) - - D(Ge,_1)D ()™ - - - D(9e, )" D (T (n?))"
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Van der Corput type inequality:

1/2
2 dN Ir| 2\ H f
> DT ()| < FZ(l—ﬁ) > D(T(n+r)*)D(T(n%) +3R
0<n<N F [r|<R 0<n<N
0<n+r<N F
Ta(N) = 9o ey (n) =" Yoy 1 (n)
(n—i—r)z:(Eg_laEg_z...E)\...)q, nz—(Eg 1€0_2 . )\...)q
D(T ((n +r)?))D(T (n?))"
In
= D(gax) T D(gflfl)D(gfé—l) ’ (gEA) (T/\( ))H

D(TA((n+T1)%))
D(TA((n +r1)?))D(TA(n?))"
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% Sketch of the proof for squares

Simplified version:

> D(Ta((n+1)?)D(TA(n?)"

n<N
_ Z F)\(hl)FA(hz)H Z e <h1(n + r)2 + h2n2> .

A
0§|’11|_,|’12<C]A n<N q
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% Sketch of the proof for squares

Simplified version:

> D(Ta((n+1)?)D(TA(n?)"

n<N
_ Z F)\(hl)FA(hz)H Z e <h1(n + r)2 + h2n2> .

A
()§|’1:|_,|’12<C]A n<N q

Actually this idea has to be extended by an applications of a second
Van-der-Corput inequality (following the ideas of Mauduit and Rivat).
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% Sketch of the proof for squares

A subtle Fourier analysis of a double truncated sum leads to the
following expression:
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% Sketch of the proof for squares

A subtle Fourier analysis of a double truncated sum leads to the
following expression:

w/2A
g |Og <u) q)‘/z max)\ dl/2
™ ™ 0<e<q g

> IFx () g [[Fx (h2)llg [[F e a (ha)llg [IF i x(ha)ls

0<hy,hy,hg,hya<g?
(ha+hy+hs+hy,q*)=d
d|2r(hy+h2)+2sg” (hp+hs)+£
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% Sketch of the proof for squares

A subtle Fourier analysis of a double truncated sum leads to the
following expression:

2 4em/2gN
Zlog[ — ) g*? ma di/?
Ziog () a5

0<e<gr o

> IFx () g [[Fx (h2)llg [[F e a (ha)llg [IF i x(ha)ls

0<hy,hy,hg,hya<g?
(ha+hy+hs+hy,q*)=d
d|2r(hy+h2)+2sg” (hp+hs)+£

This term can be estimated by applying upper bounds on the Fourier
terms (an analogue of this expression appears in Mauduit and Rivat’s
work).
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% Sketch of the proof for primes

1
m(N)

> D(s(p)

p<N, peP
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% Sketch of the proof for primes

1
Y. D(s(p)
m(N)
p<N, peP
@ The representation Dy, ..., Dy_1 are special but easy:

Dk(gu):e‘z’”%“ foral0<u<gand0O<k <m

Di(T(p)) = e 2™mP  elementary sums

@ For all other irreducible unitary representations . ..
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* Sketch of the proof for primes

Vaughan’'s method: 0 < 81 < 1/3,1/2 < 3, < 1,and D(S(n)) a
sequence of unitary matrices. Suppose that for all M < N/

> max, | 30 D(S(mn)| = 0N

M/g<m<M qm Nm t<ngﬂ
and for Nt < M < N2 and for all sequences an, b, with |a,| < 1 and
bl <1

> ) ambaD(S(mn))| = O(N')

M N
E<m<M q—m<n< m

= | > AmD(S(m) = O(N*"(logN)?)

0<n<N

We mimic the method of Mauduit of Rivat for the Rudin-Shapiro
sequence.
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* Normality of t(n?)
Fourier term with correlations in oder to handle blocks of length > 1:

k—1
1 1 _
Gi(h,d) = P E e (E E OzgSz,)\(U-l-fd)—hZ A)

o<u<2? =0
(ag,...,ax_1 €{0,1})
Uniform upper bounds.
IGa(h,d)] <27

(for some constant c” > 0)
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* Normality of t(n?)

After several quite technical steps (in particular with a subtle Fourier
analysis this leads to upper bounds for the exponential sums

k—1
2 e (% > arsa((n+ f)z)> < N7
(=0

n<N

and consequently to the proof that t, is normal.
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* Local results the sum-of-digits function on primes

Theorem (D., Mauduit and Rivat, 2009)
Suppose that (q,k — 1) = 1. Then

#{primes p < N : s4(p) =k}
_ k — g logy N)?
_g-1 _ a(N) (exp <_( /a0y N) >+0((|ogN)—%
Pa=1)  [org2 logy N 203 logy N
where )
_9-1 2= 4= 1
Ha="% %= "

Remark: This asymptotic expansion is only significant if
k — pqlogg N| < C(log N)%

1
Note that >_p<n Sq(P) ~ uqlogy N.
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% Binary Representation of Primes

Corollary

Theorem (D., Mauduit, and Rivat, 2011)
S2(n) ... number of powers of 2 in the binary expansion of n

22k

#{primes p < 2% : s;(p) =k} ~ ——————
V2rlog2k?

Michael Drmota Automatic Sequences along Squares and Primes





% Binary Representation of Primes

Corollary

Theorem (D., Mauduit, and Rivat, 2011)
S2(n) ... number of powers of 2 in the binary expansion of n

22k

#{primes p < 2% : s;(p) =k} ~ ——————
V2rlog2k?

In particular for every (sufficiently large) positive integer k there exist a
prime p with
s2(p) = k.
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Thank you!

Michael Drmota Automatic Sequences along Squares and Primes






A Sideways Approach to the Circle Problem
Autour du probléme du Cercle

Abstract
The average of the sum-of-two-squares function r(n) can be read as count-
ing integer points in a circle with centre at the origin. Moving the centre,
or changing the shape, hasn’t helped yet, but it leads to some interesting
problems.

Let 7(n) be the number of solutions of 22 +y? =n, z > 1, y > 0.

r(n) = Zx(d), x(n) the Dirichlet character  (mod 4).
d|n
> r(n) = ¢(s)L(s,x);

SO

Sl = o [ L0
n<N

TN d
- [ e

where L is an indented contour, made up of L; along Res = 1+ 1/log N,
Ly along Jms = —iT', L3 along Res = 0, Ly along Jms = 1", and L along
Mes =1+ 1/log N again. This is the usual method.

The integral along Ls is
Nl—i—e
O .
()

O(NTlogT) .
The best choice is T = v/N, when the integral along L is

O(N'/2+e).

The integral along L3 is

Moving the contour further doesn’t give anything better.





Geometric Idea: The number of integer points (m,n) in the circle
2?2 +y2 < R?is

1+4 Z r(k), where k = m? + n?.

Associate each integer point (m,n) with the unit square m < x < m + 1,
n<y<n+l.

Then the number of integer points is the area of a zigzag (non-convex) poly-
gon which extends at most /2 outside the circle (first, second and fourth
quadrants), and includes every point more than /2 inside the circle (second,
third and fourth quadrants).

So the number of integer points inside the circle is 7R% + O(R).

Gauss mentions this in a paper on quadratic forms.

Similarly the divisor problem » d(n) corresponds to counting integer points
inaregionz >0,y >0, xzy < N.

Voronoi in Warsaw saw that the way that the curve cuts the squares forms
a pattern in some places, especially where the gradient a/q has small height
(H(a/q) = max(|al, q)).

Voronoi (1904) approximated the hyperbola xy < N by a polygon formed
by the tangents with rational gradients of small height.

Sierpinski (1906) did it for the circle, getting mR? + O(R?/3).

Van der Corput in his thesis (1913) showed that this worked for any smooth
closed curve.

C? curve: continuous radius of curvature p = ds/di, bounded away
from 0 and oo, so ¢; < p < co.

C3 curve: extra condition that dp/dy is continuous, |dp/di)| < cs.
C™ curve: similarly up to d"2p/dy™ 2.

Notation: From now on C is a closed bounded plane curve, at least C?.
C(R,u,v) is C enlarged by a factor R, then translated by a vector (u,v).
S(R,u,v) is the closed convex set bounded by C(R,u,v).

J(R,u,v) is the set of integer points in S(R, u,v); this corresponds to taking
the unit squaresas m —u<z<m-u+1l,n—v<y<n-—v—+1.

So when (u,v) = (1/2,1/2), then the squares are centred at integer points.
N(R,u,v) is the size of J(r,u,v), the number of integer points in S(r, u,v).
Van der Corput showed that N(R,u,v) = AR% + O(R%*/3).





Application: The group SL(2,7Z) of 2x2 integer matrices with ad—bc =
1 acts on the upper half plane by

az+0b
— .
cz+d

Real-analytic modular forms have V2F = —\F, where V? is the Laplacian
in hyperbolic geometry.

2 _ .2 82 82 2,5 __ s
Voi=y @_Fa_y? , so Vay® = s(s — 1)y°.

The fundamental domains form a pattern of hyperbolic triangles with cusps
such as i00 and 0,1/2,... on the z-axis.
The function y* is large at the cusp ico, 0 at the other cusps.

Method of images:

E(z,s) = Z (image of y*%)

cusps
az+b\"
— J
o+ TX ()
HCF(c,d)=1
yS
_ .8
HCF(c,d)=1
C(25)E(z,5) = ((25)y° + ;g lez +d|?s
not both 0

Now for fixed 2, |cz + d|*> < R? means that the integer point (c,d) lies in an
ellipse.

The number of points is AR? + O(R2/3.

This means that the sum converges for fRes > 1, but it has an analytic
continuation to PRes > 1/3, with a pole at s = 1.





Back to E(s,z) as a function of z = x + iy. E(z,s) has a Fourier series in x.

CEE(Z,5) = (251" + Bl + 3 ellnl )etua) K (s = 3.y ).
n#0

where K(r,y) is built from a Bessel function of order r.

The coefficient ¢(n, s) is a divisor sum which is symmetric under s — 1 — s.
The functions K (s —1/2,y) and K(1/2 — s,y) satisfy the same second order
differential equation, and they both vanish at y = 4-o00.

So K(s—1/2,y) and K(1/2 — s,y) must be proportional,

K<s—%y) — G(s)K (%—3).

C(28)E(z,s) — G(s)((2 —25)E(z,1 — s)
= (C(25) = G(s)B(1 = 5))y* + (B(s) — G(s)¢(2 = 2s))y' .

The left hand side is invariant under z — (az + b)/(cz + d), but the right
hand side is not invariant -

unless the coefficients of y* and of y'=* are both 0.

[ haven’t said what function B(s) is yet.

B(s) has a factor {(2s — 1) in it, so B(1 — s) has a factor {(1 — 2s) in it.
We get the functional equation for ((s) as well as for E(z, s).

In the case z = ¢ the functional equation for

Bl =+ XX (s
c d

not both 0

and so

gives the functional equation for the Dirichlet series that we first thought of,

¢(s)L(s, x)-

Big Question: Do these non-analytic modular forms on the upper half
plane tell you more about the zeta function?
Not so far.





Van der Corput’s thesis used two methods:
Voronoi-Sierpinski: approximate by a polygon.
Exponential sums (which come from Fourier transforms)
He did a lot of work from 1913-39 on estimating exp sums.

Newer Method (Bombieri-Iwaniec-Mozzochi): uses
Voronoi Polygon

Exp Sums
az +b

cz+d

).

The newer method gives wR? 4+ O (R*°).

Iwaniec-Mozzochi: k =7/11 =0-6363...
Huxley: x = 131/208 =0-6298...
Limit of method: k =5/8 =0 - 625.

The method works for a C? curve:

N(R,u,v) = AR* + O (R") .

A variation: the Tiled Circle Problem. How many square tiles to
tile a room the shape of S(R,0,0)?
You have to cut O(R) tiles to fit the shape of the curved boundary. At least
AR?, at most AR? + O(R). However, if you can rotate the off-cut parts of
the tiles by 180°, cut them, and use them again, then:

Algorithm based on the Voronoi-Sierpiriski polygon (to appear in Math-
ematika):
At most AR? + O(6R) + O (R?/3),
where 0 is the width of the cutting tool.
The error estimate uses exp sums, and an idea from my first paper, which

Was Ol Pp42 — Pn.





Sideways approach: Keep the enlargement R fixed, vary the displace-
ment (u,v).

J(r,u,v) is the set of integer points in the shape S(R, u,v).

N(R,u,v) = AR? + E(R,u,v) is the number of points in J(R,u,v).
Kendall 1948: For a C? curve

1,1
/ E(R,u,v)*dudv = O(R).
v=0 Ju=0

The condition on the curve can be reduced to C2.

New Result (to appear in Monatshefte fiir Mathematik):
Still for a C? curve:

1,1
/ E(R,u,v)* dudv = O(R*log R).
v=0 Ju=0

Aside: 1 should say that there is an Italian mathematician who says that
this is obvious, but his E-mail which is supposed to explain why it’s obvious
seems to assume a C'°° condition and a dual inequality for Fourier series
which a different Italian mathematician who is an expert on inequalities
didn’t recognise.

Counting Configurations. How many different sets of integer points
J(R,u,v) do you get when you vary the shift vector (u,v) (that’s different
up to translation)?

Huxley and Zuni¢ (INTAS project): Asymptotic to BR? when C is a C?
curve that satisfies

Triangle Condition: No translation C(R,u,v) (with R fixed) passes
through 3 or more integer points.

The Triangle Condition fails when C' is the unit circle.
Careful counting gives for the circle

ATR? + O (R1+“+€) )

Prof. Kolountzakis on the INTAS Project identified the constant B as the
area of the difference set of the curve C'. This led to a new proof.





Computer Graphics Version: How many sets J(R, u,v) (now R varies
too) have N(R,u,v) = N (fixed)?
Huxley and Zuni¢ (INTAS project, finally published in Proc London Math
Soc (2013)):
Exactly 2N — 1 when C is a C? curve that satisfies the

Quadrangle Condition: No image C(R,u,v) for any R, u, or v passes
through 4 or more integer points.
At most 2N — 1 when C' is a C? curve in general.
We have to show that the domain of a configuration J(R,u,v), the set of
point (u,v) for which you get the same set of N integer points, is a connected
set which is simply-connected. The domain for a circle are polygons. In
general the domains have curved boundaries.
The Quadrangle Condition fails for the circle, so we only know the upper
bound.
On average, the number of sets J(R, u,v) for the circle with N(R,u,v) = N
is asymptotically 2/V.
Huxley and Konyagin put a lot of effort into counting cyclic quadrilaterals
(Acta Arithmetica 2009), but we haven’t found a result local in N (yet?).

Are the different possible sets of integer points uniformly distributed in the
unit square?

Plunkett-Levin (Cardiff PhD, about 2012): Yes for the circle.

It should be Yes in general. There is a part of the calculation where the
leading term cancels for the circle, but it doesn’t seem to cancel in general,
so the calculations of Weyl sums will be more delicate. More work is needed!

The computer graphics version. The counting uses a combinatoric
argument which doesn’t localise, so we can’t prove uniform distribution.





Barany’s difficult problem: What shape is the set J(R, u, v) of integer
points?
Let K(R,u,v) be the convex hull of the integer points in S(R, u,v).
How many vertices? Call it V (R, u,v) vertices.
Is V(R,u,v) asymptotic to BR?/? for some constant B?
Balog-Deshouillers: V(R,0,0) is asymptotic to BR*3 on average over R.

New Result: (to appear in Periodica Math Hung) For any C? curve C,
V(R,u,v) is asymptotic to BR?/3 on average over u and v.
When C' is normalised by

27
/ P23 dip = 2,
0

then B is independent of C', a sum of three hypergeometric series.
In fact V(R,u,v) has normal size BR?/® over v and v (paper being written

up).

Related Work: Fix R, u and v. For a primitive integer vector (g, a) let
T'(q,a) be the point on C(R,u,v) where (g, a) is the forward tangent vector.
For a C? curve, the set of points T'(q,a) with H(q,a) < R?, where 8 > 1/4
is fixed, tends to uniform distribution mod 1 as R — oo.

For smaller values 0 < 6 < 1/4, the curve C has to be C™ with n > 1+1/26
(paper being written up).

Idea: approximate C by the Voronoi-Sierpiniski polygon; you end up
estimating exp sums.

If very strong uniform distribution results were true, we should be able to
prove Barany’s BR'/3 conjecture.
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Joint work with Jean-Marie De Koninck.

Let E := {e1,e2,...,¢q}, Ej = words over Ey, EN = E, x
Eq x --- = infinite sequences over Ej.

Let o € E*, §:8152...€E§, §T=81...8T.

Let

My (gla) = #{B1, Bale’ = Brab}.
Definition. ¢ is a normal sequence if for every a € E*,

g Mp(e|a)
qT

A(a) = length of «.

—1 (T — o0),






Clear: If E = A; = {0,1,...,9 — 1}, then g is a normal
sequence if and only if
En

§ = =
q

is a g-normal number, i.e. if {¢"¢} is UD sequence.

I. Let R(n) =n(n+1)---(n+qg—1).

R(n) =197T?1...7r7?”
g+1<m1 <. < 7py 71-3-673
P(0) £ q.





Let

A if Y
() = hn() = {l lif :Tr‘aln +1

L et

i ==
§ az406 - - - Op41 - -

Theorem 1. n and § are normal sequences.





II. BCN, B(z) = #{b<z; be B}

F(b
F:B—N, (O<)01§%—~)ﬂ§62 (b € B)

n = Zsj(n)qj, ej(n) € Aq
n=cg(n)...et(n), e(n)#*0

N — [Iog$}
log q
Let 0 <) <--- < (K rN), ai,...,ap € Ag.
Let
l1,...1 _
Br (@ =#{b<z, beEB, e (F()) =a;j=1,..
ai,...,ap ’

Br(xz) = B(xz).

., h},





We say: F(B) is a g-ary smooth sequence, if there exists
O0<a<l1, e(x) — 0, such that for every fixed h > 1:

h b seuelyy )
P

Noedlh <---<lp<rN—N« BF(QZ')

— 1| < ce(h)e(x)

€n = F(bn) = €o(F(bn)) ... et(F(bn)).

Theorem 2. Assume that B(x) > C|oa§x- Let F(B) be a

g-ary smooth sequence, B = {b1,b,...}, bn < byy1, (n =
1,2,...)

1= 0;6162:--
Then n is a g-normal number.





Remarks. 1. If Pec Z[z], r =deg P(> 1), P(z) — oo (z —
o), then for B=N, and B = P, the corresponding 7 is
normal.

Annales des sciences mathematiques du Quebec

2. L. German - 1. Katai: Let P be a subset of the primes
such that 7(z|P) = #{p < =, p € P} > ¢;z% if = >
xg, ¢ > 0. Let N(P) = subgroup generated by 7P.
P € Zlzx], P(z) — oo (z — 00), N(P) = {n1 < no <
...}. Then n =0,P(n1) P(no) ... is a normal number.

(Annales Sectio Computatorica ELTE, 38 2012))






€
IIL. ¢ > 2, n=p7*---p S, p1 < ... < pryq

H(n) =ci(n)---c(n), if k>1

q10g p;
logpjy1

CJ(TL) = I: EAq

H(p*) = A.

§=0,H(1)H(2)...

Theorem 3. £ is a g-normal number.





Theorem 4. Let R(x) € Z[z], R(m) > 0 ifm > mg H(R(n)
as earlier,

£ =0,H(R(mg))H(R(mg+ 1)) ...

Then € is a g-normal number. Assume further that R(0) #
0.

Let

n=0,H(R(p1))H(R(p2)) ...

where p1 < po < ... iIs the whole sequence of the primes.
Then n is a g-normal number.





IV. P=RUPyUP;U...UP,_; disjoint

m([u,u +v]|P;) = %W([%’UJ w i b 1o o . (U—Ogﬁg)_c>

e=>h, 2€<usy Let
' ifpeP;, 537=0,...,d—1
H(p) =3~ J
A ifpeR.
If n =p7{t---p, then let

R(n) = H(p1)--- H(pr).
Let

E=0,R(1R(2)...
e =0,R(2+a)R(3+a)...R(p+a)...





Theorem 5. We have £ is a d-normal number, furthermore
ne IS a d-normal number, if a #= 0.

Special case: {hg,...,h,p)_1} set of reduced residues mod
D,

P; ={plp=h; (mod D)}
§ =10, . 0ep D) —1
R = {p; p|D}.

Functiones et Approximatio 45, 2(2011), 231-253.
P(z) = epz 4+ - + ez € R[z], P(z) ¢ Qlx].

Io, I C [0,1),A(lp) = A(11) > O,
p IO ﬂ [1 = ¢





Az

intervals
Po=A{p:{P(p}elo}; P1r=A{p:{P)} €1}

R =P\ (PoUPq).

0 if p e Pg
H(p) =<1 if pe Py
AN ifpeR.

£=0,H(H3)...






V.
Theorem 6. Let F € Z[x], r = deg F, the leading coeffi-

t .
cient of F is positive. For some n €N letn= 3 €;(n)¢,
| 7=0
et(n) #0, m=¢eg(n)...e¢(n). For some nonpositive integer
m, let m = AN\. Let
n=0F(P(2+ 1) F(P(3+1))...F(P(p+1))...
¢ =0,F(P(2)) F(P(R)...F(P(n))...

Then n and & are g-normal numbers.

J-M. D.K. - I.K.: On a problem of normal numbers raised

by Igor Shparlinski, Bull. Austr. Math. Soc. 84 (2011),
337-3409.

Remark. The assertion remains true by changing P — P,

P — py, or P - p,,, where Py is the k’th largest, p; is the
k’th smallest, and p,, is the middle prime factor.





VI. Problems on normal numbers

Let ¢ > 2, By = {lo,ll,...,l(p(q)_l}, Il (mod ¢g) are the
reduced residues mod gq. Ay ' =10,1,...,0(q) —1}. Let
P = {p1,p2,...} be the whole sequence of primes. fq: P —

N Ap(g) )

Let

7 ifp=1;, (mod gq)
f‘J(p)_{/\ if(q,p)3>1.

Let

Bg = {fq(r1), fo(p2),...} € Ai\f(q)
§q = 0, fa(p1) fq(p2) - ..





Conjecture 1. &, is a ¢(g)-normal number, i.e.

zn = {o(q)"&q}

is UD mod 1.

Conjecture 2. Let q > 3, k1,ko,....,kpe A Then

w(q)-
Ppts; =1y, (Modgq) (j=1,...R)

holds for infinitely many n.

This seems to be open for R > 2 and for R > 3 in the case
qg = 3.

Knapowski-Turan wrote several papers on {2+ estimations
on

71'(5[7, ka ll) T 7T(33, k:' l2)





Ab

A. Rényi formulated a conjecture, namely that for every
permutation o of As@(q) T A¢(q) g Acp(q) there exists a
sequence x1,Z>...,xrn — oo such that

7'['($y,q,7'('(0)) > 7'('(271/,(],7'('(1)) SF o 77(331/7Q77T(90(q) - 1))

This seems to be very hard also.

Assume that the Hardy-Littlewood conjecture holds, namely
that if 0 < b < ¢q, (b,g) = 1, @1,.-.,a_.1 bDe such pos-
itive numbers for which the number of solutions p(p) of
F(m) =0 (mod p) is smaller than p, where

F(m) = (mg+b)(mg+b+ai) --(mg+b+ai+---+ar_1).





Then the number of pg = p < z, for which p=15 (mod q)

Py == py - ag A< ey (3= Lyns gl — 1]
are primes satisfies

Ny(z,a1,...,a5_1) = (1 +0:(1)) 2 1] <1 — f)—(ﬁ) :

L &%

TEP
From the Hardy-Littlewood conjecture one can obtain that
large part of the primes (pg, .. .,Pr—1) counted in Ny(z,a1,-..,0%)

are consecutive primes, i.e. no primes exists in the intervals
(pj,ri+1) G=1,...k— 1)

Erom this not hard to deduce that for every hq,...,hrp_1 €
Eq4 there are infinitely many consecutive primes pqg, ... Pk—1;
such that

pJEhJ (modq) (]ZO,]C—]_)






Problem. Construct explicitly such a sequence of integers:
ni1 < no... for which in the notation n; = 6; (mod g), 0 <
d; < q, the number

n=0,010>... ( g-ary expansion)

IS a g-ary normal number.

I can imagine that one can prove that it is impossible to
define such a sequence explicitly, if we would like to use
only "simple functions'. The following theorem seems to
be interesting.

Let &1,&5,... be independent random variables in (€2, A, P)
taking values 0O and 1, P(én=1) = A\, P((n=0) = 1 — Ay





Assume that Ay = A =0, \n =545, (n > 3).

For some w € Q let S(w) := {n1,n5,...} where ny,no,...

are those indices for which &n; = 1.

Let S(w) |¢q= {l1,1s,...}, where n; =1; (mod q), l; € Aq.
Theorem 7. Let

Oq := 0,l1lx... ( g-ary exp.)

Then 04 is a g-ary normal number with probability 1.






Vil. Complex roots of unity and normal numbers

Let g = fixed prime, ¢, ={§€C,ET=1} If p—1=
0 (mod q), then there exists x,;: (z/pz)" — C4.

Let I, = x, (1) ... xp(p — 1).

Theorem 8. Let p; < p, < --- be an infinite set of primes
such that g | p; — 1 (j=1,2,...).

Let

n:=Fp1Fp2

Then n is a normal sequence over c,,.

The proof is based on the famous theorem of A. Weil on
exponential sums.





IX. Another construction
Let Jy = [XNaXN-H]sXN = eN, YN = X,l/m, WN = N. For ne Jy
let pr < po < < Pyipy be all prime divisors of n located in

[wn, Yn]. Write

hi(n) = Pj ifj—:-1,---,ﬁ(n)
AP i j> Q) |
Write
wi(N) = Concat {h;(n) | ne Jn} = h([xn] + 1) h([xnia])-

Let
k; == Concat {w;(N) | N=1,2,---}.





For some prime g > 3 let

£.(n) = £ —1 if n=¢ (mod q),2#0
A if g|n.

Write fy(aB) = fg(a)f(B) if a, 5 are sequences over N. Let
fo(x;) = Concat {Concat{fq(hj(n)) | n e N} IN=1,2,---}
©j(=0;(q)) =0, f4(xj) (€ R).
(g — 1)-ary expansions.
Theorem 9.

The numbers ©4, 0., - - - are simultaneously q- normal
numbers, that is for every fixed K,

({o1(a - 1"+ {&la — 1))

n=1,2,--

are UD mod [0, 1).





A more general theorem is true.

Theorem 10.

Let (i,,q,) (v=1,2,---) be such pairs of integers for which
i, > 1,q, be odd prime, (iv, qv) # (s, q.) if v # p. Then for
every fixed k

({01 (@)(@—1)" {8x(a2)(@—1)"} - {Oi( ) (a1 M) .

are UD mod [0, 1).

These assertions are consequences of the number theorem for
arithmetical progression and the Eratosthenes sieve.






Mobius disjointness and entropy

Joanna Kutaga-Przymus

IMPAN /Nicolaus Copernicus University

Luminy, 11.02.2014

(joint work with H. El Abdalaoui, M. Lemanczyk and T. de la Rue)
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(=1)k, if nis a product of k distinct primes,
mu(n)=1<1, ifn=1,

0, otherwise.
m p(mn) = pu(m)wu(n) whenever ged(m, n) = 1,
m ) yu(n)=o(N) < PNT

Conjecture (Sarnak 2010)

for any “reasonable” deterministic sequence a(n):

m a(n) = f(T"x), where T: X — X is a homeomorphism of a
compact metric space, f € C(X),

m h(T)=0.
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Random character of

Conjecture (Sarnak 2010)

=S A(Tu(n) - 0

n<N

for any T: X — X with h(T) =0 and any f € C(X)

Conjecture (Chowla 1965)

*Zu i(n+ar)...w"(n+a) 0
n<N
forl<ay<ay<---<ayio,---,ir € {1,2} not all even.

Sarnak: The Chowla conjecture = Sarnak’s conjecture
Proofs:

m Tao's blog, Sarnak’s letter 2012 (combinatorial proof)
» Abdalaoui, KP, Lemariczyk, de la Rue 2013 (ergodic proof)
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1-point dynamical system (PNT),

rational rotations (PNT in arithmetic progressions)

irrational rotations Tx = x + o — Davenport, 1937

horocycle flows — Bourgain, Sarnak and Ziegler, 2011

nilsystems — Green, Tao, 2012

large SUBCLASS of rank one maps (bounded and recurrent
constructions) — Bourgain, 2011, Abdalaoui, Lemanczyk, de la Rue, 2013

m SOME systems generated by generalized Morse sequences
Indlekofer, Katai, 2001
Dartyge, Tenenbaum, 2005
Mauduit, Rivat, 2010

Green, 2012 and Bourgain, 2013 (ALL so called Kakutani sequences)

Abdalaoui, Kasjan, Lemanczyk, 2013 (Thue-Morse type and ALL reg. Toeplitz sequences)
m Rudin-Shapiro sequence — Mauduit, Rivat, 2013
some distal systems — Liu, Sarnak, 2013 (including ALL h=0 affine systems)
B some continuous compact group extensions and some rel.
weakly mixing extensions of rotations — KP, Lemanczyk, 2013
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Basic definitions: sequences and dynamical systems

X =AY or A%, |A| < 0
m X is a compact metric space:
d((x(M)nez, (y(n))nez) = 27 mntinleN: x(nZy(n)},

m (left) shift on Xt S((x(n))nen) = (v(n))nen, y(n) = x(n+ 1)
mforze X, X, :=0(z) ={S"z: n€ N} C X is S-invariant

T: X — X (homeomorphism of a compact metric space).
A point x € X is called:

m generic if g >,y O7ne v (such v is always T-invariant)

m quasi-generic if there exists (Nk) s.t. /\/% D on<n, 0Tnx = v

1
Q-gen(x) = {V € P(X): I(Nk) s.t. N, n;\:, Sy m ,/}

m completely deterministic if for all v € Q-gen(x), h(T,v) =0
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Basic definitions: entropy

Let T: (X,B,v) — (X, B,v) be bi-measurable,
probability-preserving.
The entropy h(T.1) € [0,00] is defined in a few steps:
m for a finite measurable partition Q@ = {Q1, ..., Qk} of X we
define H,(Q) = —> 5 1(Q,)log (@)
m (T, Q) = limy_o S H (\/,’Ygol T Q)
\/nN:_O1 T~"Q is the coarsest refinement of all partitions
T-"Q, n=0,...,N—1.

m (Kolmogorov and Sinai) /(7.1) = supg h,(T.Q), where the
supremum is taken over all finite measurable partitions.





Basic definitions: entropy

Let T: X — X.
Topological entropy: /1(T) = sup, h( T 1) (variational principle).





Basic definitions: entropy

Let T: X — X.
Topological entropy: /1(T) = sup, h( T 1) (variational principle).

Special case:
Let X C A% be closed and shift-invariant.
Let p(n) = the number of n-blocks appearing on X.





Basic definitions: entropy

Let T: X — X.
Topological entropy: /1(T) = sup, h( T 1) (variational principle).

Special case:

Let X C A” be closed and shift-invariant.

Let p(n) = the number of n-blocks appearing on X.
Then h(S) = hiop(S.X) = lim, % log p(n).





Basic definitions: entropy

Let T: X — X.
Topological entropy: /1(T) = sup, h( T 1) (variational principle).

Special case:

Let X C A” be closed and shift-invariant.

Let p(n) = the number of n-blocks appearing on X.
Then h(S) = hiop(S.X) = lim, % log p(n).

Notation: hfop(Z) = htop(S,Xz)-





Basic definitions: entropy

Let T: X — X.

Topological entropy: /1(T) = sup, h( T 1) (variational principle).

Special case:
Let X C A% be closed and shift-invariant.
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Basic definitions: entropy

Let T: X — X.
Topological entropy: /1(T) = sup, h( T 1) (variational principle).

Special case:

Let X C A” be closed and shift-invariant.

Let p(n) = the number of n-blocks appearing on X.
Then h(S) = hiop(S.X) = lim, % log p(n).

Notation: hfop(Z) = htop(S,Xz)-

Remarks:
m h(T)=0 <= all x € X are completely deterministic
m it is possible z is completely deterministic but hyp(2) > 0
Mirsky (1949): u? is generic for a zero entropy measure,

i.e o is a completely deterministic point
however: f..,(11?) = 6/77 log 2
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7(B) = (b3,...,b7) <> {x € {0,1}%: x(i) = b? for 1 < i < k}

Each v € Ps({0,1}%) is determined by the values on blocks: v/(B).
For v € Ps({0,1}%) we define v € Ps({—1,0,1}%):

V(B) :=275uPP B v(m(B))

(the relatively independent extension of v).
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le > n<h, zZo(n)z (n+a1)-...-z"(n+ a,)
= 3 Ynen, F(8"2) = [ F dp

By (Ch) we know the value of [ F dp, a calculation yields
that in fact we have [ F dp = [ F dU.

[@ Function like F form an algebra of continuous function which
distinguish points = by Stone-Weierstrass thm p = 7. n
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“(Ch) holds for z" is equivalent to

Ay (22) = dgnye = v = Ap(2) == — Z dgny — V.
n<Ny n<Nk

(Ch) holds for z <= Q-gen(z) = {V: v € Q-gen(z?)}.

The only sequences u € {—1,1}" satisfying (Ch) are generic points
for the Bernoulli measure B(1/2,1/2) = (1(5_1 + 01))®™.

Proof: For u e {-1,1}, v? = (1,1,...),

w Ay (0?) = b1, = v =011, B
= U= B(1/2,1/2). [
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Let z € {—1,0,1}".
m z satisfies condition (S-strong) if
b S e F(T7X)20(n) - 28 (n +a) .- 24(n+ a) —— 0
= —00
for each f € C(X) and x € X completely deterministic and
foreach1<a;<...<a,r>0,is€{1,2} not all =2.

m z satisfies (Sg-strong) if it satisfies (S-strong) for all T with
h(T)=0.

Let u(n) = z°(n)-... - z"(n+a,), n > 1, not all i, even.
If z satisfies (Ch) then u satisfies (Ch)

An immediate consequence of ,,(Ch) = (S)" and the above lemma:

If z satisfies (Ch) then z satisfies (S-strong).
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SN

(Ch) «——— (S-strong) «———— (S)

>~ |

(So-strong) «<———— (So).

~_

Formally, (S) is not the same as (Sp):
(Sg) for p does not give us

NZ“ (n+1) =0,
n<N

whereas (5) does!
However, (S) < (5o).
13/20
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approximate f(T"x) with a completely deterministic sequence
y(n) € AN - reduction to ,\,iA > nen, Y(m)z(n) — 0" #0,

key ingredient (w/o proof: Weiss 1995):
m y € AV is completely deterministic <=
Ve >0 3K s.t. after removing from (y(n)) a subset of density

less than g, what is left can be covered by a collection C of
K-blocks such that |C| < 2°K,
construct y’(n) € AN which agrees with y(n) on a set of a
very small density and such that hsp(y") = 0,
this gives N% Do, Vi n)z(n) — 0" £ 0, ie. (So) also fails.
[]
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F:{-1,0,1}2 — C, F(w) = w(0). Then E”(F|{0,1}%) = 0.

Proof:
w U= 1, dv(u),
m E7(F{0,1}%)(u) = [,-1(,) F du,

m U, = product measure (1/2,1/2) of all positions belonging to
the support of u,

m If u(0) =0 then OK (F =0),

m If u(0) = 1 then F on 7 !(u) takes two values &1 with the
same probability = OK.
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(5,{0,1}2,v) x (S,{-1,1}2,B(1/2,1/2)).

Proof:
m &:{0,1}2 x {-1,1}2 — {~1,0,1}%, &(u, v)(n) = u(n)v(n),
m £ is equivariant (we can either shift first or multiply
coordinatewise first),

m (v ® B(1/2,1/2)) = v (calculation).
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TxS: Xx{-1,0,1}* = X x{-1,0,1}7%,
x € X completely deterministic, z — quasi-generic for v along (Ny).
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General definition

For any integer n, let P*(n) (resp. P~ (n)) denotes the greatest (resp.
smallest) prime factor of .

Definition
Let y > 2. A nonzero integer n is said to be y-friable if it satisfies P*(n) < y. J

Abundant bibliography : Norton(1971), Hildebrand and Tenenbaum (1993),
Granville (2008).
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Asymptotic density of y-friable integers

Let e > 0, H. the planar domain defined by
x >3, exp ((10g10gx)5/3+€) <y<x

log x
logy®

and u :=

Theorem (Hildebrand (1986))
For any fixed € > 0 and uniformly for (x,y) € H., we have

U(x,y) = {1 <n<x:PH(n) <y}

— (1 +o (71"%(0”;; 1)))

where p is the Dickman function, namely the unique continuous solution to
the differential-difference equation

p(u) =1 ifo<u<l,
up' () + plu—1)=0 ifu>1.
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Friable values of general binary forms

Given a binary form F € Z[X,, X>], what can be said asymptotically about

Ur(x,y) = ‘{1 <xp,x <x: P+(F(x1,x2)) §y}| ?

Double motivation :
@ ltis easier to work with elements of Z[X,, X;] rather than Z[X;].
@ The cardinal ¥r(x,y) plays a key role in the factorisation algorithm
Number Field Sieve for the choice of the parameters (see the book of
Crandall and Pomerance (2005)).
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Previous results (1)

Theorem (Balog, Blomer, Dartyge and Tenenbaum (2012))

Letk > 1 and F (X1, X,), ..., Fi(Xi,Xz) € Z[X1,X,] be some integral and
irreducible binary forms of degree d, > - - - > di. There exists
a(di, ..., dx) € [0,d] such that, for any fixed o > «(F1, . .., Fi) and uniformly
fory > x*, we have

Vi ..k, (X, y) >a X

More precisely, one can take

0 ifk>2andd, +---+dp <3,

Fi,...,Fy) =
a(Fy, ..., F) { e~ ifk=1andd =3.

Other results for general polynomials F € Z[Xi, ..., X,] :
o if n = 1: Dartyge, Martin and Tenenbaum (2001),
@ if n > 3 and F is absolutely irreducible: Fouvry (2010),

@ if n =2 and F is an irreducible quadratic form:

e asymptotic equivalent: Moree (1993),
e asymptotic expansion: Hanrot, Tenenbaum and Wu (2008).
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Main results

Theorem

LetF\,F, € Z[X,, Xz] be two irreducible binary forms, respectively of degree 1

and 2. For any fixed e > 0 and uniformly for x > 16 and

log x(logs x)' 2
exp (T <y <x°, we have

Urr, (x,y) = X p(u) p(2u) (1 +0 (%)) .

logx)!'—=

Theorem

| \

Let F € Z[X1,X>] be an irreducible binary cubic form. For any fixed e > 0 and
uniformly for x > 3 and exp <LE) <y <, we have

1
(log; x) 2

wr(x) =p(0n) (140 (s ) )
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Previous results (I1)

Theorem (Fouvry and Iwaniec (1997))
There exists C > 0 such that, for any A > 0 and uniformly for x > 2, we have

> A)AGE +8) = Cx (140 ((1ogn) ™))

X% +X% <x

where A denotes the von Mangoldt function.

Theorem (Heath-Brown (2001), Heath-Brown and Moroz (2002))

Let F(X1,X,) € Z[X,,X>] be an irreducible binary cubic form without fixed
divisor. There exists ¢(F) > 0 and ci, ¢, > 0 such that, uniformly for x > 3, we
have

AP w) = PR (140 ((oglog ™))

x<x 5 <x(14)

where n := (logx) .

\
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@ Friable values of X, (X? + X3)
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A combinatorial identity (1)

Inclusion-exclusion principle:

\IJXI(X]Z+X22)(X7Y): Z p(d) [ Aa(x,y)]
d<2:*
P~ (d)>y

where 1 denotes the Mébius function and
Aa(x,y) = {1 <xi,x <x:PT(x) <yanddx —|—x§} .

By splitting the square [1, X]* by congruence classes mod d, it suggests to
write

[Aute )] = p() 22 4 1y,

where
~¥(d) := Hl <x,x <d: d|x% +x§}‘.

Remark : v is multiplicative and satisfies

’y(p):(pfl)‘{lﬁxlﬁp:x%+150 (modp)}’+1.
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Type | estimate

Lemma

For any fixed € > 0 and uniformly for (x,y) € H. and 1 < D < x*, we have

3" lrax,y)| < ¥ D# (logx)*.
d<D
P~ (d)>y

Lemma directly inspired from Fouvry and lwaniec (1997) and Friedlander and
Iwaniec (2010).
Main tools :

@ Well-distribution of the roots of n* +1 =0 (mod d).
@ A large sieve inequality.
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Use of Type | sums

With the choice D = x>~ where T = o(1) is a convenient parameter such that
xT <y, we remark that

Y. @A) < Y SEmy)

d>x3—T m<2xT
P=(d)>Y

where

2., 2
S (x,m,y) = Hl < xi,x Sx:m\x%+x§ and P~ (xl ;xz) >y}‘.

Consequently, we get

d —r
oo (63) =) 3 w@) D 4 0 (¥ tog ")
a<2=T

P~ (d)>y

+0<Z S(x,m,y)) .

mxT
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A sieve lemma

Selberg sieve :

S (x,m,y) < %H (1+@) Ea

p* ) logy’
plm

It follows that
Z S (x,m,y) < Tux’

m<2xT

and, by Perron’s formula and the inclusion-exclusion principle,

y(d —
Ty (9) =Fp) 3 (@)D 10 (277 tog)* + rur)
d<L2T
P~ (d)>y

_ d . _ .
=C(v) ' pu) Z % +0((x2 84y 1) (log x) —|—7‘u2x2)
d<x®
P& <y

cq =] (1+ 7}52’:)) <1 —})) > 0.

P

where
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Sums of multiplicative functions over friable integers (1)

From the formula
W)= -D|{1<x <pid+1=0 (modp)}|+1,

it follows the decomposition

> (fl) = Goi) (5)G(s)

n>1

2

N

where
@ (o) is the Dedekind zeta function of Q(i),
@ G(s) is an Euler product, absolutely convergent for R(s) > 1.

Method of Hanrot, Tenenbaum and Wu (2008) : for any fixed ¢ > 0 and
uniformly for (x,y) € H., we have

) Y _ c(y)xo(u) <1 +0 (M)) '

logy

Then, the result follows.
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Main result

For any fixed e > 0, we have, uniformly for x > 3 and
oo () <y <2
(logy )2~

Vo0 (%,) = xp(3u) (1 +0 <(;)) .

log, x)!'~<
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An intermediate result

Let n := (logx)~° for some sufficiently large ¢ > 0. We consider the set
A:={x<x,xn<x(1+n): (x,x)=1}.

We show the following theorem

Theorem
For any fixed e > 0, we have, uniformly for x > 3 and

exp <‘¢> <y<a,
(logyx)2 ¢

¥(AY) = {0 € A PP+ 240) < v}

= %nzxzp(f*“) (1 i@ (W)) '
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A combinatorial identity (2)

Inclusion-exclusion principle:

YAy = D uld) | Ad)|
P’%d};iy

where
Aa(x) := {(xl,xz) € A:dx + 2xg} .

By splitting .A by congruence classes mod d, it suggests to write

6 222

2 e
where ~ is multiplicative and satisfies

| Aa(x)] := + ra(x)

ifpt6or (pl6ifh=1),

Yp
Ky _ T4p—T
7P { 0 otherwise,

where v, denotes the number of roots of the congruence x; +2 =0 (mod p).
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Type | estimates

Inspired by ideas of Greaves (1971), Daniel (1999) and Heath-Brown (2001):

Lemma

There exists ¢ > 0 such that, uniformly forx > 2 and D < x*,

>~ Ira(@)] < x¥ D (log x)".

d<D

= We can only take D < x*/(logx)* for sufficiently large A > 0 : the previous
method fails.
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Heath-Brown’s method (2001):

Let 7, ¢ be two parameters such that 0 < £ < 7 =o(1) and x™ < y. We try to
approximate, for x*/**” « m <« x*~7 and 7 < k£, the cardinal

S(A;ki, ... knym) = H(xl,xZ) EA:mpi...pn=x +2x3and £ < p; §x<k"+l)§}‘

by
n
005 Z o(mpy...pn)
i€ <p<x(litDE
33 <mpy ... pa <32 (141)
where

get{Cary

14

and o denotes the multiplicative function which satisfies, for prime p and
k>1,

—1
—1 vp . _
() :={ " (5) (1-%5) :‘P‘Lf’ a;i g»is andk = 1),
if p|6 an > 2.
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Sketch of proof when n = 1: First step

Approximation of
S(A; kym) = ‘{(xl,xz) eA:mp=x +2x and Pr <p< x(k+1)§}’
by .
Si(Askmy = L] o) (%) Y A

k& log x
¢log (x1,%) €A
mq:x?+2xg
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Sketch of proof when n = 1: Second step

Standard decomposition: A(g) = Ai(g) + A2(g) where

Ai(g) = ) p(d)log (x;ﬂ).

d<x7/?
dlq

Lemma (Heath-Brown (2001))

For any fixed A > 0, we have, uniformly for x*/**™ <« V <« x*77,

3x3 Az q _
Z Z l]xkﬁ,x(kﬁ—l)s} (7m ) kEl(() )x < x*(logx) ™.
V<m<2V | (x1,1) €A g
mq:xl+2x%

This type Il sum is the cornerstone ot the method.

Siegel zero —  the implicit constants are non-effective.
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Sketch of proof when n = 1: Third step

T/2 /2
> > uld)log (x y )= > wld)log (* d )|Amd<x>|
mge A d|q/’, d<x™/?
d<x7/*
T/2
O 22 y(md)
d<x™/?
(m) > 2

o(m
~ og——N"x
m

n
~ aogkf log x Z o(mp).
HE <palkFDE
30 <mp§3x3(l+17)

Consequently:

H(xl,xz) G.Azmp:x‘f—l—Zx; and x*¢ <p§x(k+l)§}’ Nao;]—x Z o(mp).
HE < p<xHDE
3x3<mp§313(1+'q)
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Application of Heath-Brown’s method

The work to do: Find a combinatoric formula which enables us to use the
previous estimates, namely a decomposition of the shape

¥) = > n(m [A0 )] + > Ml ) [AD )] + R(A,)

where
o the cardinal ’A(”(n)’ may be estimates whith type | sums (sieve
methods, A, (x) with m < x*/(log x)°),
o AM(m) = {mp1 cpn €A X < pp < xUFDE iy e C} with 7 < k¢ and
CccC {m X wm < XZ‘T} convenient,
@ R(A,y) is negligible.
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Restriction to y < x!/2—¢

From now on, we suppose y < x'/>7¢. We can write
V(A,y) = Z)A” )| +R(A,)
where

AW (n) .= {(xwh) cAxi+20=mpi..pp, X <pa<---<p1 <y,

P (m) < pu,pi...pn1 <x'77 <p1...p,l}

and

RAY) =] | An|<2exp (—cr‘]) Tenenbaum(1990).

m>x2_T

Pt (m)>x"
Partition of A" (n) as a union of sets
S(A;kiy ... kyym) = ‘{(xl,xz) EA:mpi...pn= x? + 2x§ and x*i¢ <pi < x<k’+1)5}‘

with /1" « m < x* " and 7 < k€.
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Sums of multiplicative functions over friable integers (2)

We have n
YAy ~oogs > o(m).

383 <m<3:3 (141)
PF(m)<y

Since y(p) = v, + O (1/p), we have the decomposition
o\n
S ¢ o ()G0)

ns -
n>1

where

® (o3 is the Dedekind zeta function of Q(v2),

@ G(s) is an Euler product absolutely convergent for R(s) > 3.
Method of Hanrot, Tenenbaum and Wu:

18 5
~ 3u).
D S
323 <m <3 (140)
PH(m)<y
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Sums of arithmetic functions other values of binary cubic forms

Let F be an irreducible binary cubic form and / be an arithmetic function. We
want to study the mean value

S(h,X;F):= > h(F(x1,x2))

1<y, <x

@ Case h = 7 : Greaves (1970), Daniel (1999).
@ Case h = p : Helfgott.

@ Case & general : La Breteche and Browning (2006), La Breteche and
Tenenbaum (2012).
Our method enable us to give an asymptotic estimate of S(h, X; F) for
bounded & with a "multiplicative flavour”. As an example, one can take h = p
or the characteristic function of sieved integers, of nuclear integers, etc.





Outlooks
oeo

Three linear forms

Let Fi, F», F3 € Z[X,, X>] be three linear forms which are indedependant. We
study an asymptotic formula for Wr, r,r, (x, ).

If Fi =X, F, =X, and F3 = X| + X», we know an asymptotic expansion

@ in the domain exp ((logx)‘/2+5) <y < x: La Bretéche and Granville,
Drappeau (2013),

@ under (GRH) and in the domain (logx)®"* <y < x : Lagarias and
Soundararajan (2012), Drappeau (2013).





Thank you for your attention.
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The Mobius function

Mobius function o0 N {101}

(—1)%, if nis a product of k distinct primes,
p(n) =<1, if n=1,
0, otherwise.

® Prime number theorem (PNT) «— % D ey (n) =0
when N — oo. -

m p(m-n) = p(m)- pu(n) whenever (m,n) =1 (pis a
multiplicative function).





Sarnak’s conjecture
m Conjecture
m Examples





Sarnak's conjecture

Sarnak’s conjecture (2010)

X - compact metric space, T: X — X homeomorphism of zero
topological entropy, x € X, g € C(X). Then

S &(T"x)(n) = o(N). (1)

n<N

Whenever (1) is true for some T for all x € X and all g € C(X),
we say that Sarnak’s conjecture holds for T or that T is disjoint
from (or orthogonal to) the Mobius function. (The sequence
(g(T"x)) is deterministic.)
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J. Hadamard, 1896, Ch. J. de la Vallée-Poussin, 1896
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Sarnak's conjecture — examples

m 1-point dynamical system (PNT)

J. Hadamard, 1896, Ch. J. de la Vallée-Poussin, 1896

rational rotations (PNT in arithmetic progressions)

irrational rotations — H. Davenport, 1937

horocycle flows — J. Bourgain, P. Sarnak, and T. Ziegler, 2011

nilsystems — B. Green, T. Tao, 2012

large subclass of rank one maps — J. Bourgain, 2011 (bounded

constructions), H. Abdalaoui, M. Lemariczyk, and T. de la Rue, 2012

(recurrent constructions)

m SOME systems generated by generalized Morse sequences — K.-H.
Indlekofer, |. Katai, 2001, C. Dartyge, G. Tenenbaum, 2005, C. Mauduit,
J. Rivat, 2010, B. Green, 2012, J. Bourgain, 2013

= Rudin-Shapiro sequences — C. Mauduit, J. Rivat, 2013

= some distal systems — J. Liu, P. Sarnak, 2013 (including ALL zero entropy
affine systems), J. Kutaga-Przymus, M. Lemariczyk, 2013 (+ so called
Rokhlin extensions).





Sarnak's conjecture — generalized Morse sequences

Definition (Keane 1968)

x € {0,1} is called a generalized Morse sequence if
x = b x b! x ... with b" € {0,1}Pi, p; > 2, b/(0) =0, i > 0.

Given blocks B € {0,1}* and C = C(0)C(1)...C(¢£ —1) € {0,1}*, we set
B x C=BOB)  BCt=1) with B® = B and B! arises from B by the

interchange of Os and 1s.
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X = O(x) € {0,1}% the subset of all two-sided sequences such
that each block of consecutive symbols appearing in y € O(x) also
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Sarnak's conjecture — generalized Morse sequences

Definition (Keane 1968)

x € {0,1} is called a generalized Morse sequence if
x = b x b! x ... with b" € {0,1}Pi, p; > 2, b/(0) =0, i > 0.

Given blocks B € {0,1}* and C = C(0)C(1)...C(¢£ —1) € {0,1}*, we set
B x C=BOB)  BCt=1) with B® = B and B! arises from B by the
interchange of Os and 1s.

Definition of the corresponding subshift

X = O(x) € {0,1}% the subset of all two-sided sequences such
that each block of consecutive symbols appearing in y € O(x) also
appears in x.

T :{0,1}% — {0, 1}*the shift, i.e. the homeomorphism that shifts a two-sided
sequence of Os and 1s by one position to the left; O(x) - closed and
T-invariant. Under some mild assumptions on the blocks b°, b, . .. (Keane
1968), one obtains a strictly ergodic dynamical system (X, pix, T), where puy is
a unique T-invariant (Borel) probability measure.





Sarnak's conjecture for the zero-coordinate function—
Kakutani sequences

Definition
x = b2 x b x ... - Kakutani sequence if |b'| = 2, i > 0 (either
b" =01 or b' = 00).






Sarnak's conjecture for the zero-coordinate function—

Kakutani sequences

x = b2 x b x ... - Kakutani sequence if |b'| = 2, i > 0 (either
b" =01 or b' = 00).

W

Sarnak’s conjecture: only zero-coordinate function
1
— _1)x(n)
(A) & D1 Pu(n) =0

n<N

stronger form:

(B) NZ 1M p(n) = 0 for all y € O(x).

n<N
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Sarnak's conjecture for the zero-coordinate function—

Kakutani sequences

x = b2 x b x ... - Kakutani sequence if |b'| = 2, i > 0 (either
b" =01 or b' = 00).

Sarnak’s conjecture: only zero-coordinate function

(A) 5 2 Ou(n) -0

n<N

—
|
A\

stronger form:

(B) NZ 1M p(n) = 0 for all y € O(x).

n<N

v

Consider f € C(O(x)), f(z) := (=1)?(® (and substitute z = y for
(B); for (A) use the fact that x has an extension to a two-sided
sequence in O(x)).





Sarnak's conjecture for Kakutani sequences

(A) for Kakutani sequences

(A) YN (=1 p(n) =0

n<N

m x =01 x 01 x...: Katai 1986, Indlekofer-Katai 2001,
Dartyge-Tenenbaum 2005 (+speed of convergence),
Mauduit-Rivat 2010 (+PNT).

= Green 2012: %; Z,'Y:l(—l)sE(”)u(n) — 0; here E C N is fixed
(for E: |[EN[1,N]| = o(V/N)) and sg(n) := 3. ni, where
n=>,n2" (nj € {0,1}). To see a relationship with
Kakutani sequences define a Kakutani sequence
x = b% x bt x ... with b" =01 iff n+ 1 € E; it is now not
hard to see that sg(n) = x(n) mod 2.

m Bourgain 2013: using the methods of Mauduit-Rivat 2010,
completed the result for the remaining £ C N.

m Bourgain 2013, Green 2012: + PNT.

m It can be proved that (B) also holds.





Sarnak's conjecture for Kakutani sequences

Sarnak’s conjecture

X - compact metric space, T: X — X homeomorphism of zero topological entropy,
x € X, g € C(X). Then % > n<n &(T"x)p(n) — 0.
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Sarnak’s conjecture

X - compact metric space, T: X — X homeomorphism of zero topological entropy,
x € X, g € C(X). Then % > nen &(T"x)p(n) — 0.

® We need to show only for g in a LINEARLY dense subset of C(X).

m X = O(x), x-Kakutani sequence; functions depending on finitely many
coordinates give a dense subset of C(X); if we fix the number of
coordinates, the relevant space is finite dimensional, then Sarnak's
conjecture holds iff

1 q n
= 3 1a(T" () 0
n<N
for each block B € {0,1}%, k > 1, y € O(x) (1g(z) =1 if
(2(0),...,z(k — 1)) = B and 0 otherwise).
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Sarnak's conjecture for Kakutani sequences

Sarnak’s conjecture

X - compact metric space, T: X — X homeomorphism of zero topological entropy,
x € X, g € C(X). Then £ >\ g(T"x)u(n) — 0.

® We need to show only for g in a LINEARLY dense subset of C(X).

m X = O(x), x-Kakutani sequence; functions depending on finitely many
coordinates give a dense subset of C(X); if we fix the number of
coordinates, the relevant space is finite dimensional, then Sarnak's
conjecture holds iff

1 n
© S (T () — 0
n<N

for each block B € {0,1}%, k > 1, y € O(x) (1g(z) =1 if
(z(0),...,z(k — 1)) = B and 0 otherwise). For example,
(—1)" = Lo(y) — L1(y) and

(=10 = 165(y) + Lus(y) — Toa(y) — Lo(y).
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Katai-Bourgain-Sarnak-Ziegler (KBSZ) criterion
m Criterion
m Ergodic theory and KBSZ criterion
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Orthogonality criterion - numeric case

Katai 1986 (exponential sums with multiplicative coefficients),

Bourgain-Sarnak-Ziegler 2011 (KBSZ)
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Katai 1986 (exponential sums with multiplicative coefficients),

Bourgain-Sarnak-Ziegler 2011 (KBSZ)
F: N — C - a bounded sequence, >, _y F(rn)F(sn) = o(N) for

any sufficiently large primes r £ s. Then

> " F(n)v(n) = o(N) (2)

n<N

for any multiplicative function v with |v| < 1.
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Orthogonality criterion - numeric case

Katai 1986 (exponential sums with multiplicative coefficients),

Bourgain-Sarnak-Ziegler 2011 (KBSZ)
F: N — C - a bounded sequence, >, _y F(rn)F(sn) = o(N) for

any sufficiently large primes r £ s. Then

> " F(n)v(n) = o(N) (2)

n<N

for any multiplicative function v with |v| < 1.

Given a homeomorphism T: X — X, we consider
F(n)=g(T"x) forneN,

x € X and g € C(X).
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Orthogonality criterion for Sarnak’s conjecture

A uniquely ergodic homeomorphism T of a compact metric space
X is said to have M-disjoint powers if there exists a linearly dense
set (zero mean) of g € C(X) such that for each x € X we have

> 1 8(T™x)g(T*"x) = o(N).

for sufficiently large distinct prime numbers r, s (“sufficiently large’
depends on g and x(!)).
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SV g(T™x)g(T*"x) = o(N).

for sufficiently large distinct prime numbers r, s (“sufficiently large”
depends on g and x(!)). From the (numerical) KBSZ criterion it
follows that SN g(Tx ) (T*"x) = o(N) (for sufficiently large
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KBSZ criterion for homeomorphisms

M-disjointness of powers of T = Sarnak’s conjecture holds for T

= The proof follows from the fact that if > g(T"x)u(n) = o(N) for a
linearly dense set of g € C(X) then it holds for ALL g € X.
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Orthogonality criterion for Sarnak’s conjecture

A uniquely ergodic homeomorphism T of a compact metric space
X is said to have M-disjoint powers if there exists a linearly dense
set (zero mean) of g € C(X) such that for each x € X we have

> 1 8(T™x)g(T*"x) = o(N).
for sufficiently large distinct prime numbers r, s (“sufficiently large”
depends on g and x(!)). From the (numerical) KBSZ criterion it
follows that ZnN:1 g(T™"x)g(T*"x) = o(N) (for sufficiently large
distinct primes r,s) = > " g (T7)u(n) = o( V).

KBSZ criterion for homeomorphisms

M-disjointness of powers of T = Sarnak’s conjecture holds for T

= The proof follows from the fact that if > g(T"x)u(n) = o(N) for a
linearly dense set of g € C(X) then it holds for ALL g € X.

m Warning: The assumptions of the KBSZ criterion are satisfied for a
LINEARLY DENSE set of functions; they ARE FAR from being satisfied
for ALL continuous functions (already seen for irrational rotations).
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Ergodic vocabulary

Disjointness (Furstenberg, 1967)

Two automorphisms T on (X, B, ) and S on (Y,C,v) are said to
be disjoint if the only T x S-invariant measure p whose projections
on X and Y are p and v respectively (p is a joining of T and S) is
equal to u ® v. We write then T; L T».
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equal to u ® v. We write then T; L T».

If T € Aut(X,B,p), then on L2(X,B,u): Urf =foT. By oy,
we denote the maximal spectral type of Ur on L3(X, B, i)
(recalling that it is the type of any maximal spectral measure

Of Ur: O‘fUT foO T". fd;L for each n € Z; 04y, < 0r,uy
for every g € L2(X B, i)).
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Disjointness (Furstenberg, 1967)

Two automorphisms T on (X, B, ) and S on (Y,C,v) are said to
be disjoint if the only T x S-invariant measure p whose projections
on X and Y are p and v respectively (p is a joining of T and S) is
equal to u ® v. We write then T; L T».

If T € Aut(X,B,p), then on L2(X,B,u): Urf =foT. By oy,
we denote the maximal spectral type of Ur on L3(X, B, i)
(recalling that it is the type of any maximal spectral measure

Of Ur: O‘fUT foO T". fdp for each n € Z; 04y, < 0r,uy
for every g € L2(X B, i)).

Definition of spectral disjointness

Ty i Ty are called spectrally disjoint, if our, L ouy,- We write
then T1 Ly, To.
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Collecting...

Corollary (Bourgain-Sarnak-Ziegler, 2011)

For a uniquely ergodic system (T, X, u):

T" Lgp T° forevery r£seP =
T" 1 T° forevery r£se€P =
T has M-disjoint powers =
Sarnak’s conjecture holds.
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Topological models - advantage of Furstenberg's

disjointness

T € Aut(X, B, 1) - a measure-theoretic system; S a uniquely
ergodic homeomorphism of a compact metric space Y: with
(S,Y,C,v) — the corresponding measure-theoretic system.
(S,Y,C,v) is called a topological model of T if there exists a
measure-theoretic isomorphism 6 : (X, B, u) = (Y,C,v),

6o T =500 (0 need not be continuous(!)).
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disjointness

T € Aut(X, B, 1) - a measure-theoretic system; S a uniquely
ergodic homeomorphism of a compact metric space Y: with
(S,Y,C,v) — the corresponding measure-theoretic system.
(S,Y,C,v) is called a topological model of T if there exists a
measure-theoretic isomorphism 6 : (X, B, u) = (Y,C,v),

6o T =500 (0 need not be continuous(!)).

If for a MEASURE-THEORETIC system T € Aut(X, B, 1) we
have Furstenberg's disjointness of different prime powers, then in
each uniquely ergodic model (S, Y,C,v) of the automorphism T,
Sarnak’s conjecture holds.

Example: (not easy) If T is the Chacon subshift obtained from the substitution
0~ 0010, 1—1

then T is uniquely ergodic, has disjoint powers, whence Sarnak’'s conjecture

holds in every topological model of T.
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Sarnak's conjecture for an irrational rotation

Tx =x+4+aon X =[0,1) (modulo 1), a ¢ Q.
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Sarnak's conjecture for an irrational rotation

Tx =x+4+aon X =[0,1) (modulo 1), a ¢ Q.

m The powers of T are NOT disjoint in Furstenberg's sense;
indeed, T" and T° have T' as their common factor(!).

m T has M-disjoint powers; Indeed, we check KBSZ criterion: if
x(x) = €™ (k € Z), then (by the Weyl criterion)

N N
N Z (T"x)x(T*x) = N Z X(x + rna)x(x + sna) =
n=1

Ly ——\" 1 o
=52 (X(a)’x(a) ) -5 k(=)o _, o
n=1 pa

For trigonometric polynomials the same works for r, s sufficiently large;
KBSZ criterion does not work for an arbitrary zero mean g € C(T).

m It is unknown whether Sarnak’s conjecture holds in every topological
model of T.
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Odometer and Sarnak’s conjecture

H = {0, 1} with addition modulo 2 with carrying the remainder
to the right (compact metric Abelian topological group):

Rx = x+(1,0,0,...).
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2-point extensions of the odometer

Recall: H = {0,1}", Rx = x +(1,0,0,...). Let
w:H—Z/27 =: Zy = {0,1} — measurable (cocycle):

Ry HXZo— HxZo, R.(x.0)—= (Rx o(x)+1).
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2-point extensions of the odometer

Recall: H = {0,1}", Rx = x +(1,0,0,...). Let
w:H—Z/27 =: Zy = {0,1} — measurable (cocycle):

Ry HXZo— HxZo, R.(x.0)—= (Rx o(x)+1).

Basic spectral analysis:
m [2(H x Zp, my ® my,) = (L2(H, my) @ 1) @ (L>(H, my) ® x)
with x(i) = (—1)".
m Gy, (K) = [(—=1)?" dmp, where
©F)(x) = p(x) + ©(Rx) + ... + @(R*1x) for k > 1.

B OUg, = OUg T Ox Uy, * OUg: where oy, is a discrete measure

whose atoms are all roots of unity of degree 2%, k > 0.
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More spectral analysis

Given r > 1 and a finite (positive, Borel) measure on S, by ¢ we denote the
image of o via the map z — z".

Proposition

Assume that r; # r» and for some t € N we have
(r;it2™)
/(—1)“9 T dmy = g
H

Then Urjt2n goes weakly to ¢; - Id on the subspace L2(H7 mu) ® x. In particular,

if 1 # c then a('l) 1o, . If additionally, 1| # |c| then
’ P

Ungl € JEFTL on L*(H,myu)® x.
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More spectral analysis

Given r > 1 and a finite (positive, Borel) measure on S*, by o(") we denote the
image of ¢ via the map z — z".

Proposition

Assume that r; # r» and for some t € N we have
(r;it2™)
/(—1)“" T dmy = g
H

Then Urjt2n goes weakly to ¢; - Id on the subspace L2(H7 mu) ® x. In particular,

if 1 # c then a('l’ 1o, . If additionally, 1| # |c| then
’ P

Ungl € O'Efrl on L*(H,myu)® x.

What to do with this approach in the context of Sarnak’s conjecture?

m For R, we “loose” the inverse limit structure of the odometer (which
gave Sarnak’s conjecture for R).

m R, has no global disjointness properties for powers (as R has not at all).

m The above proposition suggests SOME spectral disjointness which may
help.
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Sarnak’s conjecture for a function - spectral approach

Proposition

Assume (T, X, B, 1) is a uniquely ergodic homeomorphism and let

f € C(X) such that ot(frz/ 1 0-,(‘_5()] , for r # s € P sufficiently
large. Then > _p F(T" x)u(n) = o(N) for each x € X.
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Sarnak’s conjecture for a function - spectral approach

Proposition

Assume (T, X, B, 1) is a uniquely ergodic homeomorphism and let

f € C(X) such that at(frz/ 1 a,(,S()J , for r # s € P sufficiently
large. Then > _p F(T" x)u(n) = o(N) for each x € X.

m Suppose that ZN d7myx ® O1sny — p, where p is a probability measure
on X x X. Then this measure is T X T*-invariant, in fact, p is a joining
of T"and T°.

= We now claim that [, f(y)f(z) dp(y,z) = 0 whenever [, fdu=0.

m To see this, note first that a,(ffLT = 0f,u;- Then write f ® f as the
product of f ® 1 and 1 ® f. Then

TFR1LUrryrs ) = OFUrr AN T1&FUrrrs o) = OFUrs -

By our assumption, OF Uirr ) and or.y are mutually singular, so f ® 1

(T, 1)
and 1 ® f are orthogonal as members of L?(X x X, p), and
Jxxxf®fdp=0.
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Morse sequences and Sarnak’s conjecture
m Thue-Morse sequence and a skew product representation
m Fourier transform of the spectral measure of the Thue-Morse
sequence. Orthogonality of powers on the continuous part of
the spectrum
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Spectral properties of Thue-Morse dynamical system

x=01x01x...=01101001... - Thue-Morse sequence;
(T,0O(x), i1x) - the corresponding dynamical system (uniquely
ergodic).
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m f:0O(x) =R, f(y):=(~1)@ is continuous and

Ge.up(m) = / WO gy, mez
O(x

B (T,0(x), px) has a representation as (Ry, H X Z>, my ® my,) for some
@ H — Z» so that f corresponds to x(h, i) = (—1)" and
~ (m)
510 (m) = /(-1)5@ ) dmp(y), m e Z.
H
m Since m, = (—1)X(") is 2-multiplicative (maonip = m, - mp for b < 2"),

for each k € 7Z, the sequence (% > nen Mnik - My) is convergent, and its
limit is exactly ¢, u, (k).
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x=01x01x...=01101001... - Thue-Morse sequence;
(T,0O(x), i1x) - the corresponding dynamical system (uniquely
ergodic).

m f:0O(x) =R, f(y):=(~1)@ is continuous and

Ge.up(m) = / WO gy, mez
O(x

B (T,0(x), px) has a representation as (Ry, H X Z>, my ® my,) for some
@ H — Z» so that f corresponds to x(h, i) = (—1)" and

~ (m)
510 (m) = /(-1)5@ ) dmp(y), m e Z.
H
m Since m, = (—1)X(") is 2-multiplicative (maonip = m, - mp for b < 2"),

for each k € 7Z, the sequence (% > nen Mnik - My) is convergent, and its
limit is exactly ¢, u, (k).

m or,u; (k2") = Gf,u, (k) (07,u, is invariant under z s z°).
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Odd and even functions

Denote by 7 : O(x) — O(x), 7(y) =y (interchange of Os and 1s).

Then Tor=70T.
A function f : O(x) — R is called odd (even) if f o7 = —f

(for=1)
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Odd and even functions

Denote by 7 : O(x) — O(x), 7(y) =y (interchange of Os and 1s).
Then Tor=710T.
A function f : O(x) — R is called odd (even) if f o7 = —f
(for=f)
m Each function f has a (unique) representation f = f, + fe
(fo:= %(f — for)). If fis continuous, so are f,, fe.

= Odd functions from L2(O(x), jix) correspond to
[2(H, my) ® x. The function f(y) = (—1)*(© is odd.

= Even functions from L2(O(x), uix) correspond to
[2(H, my) ® 1. The function y — (—1)¥(©+y() s an
example of an even function.
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Fourier transform and spectral disjointness

Denote 0 = ¢ y,. Then

5(0) = 1,5(1) = —%,5(2n) = 5(n),
c@2n+1)=-3@(n)+3(n+1)) for n>1.
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Proposition (Abadaluoi, Kasjan, L., 2013)
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Denote o = of y,. Then

5(0) = 1,5(1) = —%,5(2n) = 5(n),
G(2n+1) = —1(G(n) +5(n+1)) for n>1.

Proposition (Abadaluoi, Kasjan, L., 2013)

Assume that max{r/s,s/r} ¢ {27 : a € N}. Then there exists
t > 1 such that |o(tr)| # |o(ts)].

m o) 1 o if and only if max{r/s,s/r} ¢ {2°: a € N}. Moreover,
o) = ™) for each pair of integers a, r > 0.

m For each odd function g € L2(O(x), pix), aéi)L,T 1 aéf)le for each odd
numbers r # s which are relatively prime.

Sarnak’s conjecture holds for any odd g € C(O(x)):
00, ng(T"y)u(n) — 0 for each y € O(x). In particular,
5 X nen(=1Pp(n) — 0.

m How to cope with EVEN continuous functions?
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From Morse to Toeplitz sequences

Construction of a 0,1-valued one sided sequence:

Step 1: z(0) = z(2) = ... =z(2n) = ... =1 and leave odd places
undefined.
Step 2: z(1) =2z(5)=...=z(4n+1) = ... =0, that is, we fill

every second unfilled place by putting 0 here; etc.
(Garcia-Hedlund's sequence, 1948).
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m (T,0(z), u) is uniquely ergodic. (T, O(x), ux) is a 2-point extension of
(T,0(2), pz).
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From Morse to Toeplitz sequences

Construction of a 0,1-valued one sided sequence:

Step 1: z(0) = z(2) = ... =z(2n) = ... =1 and leave odd places
undefined.
Step 2: z(1) =2z(5)=...=z(4n+1) = ... =0, that is, we fill

every second unfilled place by putting 0 here; etc.
(Garcia-Hedlund's sequence, 1948).

z(n) = x(n) + x(n+ 1) (modulo 2), n > 0.

m y+—y, y(n) :=y(n) + y(n+ 1) is a surjective equivariant map from
O(x) = O(z2); 7y = ¥

(T,0(z2), pz) is uniquely ergodic. (T, O(x), ix) is a 2-point extension of
(T,0(2), pz).

(R, H) is a topological factor of (T, O(z)) (so called almost 1-1

extension); the measure-theoretic dynamical systems (T, O(z), ;1) and
(R, H, my) are measure-theoretically isomorphic.

z is a (regular) Toeplitz sequence.

The subspace of continuous even functions in C(O(x)) has a natural
identification with C(O(z)).
m Sarnak’s conjecture for Toeplitz systems?
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Toeplitz sequences and Sarnak’s conjecture
m A stability conjecture for Sarnak’s conjecture - basic lemma
m Sarnak’s conjecture for regular Toeplitz sequences
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Basic lemma on lifting Sarnak’s conjecture

Assume that R is an ergodic automorphism of (Z,D, k). R is called coalescent
(Hahn-Parry, 1968) if each endomorphism W of (Z,D, k) commuting with R is
invertible.
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Basic lemma on lifting Sarnak’s conjecture

Assume that R is an ergodic automorphism of (Z,D, k). R is called coalescent
(Hahn-Parry, 1968) if each endomorphism W of (Z,D, k) commuting with R is
invertible.

Lemma (Downarowicz-L., 2013)

Assume that an ergodic automorphism R is coalescent. Let 7’, T (acting on
)~( X, respectively) be topological models of R. Assume that T is a topological
factor of T, i.e. there exists 7 : X — X which is continuous and onto and
which satisfies 7o T = T o . If T satisfies Sarnak’s conjecture then also T
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m The odometer (R, H) is coalescent (such are all ergodic rotations).

= Applying the above lemma to T = (R, H) = odometer and
T = (T,0(z)), we obtain that (T, O(z)) satisfies Sarnak’s conjecture.

m The dynamical system (T, O(x)) given by the Thue-Morse sequence
satisfies Sarnak’s conjecture.

m What about other generalized Morse sequences, Toeplitz sequences?
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Toeplitz sequences

A=H{0,...,d — 1}, for some d > 2.
Definition (Jacobs, Keane (1969))

z € AV is called a Toeplitz sequence if for each n > 0 there is
ap > 1 such that z(n) = z(n+ a,) = z(n+ 2a,) = ...
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z) and |Gy = pn, n > 1.

m A Toeplitz sequence z is called regular if

(the number of unfilled places in C,)/pn — 0 when n — oc.

m Garcia-Hedlund's sequence is regular; C, = 101110...17.
————
2n—1
m The dynamical system generated by a regular Toeplitz sequence is
uniquely ergodic and has zero entropy.

m Whenever z is a regular Toeplitz sequence, it is measure-theoretically
isomorphic to its maximal equicontinuous factor (the (p,)-odometer).
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Sarnak's conjecture for regular Toeplitz sequences

If 7', T are topological models of a coalescent R and T is a topological factor of T
then T satisfies Sarnak’s conjecture whenever T does it.

m All odometers are uniquely ergodic and coalescent. They satisfy Sarnak’s
conjecture.

m Whenever z is a regular Toeplitz sequence, it is measure-theoretically isomorphic
its maximal equicontinuous factor which the (pn)-odometer.
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m All odometers are uniquely ergodic and coalescent. They satisfy Sarnak’s
conjecture.

m Whenever z is a regular Toeplitz sequence, it is measure-theoretically isomorphic
its maximal equicontinuous factor which the (pn)-odometer.

Proposition

Let z be any regular Toeplitz sequence. Then the dynamical
systems (T, O(z)) determined by z satisfies Sarnak’s conjecture.

m There are non-regular Toeplitz sequences for which Sarnak’s conjecture
holds (Downarowicz, Kasjan 2013).

m Is Sarnak’s conjecture true for ALL Toeplitz sequences (regardless the
entropy)?
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Sarnak's conjecture for Thue-Morse type sequences

Definition

z € {0, 1} is called a generalized Morse sequence if z = b0 x bt x ... with
b' € {0,1}Pi, p; > 2, b'(0) =0, i > 0.

%(n) = z(n) + z(n + 1) (modulo 2) — Toeplitz sequence associated to z.
2= CpCp... with G, = ab...c ? (in particular, ¥ is regular).

Pop1-.-Pn—1
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Definition

We say that a generalized Morse sequence z = b° x b! X ... has a stabilizing
Thue-Morse subsequence if there is a subsequence ki < k2 < ... such that for
each K > 1, (bk, bR+t . . pNtK=1) =(01,01,...,01) dla i > ix.

01X b x...x b1 x 01 x 01 x b7 x ... x b2 x 01 x 01 x 01 x b*2** x ...
with |b*| ARBITRARY
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Pop1-.-Pn—1

Definition

We say that a generalized Morse sequence z = b° x b! X ... has a stabilizing
Thue-Morse subsequence if there is a subsequence ki < k2 < ... such that for
each K > 1, (bk, bR+t . . pNtK=1) =(01,01,...,01) dla i > ix.

01 x b' X ...x b1 x 01 x01xb2T3 x...x b2 x01x01x01x b2 x...
with |b*| ARBITRARY

Theorem (Abdalauoi, Kasjan, L. 2013)

Sarnak’s conjecture holds for all generalized Morse sequences having a
stabilizing Thue-Morse subsequence.
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Kakutani sequences satisfying Sarnak's conjecture

Let E C N. Set

sg(n) = Z nj,

icE

where n =30 n;2" (n; € {0,1}).
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Kakutani sequences satisfying Sarnak's conjecture

Let E C N. Set

se(n) == Z nj,

i€E
where n =30 n;2" (n; € {0,1}).
Recall: Green 2012, Bourgain 2013: %ZnNzl(—l)SE(")u(n) — 0.

Corollary (Abdalauoi, Kasjan, L. (2013))

The dynamical systems (T, O(sg)) satisfies Sarnak's conjecture
whenever E contains arbitrarily long intervals of (consecutive)
integers.
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Does every Toeplitz sequence satisfy Sarnak’s conjecture?

[o.¢]
Let (an)neny C N, aplant1 and p:= > ai < %. For instance,
n=1"

ap, =5".
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[o.¢]
Let (an)neny C N, aplant1 and p:= > ai < %. For instance,

z(25) 2(26) ...
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—~
w
=
I
—~
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Nz
I
—~
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=
N
—~
(=)
=
I
—~
~
~
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Does every Toeplitz sequence satisfy Sarnak’s conjecture?

Let (an)neny C N, aplapt+1 and p = i al,, < %. For instance,
a, =5". "
2(0) 2z(1) =2(2) 2(3) z(4) z(5) 2(6) =(7) ... =z(25) 2(26) ...
1(0) pu(1) pu(2) p(3) p(4) p(0) p(6) p(7) ... p(0) p(l1)
A _ A ; A A_A _
A A
25 25

Proposition (Abdalaoui, Kasjan, L. (2013))

The Toeplitz dynamical system (T,O(z)) does not satisfy Sarnak’s conjecture.
In fact, IiNm inf £ >, -y z(nmp(n) > & —2p>0.
— 00 =

= x2
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Does every Toeplitz sequence satisfy Sarnak’s conjecture?

Let (an)neny C N, aplapt+1 and p = i al,, < %. For instance,
a, =5". "
z2(0) 2(1) 2(2) 2(3) z(4) z(5) =z(6) =(7) ... z(25) z(26) ...
1(0) pu(1) pu(2) p(3) p(4) p(0) p(6) p(7) ... p(0) p(l1)
A _ A ; A A rA _

A A

25 25
A
125

Proposition (Abdalaoui, Kasjan, L. (2013))

The Toeplitz dynamical system (T,O(z)) does not satisfy Sarnak’s conjecture.
In fact, IiNm inf 5>,y z(np(n) > 5 —2p>0.
— 00 =

The entropy of the system is positive (J. Cassaigne (unpublished),
Downarowicz, Kasjan, 2013, Abdalaoui, Kutaga-Przymus, L., de la Rue, 2013).
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Uniform distribution

Let U = {un}n>1 be a sequence of elements in T=R/Z. For0 < a <1
we set

Z(N;a)=#{1<n<N:0<u,<a (mod1l)}.
We call U uniformly distributed if

lim —Z(N a) =«

N—oo N

for all 0 < a < 1. As a quantitative measure we define the
star-discrepancy D*(N) of U as

D*(N) = sup |Z(N;a)— Na.
a€[0,1]
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Weyl's criterion

Theorem (Weyl's criterion (1916))

The following expressions are equivalent :
@ The sequence U = {un}n>1 is uniformly distributed.
@ D*(N) = o(N) for N — oo.
© Iff is properly Riemann-integrable on T, then

ILr)nooNZf(u,, —/Ef(a)da

Q@ For0 # k € Z we have

1 N
lim NZe(kun):O.

M.G. Madritsch (Université de Lorraine) Van der Corput sets 14/02/2014
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Weyl's theorem

Theorem (Weyl (1916))

Let P € R[x] be a polynomial of degree at least 1. The sequence
{P(n)}n>1 is uniformly distributed if and only if at least one of the
coefficients of the polynomial P(x) — P(0) is irrational.
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Weyl's proof

N

> e (kP(n))

n=1

N N
=) e(k(P(m) - P(n)))

n=1

N—

N
=> e (k(P(n+ h) — P(n)))

n=1 h=1—n
N-1
= Y. e(k(P(n+h) - P(n))
h=—N+1 1<n<N
1-h<n<N-—h
N—1N—h
= N+ 2R e (k(P(n+ h) = P(n)))
h=1 n=1
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Lemma of van der Corput

2 N—1N—h

+ 2R e(k(P(n — P(n))).
h=1 n=1

N
Z (kP(n))

Lemma (van der Corput (1931))

Let H be a positive integers. Then for any complex numbers yi, ..., yN we
have

H
h=

N
N+H > 2(N+H)
< - 7
= Ht1 ;'“' =t 2 H+1

1
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Parameter (3,

N H
2 N—|—H
—Hﬂgw (1 )

Let ), be the set of all sequences {y,} such that

1, o
limsup — a0 <1 1
msup 5 2 1)
and
N
Z)’n—b—h)Tn = O(N) (2)
n=1

for N — oo, whenever h € H. We set

Z.Vn . (3)

B2 = sup I|msup
ey, N—oo N
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Parameter (5

N—h
ZYn ZYn+h}Tn .
n=1

N+ H 2(N + H) h
o S 1— —
_H—i—lZ'y" H+1 ;( H+1>

Let Voo be the set of all sequences {y,} such that |y,| <1 and

N
Z Ynt+hYn = o(N)
n=1

for N — 0o, whenever h € H. We set

Boo = sUpP I|msup—
{Yn}eyoo N—oco

Zyn .

n=1
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Theorem of van der Corput

2 H

N+H 2(N + H)
- Z'"' T ET Z( H+1>

h=1

Theorem (van der Corput (1931))

If for every h € N* the sequence {uph — un} is uniformly distributed, then
also the sequence {u,} is uniformly distributed.
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Parameter «

Definition
We call a set H C N* a van der Corput set, if the sequence {u,} is

uniformly distributed, whenever the sequences {u,+n — up} are uniformly
distributed for all h € H.

Theorem (van der Corput (1931))

N* is a van der Corput set.

Let &« = U(H) be the collection of all sequences {u,} such that
{Unt+n — un} is uniformly distributed for all h € H. We set

1
a= sup limsup—D*(N). (5)
{up}etd N—oo
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Equivalences

Theorem (Ruzsa (1984))

Let H be a set of positive integers and let «, B> and [ be defined as in
(5), (3) and (4) respectively. Then
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Generalization of van der Corput's Lemma

N+H 2N + H) &
- Z'”' TTHY T Z( H+1>

h=1

Lemma

Suppose that
H

T(x)=a0+ Y ancos(2mhx),
h=1

such that T(x) > 0 and T(0) = 1. The for any complex numbers

Yi,---5 YN

N
Dz
n=1

M.G. Madritsch (Université de Lorraine) Van der Corput sets 14/02/2014 14 / 40
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Z Yn+hy_n
n=1

2 N H
< (N + H) (aoz yal? + > lanl
n=1 h=1






Parameter ¢

Let 7 = T(H) be the set of all cosine polynomials

T(x)=ao+ Z ap cos(2mhx),
heH

such that T(x) > 0 for all x and T(0) = 1. We set

d=0(H) = Tlrg;_ao.

Theorem (Kamae and Mendes-France (1978))
Let H € N*. If 6(H) = 0, then H is a van der Corput set.

M.G. Madritsch (Université de Lorraine) Van der Corput sets 14/02/2014
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Dual problem

Let 1 be a probability measure on T. For k € Z we define the k-th Fourier
coefficient of u by

(k) = [ e(~k)au(x).

Let M be the set of probability measures on T such that (k) # 0 only if
|k| & H. We set

v = sup 1 ({0}). (7)
neM
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Equivalence

We have v < 9, since

(o) < [ Teant0 = 3 7 = T(0)7i(0) = 2
h

Theorem (Ruzsa (1984))

Let H be a set of positive integers and let [32, v and 0 be defined as in (3),
(6) and (7) respectively. Then
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Properties of van der Corput sets

Lemma

Let H C N* and q € N*. Then §(qH) = 0(H), where g1 = {qh: h € H}.

Lemma

Let H C N* and q € N*. Then §(Hq) < q0(H), where Hq ={h € H: q | h}.

Moreover, 6(H) > %, ifHqg = 0.

Theorem

Let m be a positive fixed integer. We set
H={1,2,....m—1} and K={heN"':mth}.

Then

3(H) = y(H) = 6(K) = v(K) = 7.
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Properties of van der Corput sets

Lemma

Let H1 and Hy be two disjoint set of positive integers and H = Hi U Hy.
Then 5(7‘[) Z 5(7‘[1)5(7‘[2).

Therefore, if H = H1 U Hy is a van der Corput set, then either Hi or Ho
is a van der Corput set.

Lemma

Let H be a van der Corput set. Then we can divide H into infinitely many
disjoint van der Corput sets.

v

Lemma

Let H be a set of positive integers. If H contains arbitrary long blocks of
consecutive integers, then H is a van der Corput set.
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Speed of convergence

Let H be a van der Corput set and Hy = {h€ H: h < N}. Then Hy is
not a van der Corput set, however, we have that §(#Hy) — 0 for N — oo.
We are interested in the speed of convergence.

Let 6 be the restriction of § to polynomials having only positive
coefficients. Then we have the following bound.

Theorem (Slijepcevi¢ (2010))
Let H be the set of perfect squares. Then

5 (Hy) < (log N)™=.
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A sufficient condition

Theorem (Kamae and Mendeés-France (1978))

Let H be a set of positive integer and let
Hg={heH:q!|h}.

If there exist infinitely many integers q such that for every fixed irrational number

0 the sequence H40 is uniformly distributed, then H is a van der Corput set.
.

Corollary

Let P € Z[X] and suppose that P(x) — +oo for x — +00. Then
H ={P(n) > 0: n> 0} is a van der Corput set, if and only if, for every integer q
the congruence P(x) =0 (mod q) has one solution.

v

Corollary

Let a be a fixed integer and let H = {p+ a: p > —a}. Then the set H is a van
der Corput set, if and only if a = +1.

v
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Intersective sets

Let A C N* be a set of positive integers and A(N) its counting function,

ie.

We call

the upper density of A.
Definition

We call # C N* intersective if for every set A C N* we have that
HN(A—A) =0 implies d(A) = 0.

M.G. Madritsch (Université de Lorraine) Van der Corput sets 14/02/2014
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Parameter ¢

We set

t= sup d(A).
ACN*
HN(A-A)=0

Theorem (Kamae and Mendeés France (1978))
Let H C N* be a sub set of positive integers. Then 1 < 9. J

Thus every van der Corput set is also intersective. On the contrary,
Bourgain (1987) has constructed a set which is intersective but not van der
Corput. This construction has been simplified by Alon and Peres (1991).
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Poincaré sets

Bertrand-Mathis (1986) has shown that a set is intersective if and only if it
is Poincaré (recurrent).

Definition
We call a set P C N* Poincaré (or recurrent) if for a given dynamical
system (X, B, i, T) and a given measurable set A with positive measure,

we have
dmeP: u(T-"(A)NA) > 0.
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Summary

© Our result

M.G. Madritsch (Université de Lorraine)

Van der Corput sets





The results of Furstenberg and Sarkozy

Theorem (Furstenberg 1977, Sarkozy 1978)
Let E C N be a set of positive upper density.

© Let k > 1 be an integer. Then one can find arbitrarily large n € N

such that there exist x,y € E with x — y = nk.

@ One can find arbitrarily large primes p such that there exist x,y € E
with x — y = p — 1. Similarly, one can find arbitrarily large primes q
such that x —y = q+ 1.
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Furstenberg correspondence

Theorem (Furstenberg 1977)

Let (X, B, ) be a measure-theoretical dynamical system. Let A € B with

w(A) > 0. Given g(t) € Z[t] with g(0) = 0, then there exists arbitrarily
large n € N such that (AN T-8(MA) > 0.

Theorem (Furstenberg 1977)

Let E C N be a set with positive upper density. Given g(t) € Z[t] with
g(0) = 0, there exists arbitrarily large n such that

d*(E N (E — g(n))) > 0.
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Our result

Theorem ((Bergelson, Kolesnik, M, Son, Tichy))

If «; are positive integers and [3; are positive and non-integers, then

Dy = {((pil)m?"' a(pil)ak7[(pil)ﬁl]"“ 7[(pi1)ﬁl]) P G]P)}’

are vdC sets in Z<!.
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The Hilbert space partition theorem

Theorem (Bergelson 1996)

Let Uy, Us, ..., Ux be commuting unitary operators in a Hilbert space H. Then
we can divide H as follows : H = Hjny & Herg, where
Hiny ={f € H : Uif =f for all i},

and

feH:
Ni—1  Ne—1

1 nm n,
TS ZZ Up - Uf

n1=0 nk=0

=0
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The central theorem

Theorem

Let cq,.

.., Ck be positive reals such that ¢; ¢ N fori =1,2,... k. Let
Ui, -

.., Ux be unitary operators in a Hilbert space H. Then

N
- [pi1] P
/Jinooﬁz_:lul . UPTIf = PF,

where p,, is the n-th prime number and P is the projection on Hp, .
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A consequence

Corollary

Let c1, ¢, ..., ckx be positive non-integers. Let Ty, To, ..., Ty be invertible,
commuting, measure preserving functions in a probability measure space
(X, B, ). Then for every measurable set A € B with u(A) > 0, one has

I|m ZM(Aﬁ T lprt] . Tk_[p;k]A) > MZ(A)a

where p, is the n-th prime number.

M.G. Madritsch (Université de Lorraine) Van der Corput sets 14/02/2014 33 /40





Proof.

Let f = 14. A measure preserving transformation T; can be considered as a unitary operator T;f = f o T;. Denote by P the
projection on H;p,, for Ty, ..., Tx. Then we have

N N
L ~[pst] —[prk] L o] [pn]

lim — An T Pl o Ple) = im — FTPrl .. TP le g

N—IrvnooNnglu( 1 k ) Nl';nooN;/ 1 k 2
:/fPfdu
= (f, Pf)
= (f, P’f)
= (Pf, Pf)
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Another consequence

Corollary

Let c1,- -+, ck be positive non-integers. If E C Z* with d*(E) > 0, then there
exists a prime number p such that ([p®],--- ,[p*]) € E — E. Moreover,

ing RSV (1P, o) € £~ B}
N—oo w(N)

> d*(E)>.
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Proof.

Using Furstenberg's correspondence principle we get that for a set E C ZK with d*(E) > 0, there exists a probability space
(X, B, p), invertible, commutative, measure preserving maps Ty, ..., T) of X and A € B with d*(E) = u(A) such that for
any Iy, b, ..., lx € Z one has

d*(EN(E—(h, b, - ,lk) > wANn Tfll A T;IkA),
Note that
[{p < N: ([p1], -, [pK]) € E— E} > [{p < N : d*(EN E — ([p1], -+ , [pK]) > O}
> 3 dY(ENE = ([P, [p*])
PN
> S uan TP P,
p<N
Hence,
i 1P SN (P, [p%]) € E — E}|
im inf
N— oo 71,(N)
—[1) =]
A A
VT (W) PSN“( nTt, T, )
> u(A)? = d*(E)?
|
v
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The theorem of Bochner-Herglotz

Theorem

Let Uy, - -+, Ux be commuting unitary operators in a Hilbert space H and
f € H. Then there exists a measure vs on TX such that

< UU? - U f > = /Tk AmHmME M) dup (e, -+, W),

for all (ny,ny,--- ,ng) € ZK.
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The link with uniform distribution

Lemma
Let g(x)=>_"; o [x%], where 01,05, ..,0m are distinct positive reals
and a1, ao, . .., am are non-zero reals. Let h be an integer.

(i) If0; & Z for all j and «j ¢ 7Z for all j, then

N

. 1

Jim Z:; e(g(pn — h)) = 0.

(i) If one of the «;j is irrational, then (g(p — h))pep is uniformly
distributed.
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The link with uniform distribution

Theorem

Let £(x) = Zj’il ajxef, where 0 < 0y < 0 < --- <0y, aj are non-zero
reals, and suppose that if all ; € Z*, then at least one of the o is
irrational. Then the sequence (£(p))pep is uniformly distributed.
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Primes of the form a + b*

Friedlander and lwaniec (1998):
log log X
ZZ A(@® + b*) = 4Lk X3/4 (1 +0 (og o8 )> ,
> log X
a2+ bpA<X

where a and b run over positive integers and
1
K= / (1 — tYY2dt = I'(1/4)%/6V/2r.
0

In particular, there exist infinitely many primes of the form a® + b*.
The same is true if we restrict a and b to congruence classes
modulo g as long as (a® + b*, q) = 1.





Arithmetic in quadratic number fields

Let K = Q(v/D) be a quadratic number field of discriminant D,
and let Ok denote its ring of integers.

Example: K = Q(v/—20), Ok = Z[V/-5].

Given a non-zero prime ideal p of O = Ok, the localization O, is a
discrete valuation ring: its unique non-zero prime ideal is principal.
However, p itself need not be principal.

Example: K = Q(v=20), Ok = Z[V~8], p = (2.1 + v~5).
Then pO, = (1 +/—=5)0, since

2= (v 22 e V)0,





Class groups of number fields

The class group Clx measures the failure of the locally principal
ideals to be globally principal. It the quotient of the group of
invertible fractional ideals of Ok by the subgroup of non-zero
principal ideals.

Clk =1 if and only if Ok is a unique factorization domain.

Example: K = Q(v/—20), 6 =2-3 = (1 ++/-5)(1 — v/-5).

Clk is a finite abelian group, and its order h = hy is called the
class number of K.

Example: K = Q(v/—20), Clx = Z/27Z, h = 2.





Gauss's genus theory

Suppose now that K is an imaginary quadratic extension of QQ.

Let Cx denote the 2-primary part of Clk. It is a direct sum of
cyclic 2-groups.

Gauss proved that
C/Ci = (Z/22)" Y,

where t is the number of prime factors dividing the discriminant of
Ok. In other words, Ck is a direct sum of t — 1 cyclic 2-groups.





The fields Q(/—p)

Let p=1 (mod 4) be a prime number and let K = Q(\/—p).
Then the discriminant of Ok is —4p and so Ck is cyclic.

So how does the “depth” of Cx depend on p?

Given an integer k, can we compute the density of primes p for
which 2|h?





What is known?
Rédei (1935):

4h <= p=1 (mod38)
<= p splits completely in Q((s)

So the density of primes p such that 4|h is 1/4.

Barrucand and Cohn (1969):

8/h <= p=1 (mod 8) and 1+ i is a square modulo p
<= p splits completely in Q((g, /1 + i)

So the density of primes p such that 8|h is 1/8.
It is unlikely that there is a normal extension M/Q such that

16|h < p splits completely in M.

So it might be hard to obtain a density for k = 4.





Criteria for divisibility by 16

Williams (1981):

Let e, = T + U,/p be the fundamental unit of the real quadratic
field Q(/p), and suppose that 8|h. Then

h=T+p—1 (mod 16).

Leonard and Williams (1982):

Write a prime p =1 (mod 8) as p = 2u? — v? with | v |=1
(mod 4), and suppose that 8|h. Then

16lh < (3),= (%)





Conjecture (Stevenhagen, 1995)

Let Sx be the set of quadratic number field discriminants
0 < D < X not divisible by any prime =3 (mod 4).

Let Sy be the set of quadratic number field discriminants
0 < D < X such that the negative Pell equation

x? - Dy?=-1
is solvable for x,y € Z.
Then
5=
lim #7)( =1-aq,
X—00 #SX
where

a=[Ja+27)" =04104..





Theorem (Fouvry and Kliners, 2010)

For X — oo,

——o(l) < = < 2/3+0(1).





The Hilbert class field

The Hilbert class field H of K is the maximal unramified abelian
extension of K. The Artin map induces an isomorphism

Clk = Gal(H/K). Hence we can view the class group as a Galois
group of a certain canonical extension of K.

If Ck is cyclic, then 2k]h if and only if there exists an unramified,
cyclic, degree 2% extension Hy« of K, in which case the Artin map
induces an isomorphism

Cx/C% = Gal(Hy /K).





The genus field H, and divisibility by 4

If p=1 (mod 4), the prime ideal t = (2,1 + \/—p) of Ok lying
above 2 is not principal and its ideal class has order 2, so we see
that 2|h.

Hy = Q(’vﬁ)

0 /@<ﬁ> Q(y/p)

Recall that Cx/C% = Gal(H»/K). Given that p =1 (mod 4), t
splits in Hy if and only if p=1 (mod 8).





The field H, and divisibility by 8
If p=1 (mod 8), then 4|h. If p=a° + b?, set m = a+ bi. Fort
to remain unramified in Hy = Q(/, \/p, /7), we must choose 7 so
that b is even.

//H“ V/P: /)
Q(I,\/% U\F HQ—Q(U\/IS)

t splits completely in Hy if and only if 7 is a square in Q2(/), i.e., if

and only if a4+ b= 41 (mod 8). Replacing a by —a if necessary,
we may assume that a+ b =1 (mod 8).

Q





A lemma to detect splitting behavior of t

The completion of Q(7) with respect to the prime ideal (1 + i) is

Q2(i).

Its ring of integers Zj[i] is a discrete valuation ring with maximal
ideal m and uniformizer m =1+ /.

Lemma
Let w be an invertible element of Z[i]. Then Qa(i,/w) is
unramified over Qa(i) if and only if w = £1 (mod m*).

Moreover, w is a square in Q(i) if and only if w = +1 (mod m®).





The field Hg

Although the conditions p =1 (mod 8) and a+ b =1 (mod 8)
guarantee that 8|h, it is not clear how to construct Hg in general.

However, in case p is of the form p = a® 4+ c* with ¢ even, we can
write down Hg explicitly in terms of a and c¢. Take 7 = a + ¢/
with a+ c? =1 (mod 8) as before.

Set v = ¢(1+ i)+ /7 € Q(i, /7). Notice that

(c(14 1)+ vr)(c(1 4 i) — /7) = 2% — (a + %) = —T.

Hence («) is a prime ideal in Q(/, /7).





The field Hg and divisibility by 16
Recall p = a? 4 c* ceven, = a+ c?i =1 (mod m®) and

a=c(l+i)+ /7

Hg = Q(i, /P, /T, /@)

"

Q(i>\/7?a\/3) Q(i, v, /) Hy = Q(i \/137\/7?)

SR

Q(i, v/) Hz = Q(i, /p)

Q






When is v a square in Qy(/)?

Recall o = ¢(1+ i) + /7. We now find conditions on a and c that
guarantee that = +1 (mod m®), i.e. that 16]h.

If c=0 (mod 4), then

16|h <= /m==1 (mod md)
< 71=1 (modm)
<= a=1 (mod 16)

If c =2 (mod 4), then
16|h <= /m=41-2m (mod m®)
< ga=1+m°+m® (mod m’)

— = —3 (mod 16).





Statement of the theorem

Theorem
Suppose p is a prime of the form a® + c¢*, where a and c are
integers. Let h denote the class number of Q(\/—p).

(i) If a=+1 (mod 16) and ¢ =0 (mod 4), then 16|h.
(i) If a= £3 (mod 16) and ¢ =2 (mod 4), then 16|h.
(i) If a= +7 (mod 16) and ¢ = 0 (mod 4), then 8|h but 16 1 h.

(iv) If a= 45 (mod 16) and ¢ =2 (mod 4), then 8|h but 16 1 h.





Primes of the form a2 + c¢*

Friedlander and lwaniec (1998): There exist infinitely many primes
of the form a? + ¢*. In fact, we can even restrict a and ¢ to
congruence classes modulo g as long as (32 +c* q)=1.

Corollary

There are infinitely many primes p for which h is divisible by 16,
and also infinitely many primes p for which h is divisible by 8 but
not by 16.





What next?

- Primes of the form 4a* + Db?

- Friedlander and Iwaniec (1998): Write each prime p =1 (mod 4)
as p = r?> + s2 with s even and r + s =1 (mod 4). Then

Z <5> < XT6/77
| r]

p<X
p=1 (mod 4)

EI0)

p<X
p=1 (mod 8)

- What about
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Definition
Given coprime integers a and n, the multiplicative order of a,

ordg(n),

is the order of ain the group (Z/nZ)*.
Thus, it is the smallest positive integer k such that

a = 1(mod n).
Euler's theorem: a#(") = 1(mod n).

The exponent of the group (Z/nZ)* is Carmichael’s function
A(n). Thus @ = 1(mod n). The order divides \(n).

For p > 3 or k < 2 we have \(p¥) = p""(p — 1) = ¢(p").
For k > 3 we have \(2K) = 2k—2,

A(n) = APy P52 -+ pt) = lem(A(Pf"), M(PE2), - -, Alpf"))





-How often is the order maximal?

If orda(n) = A(n), then ais a A-root modulo n.
If nis prime, then ais a primitive root modulo n.

» Composite case: Carl Pomerance and Shuguang Li.
» Prime case: ‘Artin primitive root conjecture’.

-How often is the order even? (Easier question!)

Is closely related to prime divisors of x, = bX + ¢k, b, ¢ € Z.
-Prime divisors of xx1 = dxx + exx_1, d,e € Z.
-Distribution of the order over residue classes.

Mostly we fix the base number a and let n range over the
primes p < x.





Artin’s primitive root conjecture

An integer a is a primitive root modulo a prime p if we have

F, = (amod p).

Suppose a € Z is is not an exact power.

Artin’s conjecture (1927):

The set of primes p for which a is a primitive root modulo p is
infinite, with natural density

’
IT 0 - m) ~ .3739558.

¢ prime





Heuristic derivation

For p > 2, the index
[F5 : (amod p)]

is divisible by a prime ¢ if and only if p splits completely in the
number field

= Q((;, v/a) = Splitg(X’ — a),
of degree [K; : Q] = 4(¢£ — 1).

For fixed ¢, a fraction of all primes p is eliminated.

e(z i)

Now “take the limit” over all primes ¢.





Why is this still a conjecture?

Artin’s conjecture has not been proved for a single value of a.

Imposing the condition for finitely many /¢ is fine:
use Chebotarev for primes with prescribed splitting in

Kn = Q(Cn, \rya)v

with n the product of the ¢’s involved.
Dealing with infinitely many ¢ is much harder.

Throwing away one prime at the time (0%), we may be left in
the end with the empty set....





History

Erdds tried in vain (1935) to combine infinitely many ¢.

Hasse and his student Bilharz proved function field analogues
of Artin’s conjecture (late 1930s).

In this setting, the Riemann hypothesis was obvious (for Fy[X]),
or being proved around that time by Weil.

For number fields, good remainder terms in density theorems
only exist under GRH.





Current status

Under GRH, one can handle infinitely many ¢ and obtain
densities for the primes p with F;, = (a mod p).

This is non-trivial: Hooley (1967), Cooke-Weinberger (1975).

Unconditionally, we still do not know whether (say) 2 is a
primitive root modulo infinitely many primes p.

Gupta & Ram Murty (1984), Heath-Brown (1986):
there are at most two prime values of a that are not primitive
root modulo infinitely many p.

Unconditionally, no densities can be obtained.





Dependence of conditions

The version of the conjecture as originally stated by Artin is
actually wrong - but this went unnoticed for 30 years.

It was discovered numerically in 1957 by Derrick (1905-1991)
and Emma Lehmer (1906-2007), who used a computer to
extend tables of Kraitchik.






Artin had consulted the Kraitchik tables to see if his conjecture
made sense.

He now realized conditions at different £ may be dependent:

“l was careless but the machine caught up with me.”

(Letter to Emma Lehmer, January 1958)

e






An entanglement problem

We want p that do not split completely in any of the fields
K = Q(¢r, Va).
The quadratic field K> = Q(v/a) is abelian, hence cyclotomic.
For K> = Q(v/a) of prime discriminant +q we simply have
Kz € Q((q) C Ky
The condition at ¢/ = q can be left out, and we gain a factor

I
?-q-1

For a= —3 or a = 5 this is numerically visible.

14





Correcting the density

The density (under GRH) is the inclusion-exclusion-value
— u(n)
5(3) = )
; [Kn : Q]
which can be different from the naive value

(- wa)

Dependency between conditions at ¢ occurs only when
K> = Q(v/a) is quadratic of odd discriminant d:

K> C Ky = (compositum of K, with /|d).





The corrected density

Theorem. Fora c Q*\ {1} we have

-5 H( Ka)

with E = 1 if d = disc(Q(+/a)) is even, and
wld) [ ] emar—
LK 0] ~ 1
ifd is odd.

The correction factor E for odd d comes out of a calculation
found in Hooley (1967).

Note the nice multiplicative structure!





Lots of Artin conjectures

After the proof of Hooley (under GRH), people have considered
many variants of the conjecture.

Among the variants over Q one finds:

» primes in arithmetic progressions with given primitive root;
» near-primitive roots: [Fy : (a)] =t € Z-o;

two-variable Artin: (&) C (az) C Fp

higher-rank Artin: F;, = (a1, a2, ..., ar)

multiple primitive roots: Fj, = (a1) = (a2) = ... = (ar).
same order: (&) = (@) = ... = (ar) C F}.

v

v

v

v





Character sum method

H.W. Lenstra, jr., P. Moree and P. Stevenhagen, Character
sums for primitive root densities, arXiv:1112.4816, submitted.

P. Moree and P. Stevenhagen, Computing higher rank primitive
root densities, Acta Arith., to appear.

P. Stevenhagen, The correction factor ..., J. Théor. Nombres
Bordeaux 15 (2003), 383-391.





Character sum method, continued

Densities exist under GRH, but their computation from
inclusion-exclusion sums soon gets very messy.

The factors correcting some naive density that arise after
lengthy calculations tend to exhibit multiplicative structure.

Conceptual way to arrive at these structures.

The resulting method to compute correction factors is so much
simpler that it can be applied in many more cases.





The rank one main result

The rank one main result states that for a large class of Artin
type problems, under GRH, the density exists and is of the form

Ay (1 + ] &)
o

with

and A, the analogue of the Artin constant (‘the generic
density’).

The Ep, are averages of certain real characters.

For only finitely many p we have E, # 1.





The rank one main result, continued

No field degree computations necessary, one directly arrives at
the multiplicative structure of the density.

We have A; = A - ¢ with c rational (depending on input data).
Easy in this approach to determine when the density is zero.

» ¢ = 0 (explained by trivial reasons)
> Hp E, = —1 (explained by radical entanglement)





The higher rank main result

Now we have
d=E-A,

with E the error correction term and r the rank.

E= Z HExvp’

XEX P

with X a set of quadratic characters.

We have

With xo = 1 we can write

E=1+ > J[Ew

XEX, x#xo0 P





The higher rank main result, continued

We have for example A, = C;- rational, with
(e
T (p—1)p"

the rank-r Artin constant, or
Ar = D, rational, with
1-(1-1/p)
D = 1;[ <1 - T )

the Artin constant for r primitive roots.





Even/odd order

Let S = {x»}?°, be an integer sequence.

Definition: We say that p|S iff p divides at least one non-zero
term of S.

Suppose orda(p) = 2k, then & = —1(mod p).

If 8" = —1(mod p), then ord(p)|2m and ords(p) 1 m.

Thus we see that

2lorda(p) <= pl{a" + 1},





Some claims of Fermat (1641)

P. de Fermat, letter to Mersenne, 15th June 1641:

1) If p|3% 41, then p # —1(mod 12).

2) If p|3% + 1, then p # +1(mod 12).

3) If p|5% + 1, then p # —1(mod 10).

4) If p|5K 41, then p # +1(mod 10).

Claim 1: True

Claim 2: False. 37,61,73,97,157,193,241,337,349 . ..
Claim 3: False. 29, 89, 229, 349, 449, 509,709,769 ..
Claim 4: False. 41,61,241,281,421,521,601,641 . ..

Sierpinski: Infinitely many counter-examples ?

Schinzel (1959): YES

Moree and B. Sury (2007)

Explicitly determined, given integers a, b, ¢, d, the density of
primes p = ¢(mod d) such that p|a¥ + b* and p = ¢(mod d).

Corollary: The densities are, respectively, £, 75, 15.





Odd multiplicative order

p odd prime. There is an unique j > 1 such that
p =1+ 2/(mod 2/+"). Note that

2 fordg(p) — apzf;1 = 1(mod p).
Put
Pi={p:p=1+2(mod 2*), 2% =1(mod p)}.

The set P; consists of the primes that split completely in
Q(Cy, a'/?), but do not split completely in Q((y11,a'/?).We
expect

{p:2forda(p)} = UZ40(F)) =

> 1 1
=1 <[@(sz, a/?):Ql  [Q(yw,a?): @]).

)





Similar results in quadratic fields, |

Lagarias (1986) established that the natural density of the
Lucas sequence 2,1,3,4,7,11,...is 2/3. This sequence is of
the form {e” + €'}, with e = (1 + v/5)/2 and Ne = —1.

This result is a special case of:

Theorem. (M., 1996). For P any nonzero integer let {L,(P)}>
be the Lucas sequence defined by Ly(P) = 2, Ly(P) = P, and,
forn> 2, L,(P) = PL,_1(P) + L,—2(P). Then the natural
density of this sequence exists and equals 2/3, unless

|P| = Ln(2) for some odd n > 1, then the density equals 17 /24.

In particular the Pell sequence, Ly(2) = {2,2,6,14,34,...} has
density 17/24.

For L,(P) = PL,_1(P) — L,_2(P) infinitely many possibilities for
the density occur.





Similar results in quadratic fields, Il

Theorem. (M. and S., Acta A., 1997). Lete = a+ bV D be a
fundamental unit of norm +1. Let

{e + &2,
Then one has §(U) =5/12 ifa+ 1 is square and 6(U) = 1/3
otherwise.

Method was extended by S. to sequences {aX + @k}, with «
an algebraic integer from a quadratic field.

Density is always positive and rational.

This solves what Ribenboim calls the ‘main conjecture about
Lucas sequences’.





Applications I: Stufe

7

o~
.

Let K be a field. Then the Stufe of K, s(K), is defined as the
smallest s (if it exists) such that

—1=a%+...+a2 oK.

Pfister: if s(K) < oo, then s(K) = 2.
Define s(m) = s(Q(¢m)).

For m > 3, Hilbert proved that s(m) < 4.
If 4|m, then i € Q(¢{m) and hence s(m) = 1.

Theorem. (Fein, Gordon, Smith, 1971). If4 + m, then s(m) = 2
iff m is divisible by some prime divisor of the sequence
{2K 4 1}52,.





Applications Il: coding theory

Theorem. (Kanwar, Lopez-Permouth.) Let p t n be a prime and
m > 2 be even. Then non-trivial self-dual cyclic Zpm-codes of
length n exist iff n does not divide {p* + 1}5 .

M. (Acta A., 1997) gave a precise formula for the number of
integers m < x that divide the sequence {a* + b¥}72, and also
provided an asymptotically exact heuristic for this (J. Integer
Seq., 2006).





pl{a" — b}

If ordp(p)|orda(p), then (b mod p) C (amod p). This is
equivalent with p|{a" — b}> .

Theorem. (M. and S., 2000). Assume GRH. Let a and b be
multiplicatively independent rational numbers. Then é(a, b)
exists and one has

/
é(a,b) = Ca,bH (1- ﬁ)’
/

with ¢, p a positive rational number.

Example: ¢, 5 = 9343,/9520.

If the discriminant of both Q(v/a) and Q(v/b) are even, then
Cab = Cp,a-

Extends and corrects earlier work by P.J. Stephens (1976).

Artin type constant involved we call Stephens constant,
S = 0.5759599688...





A challenge of Lagarias

Consider the linear recurrence x,.1 = X + X,_1 and the initial
values xp = 3 and x; = 1.

Lagarias (1985): compute the density of prime divisors.

Theorem. (M. and S.). Under GRH the set of prime divisors
has a density. It is given by

1573727 ( /

1569610 1 1 5—) =057747....

First example of non-torsion second order recurrent sequence
with irreducible recurrence relation for which we can determine
the associated density of prime divisors.





Second order recurrent sequences

Are of the form xp, 2 = axpi1 + bxn, b # 0.
Characteristic polynomial:
f(X)=X2—aX—b=(X—-a1)(X — ).

We have x, = c1a1" + coan”.

Ay L2
plxn = () o 2 € (0/pO)’

O is ring of integers of Q(aq, ap).

g := a1 /ap is root coefficient, r :== —c, /¢y, initial cofficient.

plxy <= () C (q) C (O/pO)".
If ris torsion in Q(q)*/(q), we are in the torsion case.





Classification

Assume q is not a root of unity, then we are in the
non-degenerate case

» fis reducible and torsion
a’ + b" ...Hasse, Odoni, Wiertelak, Ballot, M., Sury.

» fis reducible and non-torsion

Two variable Artin conjecture

a" — b...Polya (1921), P. J. Stephens, M. and S.
» fisirreducible and torsion

p|Ly...Lagarias, M., M. and S., S. (in preparation).
» fis irreducible and non-torsion.

Lagarias challenge (M. and S.).

Xni1 = Xn+ Xn—1, Xo =3 and x; = 1.





Equidistribution of the order

Let 6(p, ¢, d) be the density in I, of elements of order
congruent to ¢(mod d). The average over p, 6(c, d), turns out to
exist.

Under GRH, P3(c, d) has a density d4(c, d).

Chinen and Murata: Wrote d4(c, d) as a seven fold sum!
M.: as a two fold sum....

M.: da(c, d) will be close to d(c, d)

d(c, d), d4(c, d) do not show equidistribution.

The Lenstra.-M.-S. method does not apply: d5(c, d) does not
have a nice multplicative structure.





Put A = 54(3,4) — 54(1,4).

Experimental is for first 100 million primes p

(so for all p < 2038074743)

B = 0.643650679662 - - -, Artin type constant.

] a A theoretical experimental |

2 =2 B/4 0.16091266... | +0.16088852

4 = 22 0 0 +0.00001122

8§ =28 B/28 0.02298752... | 4+0.02301736
512 = 29 3B/28 0.06896257... | +0.06897632
2048 = 2'7 | 489B/2396 | 0.13136276... | +0.13134226
9 =32 0 0 —0.00001977
81 = 3% 0 0 —0.00002044
6 =6 3B/28 0.06896257... | +0.06890056
216 = 6° 9B/28 0.20688771... | +0.20687020
6° B/4 0.16091266... | +0.16088478

6%’ 23B/84 0.17623768... | +0.17620628






Relevant papers

M.: 75 pages in J. Number Theory (2005-2006)
Murata and Chinen: Series of 4 papers (2004-2006)

M'’s approach was generalized by Volker Ziegler (2006) to
number fields

Survey
» M., On the distribution of the order over residue classes,

Electron. Res. Announc. Amer. Math. Soc. 12 (2006),
121-128.

» M., Die multiplikativen Ordnung, MPIM-Jahrbuch, 2005.





Survey paper

Version 2004: 30 pages, 65 references.
Version 2011: 80 pages, 450 references.

Final version: 111 pages, 512 references.
Artin’s primitive root conjecture -a survey
Integers 12 (2012), 1305-1416

The survey has 40 Open Problems.
Partial progress by Jean Bourgain (Fields medal, 1994).
Contributions by:

» Alina Cojocaru: Elliptic Artin.
» Woijcik Gajda: Artin and K-theory.
» Hester Graves: Euclidean algorithms.





MOTTO

“On revient toujours a ses premiéres amours”






Thank you!
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m We write u(n) for the Mébius function.
m Let 9(x) is the sawtooth function given by

o0 =3 - {x}

m We use e(x) to denote e*™.

m The notations A= O(B), A< B, A= O,(B) and
A <. B mean that there is a constant ¢ > 0 such that

Al < cB

and in the last two cases, the constant ¢ might depend
on €
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We define the error term E(X, q, a) for (a,q) = 1 by the
formula

1 X
Z 2H< > ——l—E(X,q,a),
n=an(§m)<<)d q) " pla I

m Trivially, one has

X
EX,q.a)] <+ 1.

Ramon M. Nunes | Square-free numbers in arithmetic progressions 5/40





The first nontrivial result is

Theorem (Hooley, 1975)
Let (a,q) = 1, then we have

X\ /2
E(X, q, a) = 0, ((;) + q1/2+e) :

uniformly for 1 < g < X.

This remains to this day the best result available for fixed a.

Can we do better on average over a (mod q)? I
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For instance, consider the square mean of the E(X, g, a)

* 2
V2(X7q): Z |E(X>q>a)| )
a (mod q)
where the * symbol means we only sum over the classes that
are relatively prime to g.
We have

Theorem (Blomer, 2007)

X5/3
VQ(X, q) < X€ <X+ min <T,q2>> ;

for every € > 0, uniformly for 1 < g < X.
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What happens if we do an extra average over g < Q7 I

Let

V,(X.q)= Y. [|E(X.q.a),

a (mod q)
where
E(X,q.a)= > p*(n)

n<X
n=a(mod q)

2
w(d)go 6 N1 X
=TI+ =,
¢(q0) 2 p|q< P ) q

where d = (a,q) and go = q/d when a is not necessarily
relatively prime to q.
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Theorem (Croft, 1975)

3 Vy(X, q) = BXY2Q%?

q<@

+0 (X2/503/5 Iog13/5X +X3/2 |og7/2 X) Q< X.

where B is an explicit constant.

For X?/3tc < Q < X'—¢, formula above gives an asymptotic

formula for
Z V2(X7 q)

a<@
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lgnoring for the moment the difference between V,(X, q) and
Va(X, q), Croft's result can be interpreted as saying that, at
least on average over g < Q,

V,(X, q) < X/2q"/2,

which could not be observed from the bound of Blomer.

Can we obtain a similar result without the need of the extra
sum over g < Q7
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Let € > 0 arbitrary. Then, uniformly for X1/2 < g < X, we
have

-1
Va(X,q) = C]] (1 - 2p—1> X12q\/2

plg
+ 0, (X2/5+eq3/5 + X23/15+eq—13/15) :

where

_<B®) _
C= 0 1} <1+ p2+p> =0,6917...

Ramon M. Nunes | Square-free numbers in arithmetic progressions 11/40





Corollary

Let € > O arbitrary. Then as X — oo, we have

-1
Va(X,q) ~ CT] (1 +2p‘1) X12ql/2

plg

uniformly for X31/41+t¢ < g < X'~ and where again

2
p*+p

= C(%>H<1+

~2(0) ) = 0,6917...
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This asymptotic formula gives an average order of magnitude
1

of (X/q)*"¢ for the terms E(X, q, a). This remark goes in the

direction of the following conjecture due to Montgomery

E(X,q,a) = O. ((X/Q)%+E) , € > 0 arbitrary

uniformly for (a,q) = 1, X% < q < X% where the values of
the constants 01 and 0, have to be precised.
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Developping the squares in V,(X, g), we obtain the equality

= Y 13(n)+25(X,q)

n<X
(n,q)=1
o(q)X?
—2C(q 1?(n) + C(q)? :
KZX ) >
(n q)=1

where, by definition, S;(X, q) is the shifted sum

= > pA(n)pP(n+Lq).

n¢>1
n+€q<X
(n,q)=1

wﬂ(l‘p)_l'

and
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Let X > 2, € > 0 arbitrary and X2 < g < X, we have

C 2\
& 142 X1/241/2
T2 lpI ( ' P) i
+ 0, (X2/5+eq3/5 4+ X23/15+eq713/15) :

where again

C(q) = %H(l—%>_l-

plg
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Theorem 15 above can be seen as an average version of
Heath-Brown's result

Theorem (Heath-Brown, 1984)
For every X > 2, one has

Z ///2(’7)///2(”‘1_ 1) = GX + O(X7/11(|OgX)7),

n<X

where G, is given by

G=]] (1 — 2p_2> =0,3226..

P

Ramon M. Nunes | Square-free numbers in arithmetic progressions 16/40





Ideas of the proof of Theorem 2
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Blomer attacked the problem by means of

Proposition (Blomer, 2007)
Let g, h be positive integers, with g | h. Then one has

> pA(n)P(n+ h) = fo(h)x + O (d(h)x* + h'/3)

n<x

(n,q)=1
p—2 1
here f,(h) = 1-— 1 .
where f,(h) C2££< p2_2>p12_[<+p2_2>
pta
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One direct consequence is

S0 Y @E(n)pd(n+Lq) = > f(g)(X — Lq)

<X /qn<X—Lq <X/q

(n,q)=1
+0 <d(q)X2/3 (5) log x) |

Using Heath-Brown's square sieve, we were able to obtain a
better error term
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Proposition

Let X > 2 be a real number. Then, uniformly for g positive
integer, X1/2 < g < X, we have

S Y WB(n)pd(n+Lq) = > f(¢g)(X —{q)

(<X /qn<X—Lq 1<X/q
(n,q)=1
X\ 13/15
+0 (d(q)X2/3 (—) (IogX)lS)
q

The importance of a good error term at this point is to enlarge
the range of validity of the asymptotic formula

W

—1
Va(X,q) ~ C]] (1 + 2p1> X'2qH2,

pla
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Next, we rewrite f,(£q) as

f,(tq) = G (1 - ;:é) I1 <1 + p21_2>

pla p?lh
ptq
2
q d)h(d
D g o EDND
q d?|¢ d
(d,q)=1
where
2\ !
h(m) =11 (1 - 2>
plm P

Ramon M. Nunes | Square-free numbers in arithmetic progressions 21/40





Let
T2(X, q) Z fo(Lq)(X — (q).

1<X/q

We calculate further

T(Xq_queq/ 1du

€<X/q

=q Zf lq)d

0 I<u
Using the formula
»(q) #*(d)h(d) d
q &2/
(d,q)=1

and inverting the order of summation, we obtain
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T2(X, q) = Gy(q / Z L;;J du

d>1
(d,q)=

- Getana) [ X 2d)(d2_+w< ;) e

d>1
(d,q)=1

As we calculate the integrals, we have
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0% a) = S Po(0 % - 1000 % Gl 6x, a)
where
Cla) = Ghla) 3 " = oy
(d,q)=1
C'la) = Gha) 3 15 = cla)
(d,q)=1
6(X.q) = X w (@) [ 7 v
(d,q)=1
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All is left to do is to obtain a formula for G(X, q).
Indeed, we have

Let € > 0. We have, uniformly for 1 < q < X, that

) 1/2
G(X.q)=GI[(1+p(p*—2)7") <5>

plg q

o (<§>2/5+e) |
o <0

= 5> rp[ (1 F2>p+ 1) (p? — 2)—1>.

where
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Sketch of the proof of the lemma:

m We write

cx.a)= X pdph) [ vy

(d,q)=1

= [Tem | X wdrnE) | av

d<(Xqu)!/2
(d.q)=1
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m For the sum between brackets, we use Perron’s Formula.
In our case it gives

S ) = 5 [ (Y

d<y 27i Je—it 7 s
(d,q)=1

& 1
O (Y AT log(Y/dm) ’

where ¢ = 1 + (log(X +2))~! and

fo(s) = > pP(d)h(d)d*, for R(s) > 1.

(d,q)=1
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X\12 .
If we make Y = E) in formula above, multiply by ¥ (v)
and we integrate with respect to v, we obtain the equality
G(X,q) = M(X,q,c)+ error term,

where,

1 X/q cHiT X \*? ds
M Xa 5 — 7/ / f. — —d
(0.0 = 5 [0 [0 () Fav

Xlog(X +2)

and the error term can be proved to be < a7
q
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1 fetiT ds
m The integral 2—/ fq(s)Ys? can be calculated by
Tl Jc—i
means of the calculus of residues.

We have

1 [cHT ys
/ ?fq(s)ds = Ress_; f;(s)Y

% c—iT
1 3HIT c+iT c—iT\ Ys
+ 5= /2 +/ —/ —fy(s)ds
2mi \Ji-iT 1T 1iTm ) s
1
= R655:1 fq(S)Y + 27717(/1 + I2 — I3),

by definition.
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. x\1/2 .
Once again, we make Y = (W) , multiply by ¢(v) and we
integrate with respect to v. So we have

X/
M(X, g, c) = Res,_y f,(s) X2 / (v 2d
0
X log(X +2
+51+52—53+0<°g((ﬁ+)>,

where &; is the term coming from the integration of /;.
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From the definition of f;, we get the factorization

where

k(o) =TT (1+p) " Fols) =11 (1 NCErTes 1)> |

plq plq

We note that if o > 1, we have

|kg(s)] < 249,

|Fa(s)] <1,
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m OQur last input for the proof of the lemma is the following

z ¢(3-1) o 2
Yv)vldv =222 L 0(Z72 +|t?|Z72 1),
/0 ) G-1 ( | )
which holds true for Z,t > 1, 0 < 0 < 2, where

s=o0+Iit.
m Next, we estimate the terms &; with the help of the
formula above and classical bounds for ((s).
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That will give us

G(X,q)=G]] (1 + p(p* — 2)—1>_1 (X/q)?

plg

X X 1/2 XT 1/4 qT9/4
+OE((XT) (CIT+<C/T> +<q> X))

2W§) 1;[ (1 +2(p+ 1) (p* — 2)—1>,
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Finally, by choosing

T =(X/q)*®,

we have

G(X,q)=G]] (1 +p(p® — 2)_1)*1 (X/q)2+0.((X/q)?/5*).

pla

The lemma is now proved. Theorem 2 is then a direct
consequence.
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Other Results
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Independence of the E(X, g, a)

Theorem (-, under preparation)
Let € > 0 arbitrary. Then,

> " E(X,q,a)E(X,q,a+1) = o (X?q"/?),

a (mod q)

uniformly for X7/9t¢ < g < X1
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Relative dependence of the E(X, g, a)

Theorem (-, under preparation)

Let € > 0 arbitrary. Then, as X — oo, we have

-1
Z " E(X,q,a)E(X,q,2a) ~ CH (1 —|—2p_1> X1/2g1/2

a (mod q) plq

uniformly for X7/9t¢ < g < X1~
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Moments of higher order

m Fouvry-Ganguly-Kowalski-Michel were able to caculate all
the moments for the error terms of the divisor function in
arithmetic progressions when

X2 log X < g < 2XY2log X.

m One very important feature in their work is the classical
Voronoi formula which fails to have an equivalent in our
context.

m In our case, we were able to partially work out the third
moment.
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Theorem (-, under preparation)

Let € > 0 arbitrary. Then, uniformly for X1/2 < g < X*~¢, we
have

> *E(X,q,a)* = O. (X(Iog X)® X3/ (%) ) :

a (mod q)
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Thank you for your attention !
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Rényi Mathematical Institute of the Hungarian Academy of
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Notation: p, p/, p* € P (the set of primes)
pn: the nth prime, but p; any prime
dp := ppy1 — pn the n'" difference between consecutive primes

Def: An even number 2k is a Polignac number if d, = 2k infinitely

often (i.0.)
Def: nis y-smoothif p|n— p <y
Def: nis an Ex-number if it has exactly two prime divisors

Def: nis a Po-number if it has at most two prime divisors

(=1)™ if nis square-free and has m prime factors
p(n) =

0 otherwise

Abbreviation: i.0. means infinitely often.
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1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES
(Goldston—Pintz=Yildinm—Motohashi-Zhang)

TWIN PRIME CONJECTURE: d,=2i.0.

POLIGNAC'S CONJECTURE (1849): Vk € Z* : d, = 2k i.o.

SMALL GAPS CONJECTURE: A=liminf dn =0

n—oo log n

BOUNDED GAPS CONJECTURE: 3C d, < Ci.o.

REMARK: Bounded gaps conjecture < There is at least one
Polignac number < 3k € Z*: d, = 2k i.o.
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Hardy-Littlewood (1926): GRH — A <2/3.
ErdGs (1940): Jc; > 0 (unspecified, small, but effectively
computable) such that A <1 —-¢

Bombieri-Davenport (1966): A < 0.466--- < 1/2
(Motivation for the large sieve; Bombieri—Vinogradov theorem)

H. Maier (1988): A < 0.2486--- < 1/4
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D. Goldston — J. Pintz — C. Yildinm (2005-2006-2009):

Small gaps conjecture is true, that is, A = 0.
D. Goldston — J. Pintz — C. Yildinm (2005-2010):

dp < Cy/log n/(loglog n)? i.o.

J. Pintz (2011-2013): d, < C(log n)3/7(loglog n)*7 i.o.

and this is the limit of the original GPY-method (without some sort
of improvement of the Bombieri-Vinogradov theorem) as shown by
B. Farkas — J. Pintz — Sz. Gy. Révész (2013)
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1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Definition: Primes have an admissible distribution level ¥

(1) Z max

g<Xxv—¢ (a,9)=1

p=a(q)
p<X

holds for any A >0, e >0and X >0 [& EH(Y)].

X X
2. logp - 90(67)‘ < ClA ) (logx)
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X X
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p=a(q)
p<X
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Definition: Primes have an admissible distribution level ¥

(1) Z max

g<Xxv—¢ (a,9)=1

X X
logp— ——| < C(A, &) —s
; ¢ @(q)‘_ ( )(logX)A
p=a(q)
p<X

holds for any A >0, e >0and X >0 [& EH(Y)].
Bombieri-Vinogradov Theorem (1965): ¥ = 1/2 is admissible.

Elliott—Halberstam Conjecture (1966): ¥ =1 is admissible.
Hypothesis EH (¥): 9 is an admissible level for primes.
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5 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Definition: Primes have an admissible distribution level ¥

X X
! max log —‘gCA,g
( ) q<§—s (a,qa):l ; @(q) ( )(log X)A
B p=a(q)
p<X

holds for any A >0, e >0and X >0 [& EH(Y)].
Bombieri-Vinogradov Theorem (1965): ¥ = 1/2 is admissible.
Elliott—Halberstam Conjecture (1966): ¥ =1 is admissible.
Hypothesis EH (¥): 9 is an admissible level for primes.

Theorem (GPY 2005-2006-2009): /f EH(V) is true for some
1
9> 5 then d, < C(¥) i.o. Furthermore C(1) = 16.
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6 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Dickson’s Conjecture (1904): If ajn+ b; are linear forms with
k
aj, b € Z, a; > 0, [[(ain+ b;) has no fixed prime divisor, then
i=1
{ain + bi}*_, € P for infinitely many n (i.o.).
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k

aj, b € Z, a; > 0, [[(ain+ b;) has no fixed prime divisor, then

i=1
{ain + bi}*_, € P for infinitely many n (i.o.).
Definition: A k-tuple Hy = {h,-}fle, 0<h<h<---<his
admissible if it covers v, < p residue classes mod p for any prime p.
Hardy—Littlewood’s Conjecture (1923): If Hy is admissible,
then

(2)
Z 1~ 6 Hk
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Dickson’s Conjecture (1904): If ajn+ b; are linear forms with

k

aj, b € Z, a; > 0, [[(ain+ b;) has no fixed prime divisor, then

i=1
{ain + bi}*_, € P for infinitely many n (i.o.).
Definition: A k-tuple Hy = {h,-}fle, 0<h<h<---<his
admissible if it covers v, < p residue classes mod p for any prime p.
Hardy—Littlewood’s Conjecture (1923): If Hy is admissible,
then

(2)
Z 1~ 6 Hk

e foo Tl 3)65) )

{n+h;}ePk

Conjecture DHL (k): If Hy is admissible, then {n+ h;}¥_, € P*
i.o.
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Conjecture DHL (k,2): If Hy is admissible, then n+ H, contains
at least two primes i.o.
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Remark. DHL (k,2) for any k = ko implies the Bounded Gap
Conjecture. (Gap size < hx — h1 =~ klog k with optimal Hy).

1
Theorem (GPY, 2005-2006-2009): /f EH(¥}) is true, ¥ > 5
then 3kg = C1(V) such that DHL(k, 2) is true for any k > k.
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Conjecture DHL (k,2): If Hy is admissible, then n+ H, contains
at least two primes i.o.
Remark. DHL (k,2) for any k = ko implies the Bounded Gap
Conjecture. (Gap size < hx — h1 =~ klog k with optimal Hy).

1
Theorem (GPY, 2005-2006-2009): /f EH(¥) is true, ¥ > 5
then 3ko = C1(¥) such that DHL(k, 2) is true for any k > k.

1
Corollary: If EH(¥) is true for some 9 > 5 then d, < G(V) i.o.
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7 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Conjecture DHL (k,2): If Hy is admissible, then n+ H, contains
at least two primes i.o.

Remark. DHL (k,2) for any k = ko implies the Bounded Gap
Conjecture. (Gap size < hx — h1 =~ klog k with optimal Hy).

Theorem (GPY, 2005-2006-2009): /f EH(9) is true, ¥ > %
then 3ko = C1(¥) such that DHL(k, 2) is true for any k > k.
Corollary: If EH(V) is true for some 9 > % then d, < G(¥) i.o.
However, it suffices to show a conjecture weaker than EH(4) for

1
some 9 > 5 and still obtain DHL(ko, 2) and thus bounded gaps i.o.
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8 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Theorem: Y. Motohashi — J. Pintz, A smoothed GPY-sieve, arXiv:
math/0602599, Feb 27, 2006, Bull. London Math. Soc. 40 (2008),
no. 2, 298-310 and www.renyi.hu/~pintz, MR2414788

(2009d:1132) (proved again by Yitang Zhang 2013, Ann. of Math.,
to appear).
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Theorem: Y. Motohashi — J. Pintz, A smoothed GPY-sieve, arXiv:
math/0602599, Feb 27, 2006, Bull. London Math. Soc. 40 (2008),
no. 2, 298-310 and www.renyi.hu/~pintz, MR2414788
(2009d:1132) (proved again by Yitang Zhang 2013, Ann. of Math.,
to appear).

- . 1
It is sufficient to prove the analogue of EH(¥) with some ¥ > 5 for
smooth moduli g (satisfying p | ¢ — p > g® with an arbitrary fixed

K
b > 0) and for solutions a of the congruence [[(a+ h;)) =0
i=1
(mod q) as residue classes mod gq.
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9 1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Y. Zhang's Theorem (2013, Ann. of Math., to appear). EH(9) is
true for 9 = 3 + 8a for smooth moduli and solutions of the

K
congruence []
i=1

(a+ h;j) =0(mod q).
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K
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Corollary 1: DHL(k,?2) is true for k > 3.5 - 10°.
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1. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Y. Zhang's Theorem (2013, Ann. of Math., to appear). EH(9) is

true for 9 = 3 + 8a for smooth moduli and solutions of the

K
congruence [](a+ h;) = 0(mod q).
i=1
Corollary 1: DHL(k,?2) is true for k > 3.5 - 10°.
Corollary 2: d, = ppy1 — pp < 7-107 i.0.
Remark. 70 million was improved to 4680 (T. Tao's blog and
Polymath project).
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2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES
(Goldston-S.W. Graham-Pintz-Yildinrm—Maynard-Tao)
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(3) liminf(pptm — pn) < m3e*™.
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Remark. m3 can be deleted (Tao + Polymath).
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2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES
(Goldston-S.W. Graham-Pintz-Yildinrm—Maynard-Tao)
Theorem A (Maynard—Tao): We have for any m

(3) liminf(pptm — pn) < m3e*™.

Remark. m3 can be deleted (Tao + Polymath).

Theorem B (Maynard—Tao): A positive proportion of all
admissible k-tuples H = {h;}%_, satisfies Dickson's k-tuple
conjecture, i.e.,

(4) {n+ hj}_, € PX for infinitely many n.
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Theorem C (Maynard): Iirginf(pn+1 — pn) < 600.
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Theorem D (Tao + Polymath 8): Iirlinf(pn+1 — pn) < 270.
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2. SMALL GAPS BETWEEN CONSECUTIVE PRIMES

Theorem C (Maynard): Iirlinf(pn+1 — pn) < 600.
Theorem D (Tao + Polymath 8): Iirlinf(pn+1 — pn) < 270.

Theorem E (Maynard): EH = liminf(pp+1 — pn) < 12.
n—00
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3. ARITHMETIC PROGRESSIONS IN DENSE SETS
AND IN THE SET OF PRIMES

Waring and Lagrange (more than 200 years ago):
How long arithmetic progressions (AP’s) are within P.
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3. ARITHMETIC PROGRESSIONS IN DENSE SETS
AND IN THE SET OF PRIMES

Waring and Lagrange (more than 200 years ago):
How long arithmetic progressions (AP’s) are within P.
Erd6s—Turan Conjecture 1 (1936): For every k we have
infinitely many k-term AP within P.
Erd8s—Turan Conjecture 2: If A C Z* has positive upper density,
then we have infinitely many k-term AP’s within A for every k.
Solutions: kK =3 K.F.Roth (1952-53)
k =4 E.Szemerédi (1968-70)
k arbitrary: E.Szemerédi (1973-75) Abel prize 2012
H. Firstenberg (1977) Wolf prize 2006/7
T. Gowers (1998) Fields medal 1998
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Van der Corput 1939 F infinitely many 3-term AP’'s in P
(Method: Vinogradov's method for the ternary Goldbach problem)
B. Green — T. Tao (2004-2008) Yk Jk-term AP in P. T. Tao
Fields medal 2006

Methods (ergodic — Fiirstenberg, harmonic analysis — Gowers,
combinatorial — Szemerédi + number theoretical —
Goldston-Yildirim)
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3. ARITHMETIC PROGRESSIONS IN DENSE SETS AND IN THE SET OF PRIMES

Van der Corput 1939 F infinitely many 3-term AP’'s in P
(Method: Vinogradov's method for the ternary Goldbach problem)
B. Green — T. Tao (2004-2008) Yk Jk-term AP in P. T. Tao
Fields medal 2006
Methods (ergodic — Fiirstenberg, harmonic analysis — Gowers,
combinatorial — Szemerédi + number theoretical —
Goldston-Yildirim)
Erd6s Conjecture (USD 3000): /f Z 1/a; = oo, then A

a;c A
contains infinitely many k-term AP's for any k.
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4. ARITHMETIC PROGRESSIONS OF GENERALIZED
TWIN PRIMES

Theorem 1 (J. P., arXiv 2013): There exists an absolute
constant Cy and an even d < Cy with the following property. For
every k there is a k-term AP of primes such that for each element

p of the progression p + d is also a prime, more exactly, the prime
following p.
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Remark. The result is based (with Cop = 4680) on earlier ideas and
results of

(i) Szemerédi—Furstenberg—Gowers—Green—Tao
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Remark. The result is based (with Cop = 4680) on earlier ideas and
results of

(i) Szemerédi—Furstenberg—Gowers—Green—Tao

(i) Selberg—Heath-Brown—Bombieri-A.l.Vinogradov-Goldston—
Pintz=Yildirm

(iii) Motohashi-Pintz

(iv) Bombieri—Friedlander—lwaniec—Fouvry—Deligne—-Birch—-Weyl—
Zhang

Using the Maynard—Tao approach we obtain Theorem 1 with
Co = 270 without (iii) and (iv).
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5. POLIGNAC NUMBERS

Def: 2k is a Polignac number if d, = 2k i.o.
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5. POLIGNAC NUMBERS
Def: 2k is a Polignac number if d, = 2k i.o.

Polignac’s Conjecture: Every positive even number is a Polignac
number.

Proposition. Bounded Gaps Conj. < 3 at least one Pol. number.

Theorem 2 (J.P., arXiv 2013): There are infinitely many
Polignac numbers, and their lower asymptotic density is at least
5.107°.
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17 5. POLIGNAC NUMBERS

Corollary: For Vk 3 k-term AP of Polignac numbers.

Theorem 3 (J.P., arXiv 2013): /f d, is the n*" Polignac number,
then dp+1 — dp < C (C ineffective).
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6. THE NORMALIZED VALUE DISTRIBUTION OF d,

N
1 d
(5) Prime Number Theorem: = N ,?:1 Iognn =
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6. THE NORMALIZED VALUE DISTRIBUTION OF d,

dn
gn

N
. 1
(5) Prime Number Theorem: =- N nz::l o

Conjecture (Erd6s): d,/ log n is everywhere dense in [0, <], i.e.

(6) Jz{ dn }’: 0, 0],

log n
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6. THE NORMALIZED VALUE DISTRIBUTION OF d,

N
1 d
(5) Prime Number Theorem: =- N ,?:1 Iognn =

Conjecture (Erd6s): d,/ log n is everywhere dense in [0, <], i.e.

(6) Jz{ dn }’: 0, 0],

log n

Theorem (Ricci 1954, ErdGs 1955): J has a positive (Lebesgue)
measure.
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However, no finite limit point was known till 2005.
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6. THE NORMALIZED VALUE DISTRIBUTION OF d,

However, no finite limit point was known till 2005.
Theorem (Goldston—Pintz-Yildinm, 2005-9): 0 € J.

Theorem 4 (J. P., arXiv 2013): 3¢ (ineffective) such that
[0,c] C J.

Theorem 5 (J. P., arXiv 2013): /f f(n) < logn, f(n) /oo,
Jr ={dn/f(n)}, then 3cr (ineffective) such that [0, cf] C Jr.
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Erdés (1948) liminf o1 <1< limsup di+1

n—oo d, d,
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7. COMPARISON OF CONSECUTIVE VALUES OF d,

7. COMPARISON OF CONSECUTIVE VALUES OF d,

dn+1
dn

Erdés (1948) liminf o1 <1< limsup

n—oo d,

Erdés (1956) “One would of course conjecture that
(7)

lim inf In 1 =0 and limsup In 1 =00 (@ lim inf dn = 0)
dn n—00 dn n—oo dn_;,_]_

but these conjectures seem very difficult to prove.”

76 /135





21 7. COMPARISON OF CONSECUTIVE VALUES OF d,

Theorem 6 (J. P., arXiv 2013): Erdds’s conjecture (7) is true,
we have even

dny1l d
(8) lim inf 211081 00, limsup -2
n—oo dn n—o0 dn|0g n

(9) lim sup min(dn—1, dni1)

dlogn)e = with ¢ = 1072
n—oo n
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22 8. CONJECTURES OF ERDOS AND ERDOS-MIRSKY

8. CONJECTURES OF ERDOS AND ERDOS-MIRSKY
ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

Conjecture A: d(n) = d(n+ 1) i.o. (Erdés—Mirsky 1952)
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8. CONJECTURES OF ERDOS AND ERDOS-MIRSKY

8. CONJECTURES OF ERDOS AND ERDOS-MIRSKY
ON CONSECUTIVE VALUES OF ARITHMETIC FUNCTIONS

Conjecture A: d(n) = d(n+ 1) i.o. (Erdés—Mirsky 1952)
Conjecture B: Q(n) = Q(n+1) i.o. (Erdés)
Conjecture C: w(n) = w(n+ 1) i.o. (Erds)

Def: Q(n) and w(n) denote the number of prime divisors of n with
(Q2(n)) or without (w(n)) multiplicity.
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Remark (J. R. Chen 1966). 2p+1 € P or2p+1=pipy i.o.
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8. CONJECTURES OF ERDOS AND ERDOS-MIRSKY

Remark (J. R. Chen 1966). 2p+1 € P or2p+1=pipy i.o.

We conjecture that 2p + 1 = p1p> i.0. Then for these primes

(10)

d(2p) = d(2p+1) =4, w(2p) = w(2p+1) =Q(2p) = Q(2p+1) =2
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Remark (J. R. Chen 1966). 2p+1 € P or2p+1=pipy i.o.

We conjecture that 2p + 1 = p1p> i.0. Then for these primes

(10)

d(2p) = d(2p+1) =4, w(2p) = w(2p+1) =Q(2p) = Q(2p+1) =2

Parity phenomenon (Selberg): Sieve methods (alone) can not
distinguish between numbers with an odd or even number of prime

factors.
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Remark (J. R. Chen 1966). 2p+1 € P or2p+1=pipy i.o.

We conjecture that 2p + 1 = p1p> i.0. Then for these primes

(10)

d(2p) = d(2p+1) =4, w(2p) = w(2p+1) =Q(2p) = Q(2p+1) =2

Parity phenomenon (Selberg): Sieve methods (alone) can not
distinguish between numbers with an odd or even number of prime

factors.
Erd8s's conjectures were considered as difficult as the twin prime

conjecture.
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C. Spiro (1981) d(n) = d(n+ 5040) i.o.
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C. Spiro (1981) d(n) = d(n+ 5040) i.o.
Heath-Brown (1984) d(n) =d(n+1) i.o. and Q(n) = Q(n+1)
i.0.
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C. Spiro (1981) d(n) = d(n+ 5040) i.o.

Heath-Brown (1984) d(n) =d(n+1) i.o. and Q(n) = Q(n+1)
i.0.

J. C. Schlage-Puchta (2001-2005) w(n) = w(n+ 1) i.o.
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C. Spiro (1981) d(n) = d(n+ 5040) i.o.

Heath-Brown (1984) d(n) =d(n+1) i.o. and Q(n) = Q(n+1)
i.0.

J. C. Schlage-Puchta (2001-2005) w(n) = w(n+ 1) i.o.

In joint work with S. W. Graham, D. Goldston, C. Yildirm we

showed
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8. CONJECTURES OF ERDOS AND ERDOS-MIRSKY

C. Spiro (1981) d(n) = d(n+ 5040) i.o.

Heath-Brown (1984) d(n) =d(n+1) i.o. and Q(n) = Q(n+1)
i.o.

J. C. Schlage-Puchta (2001-2005) w(n) = w(n+ 1) i.o.

In joint work with S. W. Graham, D. Goldston, C. Yildirm we
showed

Theorem 7 (GGPY 2009): Let g, denote the sequence of E;
numbers which have exactly two prime divisors. Then

Gn+1— qn < 6 i.0.
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8. CONJECTURES OF ERDOS AND ERDOS-MIRSKY
Theorem 8 (GGPY): For every B >0 (B € Z*) 3 inf. many n's
with

wn)=wln+1)=4+B, Qn)=Q(n+1)=5+ B,

(1) d(n) =d(n+1)=24.258
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8. CONJECTURES OF ERDOS AND ERDOS-MIRSKY
Theorem 8 (GGPY): For every B >0 (B € Z*) 3 inf. many n's
with

wn)=wln+1)=4+B, Qn)=Q(n+1)=5+ B,

(1) d(n) =d(n+1)=24.258

Theorem 9 (GGPY 2011, GGPY 2011):

(12) w(n) =w(n+1)=3 io,

(13) Q(n) =Q(n+1)=4 io.
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25 8. CONJECTURES OF ERDOS AND ERDOS-MIRSKY
Theorem 8 (GGPY): For every B >0 (B € Z*) 3 inf. many n's
with
wn)=wln+1)=4+B, Qn)=Q(n+1)=5+ B,

(1) d(n) =d(n+1)=24.258

Theorem 9 (GGPY 2011, GGPY 2011):

(12) w(n) =w(n+1)=3 io,
(13) Q(n) =Q(n+1)=4 io.

Theorem 10 (J. P. 2011): Vk 3 k-term AP of natural numbers n
such that (11) is true. The same assertion holds for (12) and (13).
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9. SOME IDEAS OF PROOF BEHIND THEOREMS 7-9

The following Basic Theorem forms the basis for the proofs of
Theorems 7-10.

BASIC THEOREM (S.W.
Graham—Goldston—Pintz=Yildirim): If L;(x) = ajx + b;
(i=1,2,3, aj,b; € Z, aj > 0) are three linear forms such that

3
[T Li(x) has no fixed prime divisor, then we have at least two
i=1

indices i,j € (1,2,3) such that for any C and infinitely many n
(14)
Li(n), Lj(n) have exactly two prime divisors, both larger than C.
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9. SOME IDEAS OF PROOF BEHIND THEOREMS 7-9

The following Basic Theorem forms the basis for the proofs of
Theorems 7-10.

BASIC THEOREM (S.W.
Graham—Goldston—Pintz=Yildirim): If L;(x) = ajx + b;
(i=1,2,3, aj,b; € Z, aj > 0) are three linear forms such that

3
[T Li(x) has no fixed prime divisor, then we have at least two
i=1

indices i,j € (1,2,3) such that for any C and infinitely many n
(14)
Li(n), Lj(n) have exactly two prime divisors, both larger than C.

Corollary: Take {n, n+2, n4+6} = gn+1 — qn < 6 i.0.
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Proof of (12) of Theorem 9 from the BASIC THEOREM
Let Liy(m) =6m+1, Lr(m)=8m+1, L3(m)=9m+ 1.
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9. SOME IDEAS OF PROOF BEHIND THEOREMS 7-9

Proof of (12) of Theorem 9 from the BASIC THEOREM
Let Liy(m) =6m+1, Lr(m)=8m+1, L3(m)=9m+ 1.

3
This is clearly admissible since [] L;j(0) =1 (mod p). We have

i=1
411 =3, +1,3L1 =213+ 1,9, =8L1 + 1.
Suppose, e.g., L1(n) and La(n) are Ex-numbers i.o. If x = 3L>(n),
x+1=4Ly(n), n# 1(mod 3), then w(x) =w(x +1) =3 i.o.
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10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM

10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM
The proof relies on three theorems:

(i) GPY (2005-6-9). If 39 > 1/2 s.t. EH(¥) is true, i.e. for any
Ae>0

X X
(15) Z max Z Iogp—@ §C(A,5)W,

g<X?—<(2,9)=1lp<X, p=a(q)

then DHL(k, 2) is true for k > ko = C3(¥), i.e. we have for any
admissible # at least two primes among {n + h;}*_; i.o.
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10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM
The proof relies on three theorems:

(i) GPY (2005-6-9). If 39 > 1/2 s.t. EH(¥) is true, i.e. for any
Ae>0

X X
(15) Z max Z Iogp—@ §C(A,5)W,

g<X?—<(2,9)=1lp<X, p=a(q)

then DHL(k, 2) is true for k > ko = C3(¥), i.e. we have for any
admissible # at least two primes among {n + h;}*_; i.o.

(i) MOTOHASHI-PINTZ (2005-8): It is sufficient to have (15) for
smooth moduli (p | g — p > q®, b > 0 arbitrary) and a's satisfying

'ﬁl(a + h;) = 0(mod q).
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10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM
The proof relies on three theorems:

(i) GPY (2005-6-9). If 39 > 1/2 s.t. EH(¥) is true, i.e. for any
Ae>0

X X
(15) Z max Z Iogp—@ §C(A,5)W,

g<X?—<(2,9)=1lp<X, p=a(q)

then DHL(k, 2) is true for k > ko = C3(¥), i.e. we have for any

admissible # at least two primes among {n + h;}*_; i.o.

(i) MOTOHASHI-PINTZ (2005-8): It is sufficient to have (15) for

smooth moduli (p | g — p > q®, b > 0 arbitrary) and a's satisfying
k

[1(a+ h;j) = 0(mod q).

(iii) ZHANG (to appear): (15) is true if restricted by (ii).
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10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM
Ideas to prove (i) go back to Selberg and Heath-Brown. Since

log N primes if n ~ N (n € [N,2N)) on

average, we look for an average which gives large weights a, if
k

n + Hy contains just

n+ H contains many primes. Let Py(n) = [[(n+ hj).

i=1
1. ai(n) = 1 if {n+ hi}f-‘zl e Pk (tautology)
Ce 0 otherwise

p k
2. aa(n) = Me(Pum) = X ) (1o 4" )
d|P3(n)
is a reformulation of a1(n) (a2(n) = a1(n)): we cannot evaluate

S(N) = Z ap.

n~N
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30 10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM

R

3. a3(n) = Aer(n) = Y u(d)logkg
d| Py ()
d<R

(Selberg’s idea). Problem: as3(n) may be negative.
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3. a3(n) = Aer(n) = Y p(d) logh &
’ d
d| P (n)
d<R
(Selberg's idea). Problem: a3(n) may be negative.

4. ay(n) = (a3(n))2. First chanceful choice!
S(N) can be evaluated; further if

1 ifneP
Xp(n):{ ~ then §%( ZZanXp + hj)

0 otherwise, — =

can be evaluated as well if R < N1/4—o(1)
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R
_ — k
3. a3(n) = N r(n) = E wu(d) log 7
d| P (n)
d<R
(Selberg's idea). Problem: a3(n) may be negative.

4. ay(n) = (a3(n))2. First chanceful choice!
S(N) can be evaluated; further if

1 ifneP
Xp(n):{ ~ then §%( ZZanXp + hj)

0 otherwise, — =

can be evaluated as well if R < N1/4—o(1)
S'(V) _ 1 + 0k(1) primes “on average”

We obtain
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10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM

5. All attempts 1-4 simulate the full DHL(k) conjecture, i.e. to
obtain k primes in a k-tuple i.o. (Dickson's conjecture). Let's be
more modest. We are contented if we approximate DHL(k, 2), i.e.

k
if we have k + ¢ prime factors of [[(n+ h;) for some ¢ < k — 2.

i=1
(16)

2
R k4t )
()= Nor(m=| 3 u(d) (Iog d) R NEE
d|P3(n)
d<R
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5. All attempts 1-4 simulate the full DHL(k) conjecture, i.e. to

obtain k primes in a k-tuple i.o. (Dickson's conjecture). Let's be

more modest. We are contented if we approximate DHL(k, 2), i.e.
k

if we have k + ¢ prime factors of [[(n+ h;) for some ¢ < k — 2.

i=1
(16) 2

R k+¢ ;o
()= Nor(m=| 3 u(d) (|ogd> R NEE

d|P3(n)
d<R

We obtain

o e() o)

primes on average over n ~ N (unconditionally).
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10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM
With some additional ideas this leads to the Small Gaps

. . ... d
Conjecture, i.e. A = liminf —— =
n—oo log n

1
(i) However, conditionally, if ¥ > 5 EH(9) is true, then

@ S a(io(t) o(M))on

107 /135





32

10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM
With some additional ideas this leads to the Small Gaps
n

Conjecture, i.e. A = liminf =0
n—oo log n

1
(i) However, conditionally, if ¥ > 5 EH(9) is true, then

@ S a(io(t) o(M))on

(i) MOTOHASHI-PINTZ: If we can show EH(¥) for a ¢ > 3 for
smooth moduli (p | g — p > g) and instead of the worst residue

k
class mod q for solutions of the congruence [][(a+ h;) =0, then
i=1
we obtain under the condition b > C//k

(19) ?((/y)) =20 (1 -0 (i) -0 @) + O(e_kb/3)> > 1.
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10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM

(iii) ZHANG: It is possible to show the above mentioned restricted
improvement of the Bombieri—Vinogradov theorem using methods
of Fouvry—lwaniec, Bombieri—Friedlander—lwaniec, Weil,
Friedlander—Iwaniec (with an appendix of Bombieri-Birch) which
apply a technique based on the theory of Kloosterman sums. It
turned out later that the most useful idea is in Fouvry—Iwaniec
(1980) which proves the following theorem. For every a < X

X
E E 1 — Exp. Main Term| < C(A)—4—
g<X11/21'n=a(mod q) |Og X
n<X
pln—p<z

where z = X1/883 A~ 0, X >0 arbitrary.
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10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM

ANALOGY: The moduli are here arbitrary (rigid) but the numbers
n are well factorable. In case of prime gaps we have a “dual”
problem. By the Motohashi—Pintz theorem we can factorise ¢
arbitrarily, and while the primes seem to be rigid, they might be
written in a multilinear form using Linnik’s or Heath-Brown's
identity. Crucial role is still played by Friedlander—lwaniec (1985):
a<X,di(n)= S 1,(aq)=1, q< Xl/2+1/230

n=nynan3

' Z d3(n) — Exp. Main Term| < C(A)LA.
= log™ X
n=a(mod q)
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Crucial idea behind the proof of Theorems 1-5 (apart from earlier
mentioned results)
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Crucial idea behind the proof of Theorems 1-5 (apart from earlier
mentioned results)
MAIN LEMMA (J. P. 2010): The total sum of weights as(n) for

numbers for which at least one of the numbers n + h;
2N

(i=1,2,...,k) has a divisor < n® is negligible (< € Z a5(n)> if
n=N

b < ec(k).
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Crucial idea behind the proof of Theorems 1-5 (apart from earlier
mentioned results)
MAIN LEMMA (J. P. 2010): The total sum of weights as(n) for

numbers for which at least one of the numbers n + h;
2N

(i=1,2,...,k) has a divisor < n® is negligible (< € Z a5(n)> if
n=N

b < ec(k).

Corollary (GPY 2010): Given any n > 0 a positive proportion of

primegaps d, satisfy d, < nlog n.
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10. SOME IDEAS BEHIND THE PROOF OF ZHANG'S THEOREM

Theorem 10. Ifk > ky, H = {h,-}f-‘:1 is an admissible k-tuple,
then for N > No(k) the number of n € [N,2N) for which
{n+ hi}*_; contains at least two primes and almost primes in all
other components with all prime factors > n“(k) js at least
N
c(k)——
2 )Iogk N

if0 < h; < logN.
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11. SOME IDEAS BEHIND THE PROOF
OF THE MAYNARD-TAO THEOREMS

An immediate generalization of the weight

115 /135





37

11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD-TAO THEOREMS

11. SOME IDEAS BEHIND THE PROOF
OF THE MAYNARD-TAO THEOREMS

An immediate generalization of the weight

2

k+¢
(20) sm=| 3 ud) (log’j>

d|N(n+h;)
d<R
is
2
(21) = | 3 ud)F (82
6\ = log R
d|N(n+)
d<R

with a smooth function F.
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The optimal choice £ = Cvk yields
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The optimal choice £ = Cvk yields

(22) SIN) oy € (: 1

Se(N) Vk

!/

Vk

unconditionally)
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11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD-TAO THEOREMS

The optimal choice £ = Cvk yields

SE(N)_ —g = —g uncondition
(22) SZ(N)_%‘ N <—1 N conditio ally)

primes on average over n € [N, 2N) (with ¥ = 5 [BV]).
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Soundararajan showed that any function F yields
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Soundararajan showed that any function F yields

SE(N)
Se(N)

(23) <29 (=1 unconditionally)
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11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD-TAO THEOREMS

Soundararajan showed that any function F yields

SE(N)
Se(N)

(23) <29 (=1 unconditionally)

primes on average.
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11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD-TAO THEOREMS

Based on some results of Conrey, in a joint work with B. Farkas and
Sz. Gy. Révész we showed that for the optimal function F we

obtain
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Based on some results of Conrey, in a joint work with B. Farkas and
Sz. Gy. Révész we showed that for the optimal function F we
obtain

SE(N) C B C .
(24) Se(N) ~ 29 — w27 <— 1-— PPTE] uncondltlonally)
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11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD-TAO THEOREMS

Based on some results of Conrey, in a joint work with B. Farkas and
Sz. Gy. Révész we showed that for the optimal function F we
obtain

SE(N) B C B C ..
e (V) =29 — PoTE] <— 1-— PPTE] uncondltlonally)

primes on average over n € [N,2N).

(24)
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The idea of Maynard and Tao was to use
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The idea of Maynard and Tao was to use

log d

log d
(25)  ar(n)= ( S wd)F <|Og N
g
d=d...dy
di|n+h;
d<R

"7 log R

)
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11. SOME IDEAS BEHIND THE PROOF OF THE MAYNARD-TAO THEOREMS

Maynard—Tao’s Theorem. One can choose F in such a way that
we have

(26) = g log k — O(log log k)

primes on average if n runs between [N and 2N).
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Maynard—Tao’s Theorem. One can choose F in such a way that
we have

(26) = g log k — O(log log k)

primes on average if n runs between [N and 2N).
Corollary 1. Instead of ¥ = 1/2 [BV, 1965] it is sufficient to work
with any ¥ > 0 [Rényi 1948].
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Maynard—Tao’s Theorem. One can choose F in such a way that
we have

(26)

= g log k — O(log log k)

primes on average if n runs between [N and 2N).

Corollary 1. Instead of ¥ = 1/2 [BV, 1965] it is sufficient to work
with any ¥ > 0 [Rényi 1948].

Corollary 2. Instead of just two primes (bounded gaps) we obtain
(log k) /4 primes in any admissible k-tuple infinitely often (if

k > ko), i.e., bounded gaps between p, and ppy, for any r i.o.
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Let F: R, — R be a bounded measurable function.
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Let F: R, — R be a bounded measurable function.
R, = {(tl,...,tk) S [0,+OO)k A+ < 1} ngv
e(F) ::/F(tl,...,tk)zdtl...dtk,
Ry

1— Z t;
i#m

2
J,((’")(F) = /( / F(tl,...,tk)dtm> dty ... dtm_1dtmyi1.

Rk—1 0
k
> ()
R =y =5

.. dty,
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Si(n)
SF(n)
n € [N,2N), consequently

Then we get

= re(F) + o(1) primes on average if
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Si(n)
SF(n)
n € [N,2N), consequently

Then we get = re(F) + o(1) primes on average if

lim ioréf(p,,Jrr_l —pn) < C(k) if r=[r(F)].

n—
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Si(n)
SF(n)
n € [N,2N), consequently

Then we get = re(F) + o(1) primes on average if

lim ioréf(p,,Jrr_l —pn) < C(k) if r=[r(F)].

n—

k 1

Remark. F(ty,....t) = B = (log k — 2 log log k)k
emark. F(ti,...,t) ,-1;[11+Bt,- (log og log k)

yields G(F) > log k — loglog k — 2 if k > ko.
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COMMENTS AND VARIATIONS AROUND:
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Theorem (OR, 2014)

X large, a prime to g < X'/°,

Z u(n)e(na/q) < X//q. gt Do
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Assume L(1,x) < cw 3/ 1og g for small ¢
Hecke~1923: 3 real zero,6’ >1—-cy/logq

Corollary Ve > 0,3¢1,c3 > 0 such that
1—&
L(1,)()<c1¢ 7/logq = L'(B,x) =cs( e ))

PNt \976\ /
( L(1,x) « 1/logg= L'(1,x) » q/¢(q).

A
F\\)C‘(“J\96 \/
( L'1,x) <1=L(1,x) » 1/logq.
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Short!

(Vinogradov, 1937) introduced
the systematic use of bilinear
| form decompositions for primes

(Davenport, 1937) immediately ‘
recognized the power and de- g

function.

Subsequent developments: That'’s folklore!
(Karatsuba & Voronin, 1992, Chapter 11.6)
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PRIMES
4 h

Theorem

ged(a,q) =1 and20 < g < X'/?4 :
‘Z A(n) e(na/q)| < 14000 22 X.
n<X y

> It |S SHARP (change 13000 to 1 — & proves no Siegel zero)

> MethOd |S FLEXI BLE (bilinear decomposition + Barban & Vehov)
> It |S “EXPLICITABLE” (bilinear decomposition + Barban & Vehov)
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PRIMES (history)
PRIMES (history)

& Moebius & Vehov  Decomposition

Bilinear

» (Vinogradov, 1954), tegq)®*/ 4

8 (Karatsuba, 1983), 4/

» (OR, 2010). Va/e(a)

(Wang & Chen, 1994),
(Daboussi & Rivat, 2001),

» (Helfgott, 2012),

for (log )2 < loglog X

for (log q)° < log X

e (DabOUSS|, 2001 ) \/W/y}(q) for (log q)® < log X

for (log )% < log X

Explicit

Explicit

Explicit

K

Amplification

No exceptional

) B References
zeros via Moebius

Ok for w,
Bilinear Dec.

<«

Not Ok for pu,
Analytical

Ok for p,
Bilinear Dec.

<«

Not Ok for u,
Bil. Dec. + Pos.

NS

Ok for p,
Bilinear Dec.
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(Gallagher, 1970)
log-free density estimate a la Linnik (Turan)

4 N
Theorem EX|st a,b > 0 such that

Z Z Iogp‘«hexp( Ig>

1<g<Q y mod*q X Q
_provided x/Q < h < x, exp /logx <Q < x°.

¥ — adapt if exceptional character exists.

» A true EXPLICIT challenge!  » Not valid for u? ‘
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Main thei negt onsequence Primes & Moebius & Vehov  Decomposition zeros via Moebius

Gallagher PNT for Moebius?

Not done, but ...

B use (Motohashi, 1978)!

AND BELIEVE ME, IT WORKS !! SAVE FOR TWO PROBLEMS ...

Exceptional contribution — Problem no 1 —
Bound is larger by ﬁ‘g) —— Problem no 2 —
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pRE PROOE.
u(d) when d < z
(1) _ log(z?/d) 5
g = Aud)=5 Whenz<d<z
0 when z2 < d.
Theorem We have, when x > z > 2,

(1) |Og X
3 (2 A ) <5200 .

n<x djn

Condition x > z? is ABSENT !
(Barban & Vehov, 1968) (Graham, 1978) (Motohashi, 1983)





Gallagher PNT  Barban Bilinear
& Moebius & Vehov Decomposition

ON . |
RILINEAR DECOMPOS\T\C Ramanujan sum )

Main theme A consequence Primes Amplification No ex.ceptlongl References
zeros via Moebius

/
A
Vi(s) = > c(n) (Y1 a) /s
Selectr <R r nz>lzr (th;d)
M (s) = Z hr(n)/n°
1<n<rz?
& n®

Multiply | 1 = =V, + (M, by 1/¢.

M(s)

I
]
=
x| —
S

=—(%—’V’>Vr—MM,§+M,+M.

For Gallagher PNT:| 1 = VZ + 2{M, — M2{?





Gallagher PNT  Barban Bilinear
& Moebius & Vehov Decomposition

POSITION, |l

BILINE AR DECOM

Assume Rz? < X.
Let f be any function e.g. f(n) = e(na/q)

No exceptional

) B References
zeros via Moebius

Main theme A consequence Primes Amplification

2E8r
S

S umyn)
xS ) (Z /lg)>cr(m)f(£m)

X<fm<2X, dm

z<t,m<2X/z

— > u(kh(e) > f(kem)
k<z, X<ktm<2X

<rz?






Gallagher PNT  Barban

Bili No exceptional
& Moebius & Vehov Decomposmon

) B References
zeros via Moebius

Main theme A consequence Primes Amplification

/\MPL\F\CAT\QN We have a FAMILY of
decompositions!

r<R/:0 ,g( )e<a?:>
Step 1 r;q l;((rr)) %Mﬂ(f) <§n /131)) Cr(m)e(a{%) ‘

Step 2

)

r<R (’0 bmod*q

% (34 eme(3)|

m~M dlm
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Amplification

We now save the summation over r:

No exceptional
zeros via Moebius

-
Theorem
Letg>1, T = 10.

Y Loy [y
r<R/q, go(r)b mod g¥ 7! m m"
(q.r)=1

References
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Simple use with r = 1 + no Barban & Vehov:

[ N
Theorem Wheng < X and (a,q) =

30 X (1 + log X)7/2
\é}xum)e(na/q)\ e

. 2004)
& Kowalsk': 2 X'1+e 4/5te

« _ + X
min(q, X/q)
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Explicit aspect, one of the difficulties:

-

Theorem Whenx>2z>2

> (S 4) /n < 5200227

n<X dn
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P TIONAL ZEROS.|

g AND EXCE
MOEB\U Conditional!

dcs, ¢ > 0, such that, if |[L'(B,x)| < ¢s, then, by
Gallagher-Motohashi Moebius Theorem, one has,

when X ~ g%
an VaX
nel— ) =—————
n; #) (q) v(q)L'(B,x)
(n.q)=1

But this is « X/4/q = |L'(B,x)| not too small!
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L ZEROS Al

TIONA
MOE—B\U Conditional!

dc7,c8 > 0, such that, if 8> 1—c;/logq , then,
by Gallagher-Motohashi Moebius Theorem, one
has, when X > qg¢'cglogq

an NGDG
>, ume(Z) = oo
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No exceptional
& Moebius & Vehov  Decomposition

zeros via Moebius

| 7EROS I

TIONA
MOF—B\U Conditional!

e N
Theorem Exist cg,cm,c11 > 0 such that

If Z )Z ‘ & %2/(|qu)011

a modq =b[q
(a,q)=1 €~L

for ch loglog g <L < qcmlog log q,

Main theme A consequence Primes Amplification References

L Then no exceptional zeros. )
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Gallagher PNT  Barban

Bili No exceptional
& Moebius & Vehov Decomposmon

(U zeros via Moebius

References

Theorem g < X"6, T < 45,gcd(a q) =1

J_T Z N(€) e(f;t/q) ‘dt « logmin(gq, T)%

-

Theorem 7 <1/6,q < X", gcd(a,q) = 1
V0 € (g, 1] where X% = X13/15g#/5

Z A(¢)e(ta/q) « \ch); log g

X<t<X+X0

.





Q>
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Prime numbers : new perspectives

CIRM, February 2014

The distribution of nuclear numbers
O. Robert

(Joint work with G. Tenenbaum, and C. Stewart)





Introduction

al a2

— The kernel k(n) of an integer n: k(p;*p5*...p2") == pip2...pr.
— k(n) is the largest squarefree divisor of n.

— The kernel occurs in many arithmetic problems and statement,
such as the abc Conjecture (Masser & Oesterlé, 1985).

— We introduce the distribution function

N(x,y) := Z 1 2<y<x).
n<x
k(m<y

— An integer with small kernel is said to be nuclear,

— An integer n such that k(n) < y is said to be y-nuclear.





Historic about N(x, y)

Squalli (1985) : let
v = log(x/y),

Ao =5 ™M 0 wm = [T+,

m>=1

- Elementary methods :
N(x,y) = yF(v) HOU/I0B(12) (5 > 16, (9897 <y < ).

- Analytic methods : for x > 16

N(x,y) = yF(v){1+O( bgf;gj;”)} (e(logx)3/4+g <y< X)

- Where does F(t) come from ? The function log(n/k(n)) is
additive and vanishes at the primes :
Erdés & Wintner's theorem — this function has a density.






Project, Methods

— Asymptotic estimates for N(x, y) in the largest possible range
e What is the precise validity domain for N(x,y) ~ yF(v)?
@ Give some applications to Arithmetic problems,

— Consider three ranges

o logy > (log x)/2,

e logy <« (log x)'/?

e logy "close” to (logx)/2.

— Three methods (Essentially) :

e "Elementary” method : (Large values of y),

@ Saddle-point method in two variables : direct method.
(Small values of y )

@ Saddle-point method : indirect method.
(Intermediate values of y).





Elementary method

min( 1 e"/m)
= d F(v :
Recall : v = log(x/y) an -2 Z

m>1

@ Apply the saddle-point method to F(v) :

e'v9(oy)

Flv)~ 2ng"(oy)

log v>1/4

v

=e""Y(o,) (

Saddle-point : 0, =<

(}gv and 9(s) = Z myme

m>

o By elementary techniques,
N(x.y) = yF(v) + O(9(v)y* e (o))

so that N(x, y) ~ yF(v) as soon as logy > (log x)'/2t¢






Saddle-point in two variables

Dirichlet series
F(s2)=2 k(n
n>1

for Re(s) >0, Re(s+ z) > 1.

121( )

Theorem 1 (OR, G. Tenenbaum, 2012)

For 2 < y < x/6, the function (s, z) — x°y*.% (s, z) has a unique
real saddle-point (c, ) = (a(x, y), B(x,y)) : it satisfies

p“ log p o x
L)) 1)

STy e
> 1+ p%(p* - 1)






Small values of y

@ Perron’s formula

1 dsdz
N — a s,z - -c N
(Xay) (2171_)2 /aJriR ﬁ+iRJ(57 Z)X y s z (va g )

e Truncate the integral to restrict to neighbourhood of
(v, B) : bounds of |.Z(av + iT,  + it)| for T, t large.

o Taylor expansion
log 7 (o + iT, B+ it) + (a + iT) log x + (8 + it) log y

= log # (o, B) + alog x + Blogy — Q(, t) + error
e For logy < (log x)1/2=¢, things work fine!

x*yP.F (a, B)
2raBVe

where 0 is the hessian of log.# at («, 3).

N(Xv.y) ~





Intermediate values of y : indirect method

(log x)/2% < log y < (log x)*/2*<

— Start again with
o+im ,3+IT]2 xS y?
N(x,y) / / (s, 2) ——dsdz—i—error
27r a—im inn s z

— In that domain, produce a "factorisation”

Xsyzto}*(s,z) ~ yesvg(s)r<1 + Z— 1)e—(s-i—z—l)Po(s)
sz 52 s

with Py polynomial with coefficients depend at most on («, 3).

Recall
= 2 Gy

m>1
— Move the a segment of integration to o,





@ Use estimate of F(v) by the saddle-point method

e"vY(oy)

e—expD()\/a) ~ vF(v e—expD()\/a)
ovy\/2ng"(oy) yF(v)

N(x,y) ~y

where D :=T'/T and A\ :=a+ 5 —1.

@ In the considered domain

x*yP .7 (o, B)

F —expD(MN /) (N
YF(v)e Sy P
where
/
O(u) = V21D'(4) up(u)—exp D(w) 1 (u>0).
M(u)
@ One has

O(u) > 1 (u— +0), P(u)— \/62? (u—0+)





Main result

Recall
V21D (u) p(u—
0y — uD(u)—exp D(u) .
(uv) M) e (u>0)
Let E* log, x (log, x)>/® log(v + 2)
- (logy)t/2==  (logx)/® v+2

Theorem 2 (OR, G. Tenenbaum, 2012)

Let0 <e<1/24. As
x > 16, e('°g2x)3+£<y<x,
one has
o B g
xyP F(«a, B) .
N(x,y) = —————=d(\/a)exp (O(E")).
(x,y) 2maB s (A/a)exp (O(E*))






Refinement of the abc Conjecture

Conjecture 1 ( Masser et Oesterlé (1985) )

For each € > 0, there exists M. such that whenever a € N*,
b € N*, (a,b) =1, one has

c:=a+ b < M.k(abc)*e.

e Heuristic supporting this conjecture : assume that k(a), k(b)
et k(c) essentially behave like independent random
variables when a, b, ¢ are of a fixed order of magnitude.

@ We use the recent results about N(x, y).

@ This refinement of the abc conjecture is joint work with C.
Stewart and G. Tenenbaum. We use a Borel-Cantelli type
argument.





Conjecture 2 (O.R, C. Stewart, G. Tenenbaum)

There exist Cy, C1, C; > 0 such that for any triplet of positive
integers (a, b, ¢) such that (a,b) =1, c = a+ b, k = k(abc), one
has

log k log} k C
C<C0kexp<4 Slog (1+ 083 ! ))

log, k 2logy k  log, k
Moreover,
log k log3 k C
c>kexp |4 Slog (1 s %2 )
log, k 2logy, kK logy k

occurs for infinitely many triplets.

Here, logs k = logz k if k > exp(e®), and 1 if 1 < k < exp(e®).






The method gives a more precise result :

— Keep the notation F(v). The proof involves a function H(k)
such that

log H(k) = o< log F(2 log k)) (k — +00).

Conjecture 3 (abc version RST)

For each triplet of positive integers (a, b, ¢) such that (a,b) =1,
c=a+ b, k= k(abc), one has

¢ < kF(% log k)*H(k)(log k)'°.

Moreover, ¢ > kF(3 log k)*H(k)(log k)~* occurs for infinitely
many triplets.







EXTENSIONS OF THREE THEOREMS OF NAGELL

A. SCHINZEL (WARSZAWA)

ABsTRACT. Three theorems of Nagell of 1923 concerning integer values
of certain sums of fractions are extended.

Nagell [3] has proved the following theorems.

1. If m,n and x are integers, m >0, n > 0, x > 0, then except for m =1,

x =0, the sum Zi:o m 18 never an integer.

2. Let a,b,c be integers. Then the sum Y j_, 775a U8 an integer only for

finitely many integers x.

3. Let a,b,c and d be integers, a > 0, ¢ + d?> > 0 and —ab be not a perfect

square. Then the sum
S ck+d

P ak? +b
is an integer for only finitely many integers x.

In theorem 2 it was probably meant that a,b,c,x are positive integers.
Otherwise, the theorem is not true, e.g. for c=0or b = =% (z odd).

The aim of this paper is to extend the above theorems as follows.
Theorem 1. If m,n and x are integers, m >0, n >0, x >0, e, € {—1,1}
(0 < k <), then except form =1, x =0 the sum

1S never an integer.

Theorem 2. Let ¢ be a positive integer. Then the sum

T

Ck
Sy = _—
2 kzzolﬂ-ka’

where a,b are positive integers, c are integers satisfying 0 < |cx| < ¢
(k = 0,1,...,x), is an integer only for finitely many positive integers x

and possibly infinitely many pairs (a,b).
1





2 A. SCHINZEL

The following example shows that for ¢ = 2 the sum Sy can be an integer
for z = 1 and infinitely many pairs (a,b): co =1, c; = —2, a = b.
Theorem 3. Let a,b,c,d be integers, a > 0, ¢ +d?> > 0, and —ab be not a

perfect square. Then the sum

- cLT + dy,
53:;1 ak® + b

is an integer for only finitely many positive integers x, where ¢ and dy are
integers satisfying |cx| < ¢, |dp| < d, 2 +d2 >0 (1 <k <uz).

The proofs follow Nagell’s arguments supplemented by the following lem-
mas, in which P(N) denotes the greatest prime factor of N and 7 (z) is the

number of primes < x.

Lemma 1. Ifx >0, (m,n) =1,

(1) (m4+n)(m+2n)...(m+ (z —vi)n) >zl

where vy is the number of primes not exceeding x and not dividing n, then
(2) P((m+n)(m+2n)...(m+zn)) > z.

Proof. See Sylvester [4], p. 688, in which paper we changed i to n and n to x

to be in agreement with Nagell’s notation. ([
Lemma 2. If (m,n) =1, m >z > 0, then (2) holds.

Proof. This is Sylvester’s theorem ([4], p. 703) quoted also by Dickson ([1],
p. 437). 0

Lemma 3. For x > 14 we have 7(x) < %x +1.

Proof. The primes are 2, 3 or 6k =1 (k > 0). The number of such numbers

up to x does not exceed %‘1 + 2. Now

-1
x +2<§x—|—1 for z > 16.
3 8
For x = 14,15, 16 the lemma is verified directly. O

Lemma 4. For x > 14 the function (%H(x - % + 1))t71 1s a strictly in-

creasing function of t < %x + 1.
Proof. By differentiation. O

Lemma 5. If3n >z + 2, 2|n and (m,n) = 1, then (2) holds.
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Proof. By Descartes’s rule of signs the polynomial
T+ 1\3 13 143
(55) - (Gse+3)
3 16 2
has only one positive zero. Hence the inequality

(557) > (g r1a+3)

(x+1)5> (13 +1)3
3 16772
for all x > 14. Hence

(> ()"

By Lemmas 3 and 4 the right-hand side is greater than
z+1 m(x) m(z)—1
-r))
( 3 (x 5 "

(5 )

By the assumption the left hand side is less than n®~"®)+1 on the other

implies

thus we obtain

hand by the inequality of the arithmetic and geometric mean the right hand

side > W;)H)' = H?:(%)_Q(:r —4). Thus we obtain

n® @ (g — r(z) + 1! > 2.
However, by the assumption 2 |n we have v; < w(z) — 1, hence the left hand
side is less than or equal to
n-2n-...-(x—vi)n < (m+n)(m+2n)...(m+ (x —v1)n)

and by Lemma 1 we obtain (2) for all z > 14. For z < 14 it is enough to
prove (2) for z prime, i.e., for x = 2,3,5,7,11,13. In each case by Lemma 1
it is enough to check even n in the interval

x+2

)

. ( x! )1/(7T(x)—1)
- (x —7m(x) +1)!

and by Lemma 2 it is enough to check m < x. A finite computation completes
the proof. O

Proof of Theorem 1. It is enough to assume that (m,n) =1, m > 1, z > 0.

Consider first n odd. Then there is at least one even number in the sequence

(3) m,m-+mn,...,m-+zn.





4 A. SCHINZEL

Let 2* be the highest power of 2 which divides any number of the se-
quence (3), let further m + kn be the first number of the sequence (3) which
is divisible by 2.

m + kn = 2H(2h + 1).
The next number of the form m + tn that is divisible by 2# is
m+ (k+2")n =22h +n+1).

Since n is odd, this number is divisible by 2#*!, hence it does not belong to

the sequence (3). Therefore in the sum S; there exists only one term with

the denominator divisible by 2#, namely mffkn. We obtain

%(m—i—kn)Sl :%i%,
where b is odd. It follows that S7 is not an integer, thus Theorem 1 is proved
for n odd.
Now consider n even, thus m is odd > 3.
Let ¢ be a prime factor of m + kn, where 0 < k < x. If no other term of
the sequence (3) is divisible by ¢, then we obtain
1(m—i—kn)Sl = g:tl,
q c g
where ¢ [ c. Hence S; is not an integer. In order that S; be an integer at
least two terms of the sequence (3) should be divisible by ¢, thus ¢ < z.
Taking ¢ = P((m+n)(m+2n)...(m+zn)), by Lemma 2 we obtain z > m
and, by Lemma 5, x > 3n — 1.
By Chebyshev’s theorem there exists a prime ¢ such that

1

(4) §(x+3)<q§x+1.

Then there is a term of the sequence (3) divisible by ¢, since we have
1 n

and the numbers of the sequence (3) represent all residues mod gq.

Let m + kn be the least term of the sequence (3) divisible by ¢, then
(6) m+ kn = T,

where k < gq.
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According to a previous remark, also the number m + (k4 ¢)n =: m +In
occurs in the sequence (3), thus
(7) m+In=q(T+n).

The number m + (k 4+ 2¢)n does not occur in the sequence (3), since by (4)
k +2q > 2q > x. Therefore, the numbers (6) and (7) are the only terms of
the sequence (3) divisible by ¢q. We have

m+kn+m+ln_ qIr(T +n)

€k € €k 2T +n if g = g,
n if g, = —¢p,

S|

b n

THn f gy =¢
T(T4+n)s =2+ ¢« DET%
q if gl = —¢k,

where ¢ fb. If S is an integer, we have ¢|2T + n or g|n. The latter is
impossible by (5) and the former, since n is even, gives ¢|7T + §. However,

since x > m, ¢ > k and q > %(ZE + 3) we obtain

k 2
IR 2 oy e T<n4l
q x4+ 3
and by (5)
n n
T+-<3-+1<gq.
+ 5 =95 + q
The obtained contradiction proves Theorem 1. O

Proof of Theorem 2. The proof follows in general the proof of Theorem 1.
However, the first part of this proof fails, thus it is not possible to assume
a even. Hence instead of T'+ § we have to deal with 27" + a and instead
of the inequality z > 3a — 1 we have to assume x > 6a + 1. Moreover,
v1 < w(z) instead of v; < m(x) — 1. Therefore, instead of Lemma 3 we use
the inequality 7(x) < %x for z > 24 and in order to apply the assertion of
Lemma 5 we have instead of the inequality
(57) > (67 +2)

3 16 2
valid for x > 14 to use the inequality

()~ (1

6 16

valid for > 65. Thus the proof of Theorem 1 works for

z > max{65, 2c — 3}.
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Finitely many z consist of

r < max{65,2c — 3}. O
Proof of Theorem 3. Let xg be the least positive solution of the congruence
(8) az’+b=0 (mod p),

where p is an odd prime, not a divisor of ab, thus 0 < z¢ < %p. Then the
next positive solution of (8) is p — xg, hence > %p. Now, Nagell’s theorem

(3], §1) implies that for all sufficiently large =

P, = P<ﬁ(ak2 + b)) > 2.

k=1
Therefore, if z is large enough only one of the numbers ak? +b (1 < k < x)
is divisible by P.. Let it be the number ax% +b. Then P, |cy,zo + dgy
implies P, | ad?c0 + 509250- By the assumptions ad?c0 + bcg0 # 0, hence 2z <
lad2, + bc2 | < ad?® + |b|c?. If 2z > ad® + |b|c?, then we obtain
1 CeoTo +dzg T

2
= b) S, = 200 T Cwo 4
7 (azj +b)Ss . +y
where Py [ (¢zyx0 + dgy)N. Thus S3 cannot be an integer. O
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