Reducing models for branched covers of the projective line

John Voight University of Sydney

joint work with Ciaran Schembri and Sam Schiavone

Arithmetic, Geometry, Cryptography and Coding Theory CIRM, Luminy 9 June 2025

Motivation

$$\begin{split} \varphi \colon \mathbb{P}^1 \to \mathbb{P}^1 \\ \varphi(x) &= \frac{\frac{8676\sqrt{-6} + 56137}{8688}x^7 + \frac{6920140\sqrt{-6} + 5383305}{1381392}x^6}{x^7 + \frac{201651\sqrt{-6} + 153613}{47965}x^6 + \frac{90228166\sqrt{-6} - 323404767}{10168580}x^5}{10168580}x^5 \\ &- \frac{2051197711\sqrt{-6} + 5182860568}{215573896}x^4 + \frac{3078070363644\sqrt{-6} - 851257957203}{91403331904}x^3 \\ &+ \frac{55694888943428\sqrt{-6} - 593744287985961}{4844376590912}x^2 \\ &+ \frac{29295834562711316\sqrt{-6} + 51072269883081183}{1283759796591680}x^4 \\ &+ \frac{3410272680217874724\sqrt{-6} - 2427837788491257163}{68039269219359040} \end{split}$$

$$\begin{array}{rl} X: & 3x^{6}(x-\sqrt{-6}+1)t+\\ & \sqrt{-6}\big((-4\sqrt{-6}-3)x^{3}+(3\sqrt{-6}-3)x^{2}+\\ & (-2\sqrt{-6}+9)x+\sqrt{-6}-3\big)=0\\ & \varphi\colon X\to \mathbb{P}^{1}\\ & (t,x)\mapsto t \end{array}$$

Belyi maps

We are interested in finite branched covers $\varphi \colon X \to \mathbb{P}^1$; when φ is unramified away from $\{0, 1, \infty\}$, we call φ a **Belyi map**.

Grothendieck in his *Esquisse* studied the action of $Gal(\mathbb{Q}^{al} | \mathbb{Q})$ on Belyi maps. LMFDB!

Minimization and reduction

Problem

Given a model $\varphi \colon X \to Y$ of a map of schemes over a number field K, find a reduced model with smaller size.

There is also *minimization*, where one seeks a model which minimizes an invariant (for example, the absolute discriminant). These often go together.

This is an important but hard problem in general!

- Elliptic curves $E \hookrightarrow \mathbb{P}^2$ (Tate's algorithm for minimal Weierstrass model)
- ▶ Point clusters $X \hookrightarrow \mathbb{P}^n$ (Stoll)
- ▶ Binary forms and cyclic covers $X \to \mathbb{P}^1$ (Stoll–Cremona, Hutz–Stoll)
- n-covers of elliptic curves (Cremona–Fisher–Stoll, Fisher)
- Curves over Q (van Hoeij–Novocin)
- Hypersurfaces $X \hookrightarrow \mathbb{P}^n$ (Elsenhans–Stoll)

This work: try reducing/minimizing the map φ .

- ▶ Input: model for a map of curves $\varphi \colon X \to \mathbb{P}^1$
- Output: a reduced model

Steps:

- 1. Create a small (singular) plane model
- 2. Rescale the coefficients of the plane model
- 3. Rinse and repeat, return the smallest one

Step 1: (singular) plane models

The map $\varphi: X \to \mathbb{P}^1$ describes a function field extension $K(\mathbb{P}^1) = K(t) \hookrightarrow K(X)$. We look for small functions $x \in K(X)$ such that K(X) = K(t, x). Then there is an equation X: f(t, x) = 0 and $\varphi(t, x) = t$ (computed using elimination theory).

Small functions may come from anywhere! Gonal maps, over finite fields, ...

Idea

If the map is small then its ramification points should be small—and there's nothing smaller than zero and ∞ !

- Let W ≤ Div X be the subgroup of K-rational divisors supported within the set of ramification points on φ.
- For $d \ge 0$, let $W_d := W \cap \text{Div}^d(K)$ be those divisors $D = D_0 D_\infty$ with $\max(\deg D_0, \deg D_\infty) = d$.
- ► Using Riemann-Roch, find D ∈ W_d such that dim_K L(D) = 1, so x ∈ L(D) is unique up to rescaling (by K[×]).

Working more generally now, let

$$f(x) = \sum_{\nu} a_{\nu} x^{\nu} \in K[x] = K[x_1, \dots, x_n]$$

and consider the rescaling action of $(\mathcal{K}^{ imes})^{n+1}$ by

$$(b,c)\cdot f(x)=(b_1,\ldots,b_n,c)\cdot f(x_1,\ldots,x_n):=cf(b_1x_1,\ldots,b_nx_n).$$

We want to find $(b, c) \in (K^{\times})^{n+1}$ such that $(b, c) \cdot f \in \mathbb{Z}_{K}[x]$ is minimized.

Idea

Work locally: for all places v, minimize valuations/absolute values of the coefficients.

Step 2: nonarchimedean toric reduction

Starting with $f(x) = \sum_{\nu} a_{\nu} x^{\nu}$ we compute that

$$(b,c)\cdot f(x) = \sum_{\nu} (a_{\nu}b^{\nu}c)x^{\nu}.$$

Since we want the smallest equation, for each prime \mathfrak{p} we want to minimize

$$\sum_{
u} \operatorname{ord}_{\mathfrak{p}}(a_{
u}b^{
u}c), \quad \operatorname{subject} \operatorname{to} \operatorname{ord}_{\mathfrak{p}}(a_{
u}b^{
u}c) \geq 0 ext{ for all }
u.$$

Writing

$$b_i\mathbb{Z}_K=\mathfrak{p}^{z_i},\qquad c\mathbb{Z}_K=\mathfrak{p}^w$$

we want to minimize

$$\left(\sum_{\nu}\nu\right)\cdot z+w, \quad \text{subject to } \nu\cdot b+w\geq -\operatorname{ord}_{\mathfrak{p}}(a_{\nu}) \text{ for all } \nu.$$

This is an *integer linear program* which can be solved efficiently!

Step 2: nonarchimedean toric reduction, example

Consider p = 2 and

$$f(x_1, x_2) = -256x_1^2 + 256x_1 + x_2^6 - 12x_2^5 + 48x_2^4 - 64x_2^3$$

We rescale by $2^{w} f(2^{z_1}x_1, 2^{z_2}x_2)$, with

$$u = (2,0), (1,0), (0,6), (0,5), (0,4), (0,3)$$
ord₂(a_{ν}) = 8,8,0,2,4,6

We want to minimize $3x_1 + 18x_2 + 6w$ subject to:

 $2z_{1} + 0z_{2} + w \ge -8$ $1z_{1} + 0z_{2} + w \ge -8$ $0z_{1} + 6z_{2} + w \ge 0$ $0z_{1} + 5z_{2} + w \ge -2$ $0z_{1} + 4z_{2} + w \ge -4$ $0z_{1} + 3z_{2} + w \ge -6$

Step 2: nonarchimedean toric reduction, example

Consider p = 2 and

$$f(x_1, x_2) = -256x_1^2 + 256x_1 + x_2^6 - 12x_2^5 + 48x_2^4 - 64x_2^3.$$

We rescale by $2^{w} f(2^{z_1}x_1, 2^{z_2}x_2)$, with

$$u = (2,0), (1,0), (0,6), (0,5), (0,4), (0,3)$$
ord₂(a_{ν}) = 8, 8, 0, 2, 4, 6

We want to minimize $3x_1 + 18x_2 + 6w$ subject to:

 $2z_{1} + 0z_{2} + w \ge -8$ $1z_{1} + 0z_{2} + w \ge -8$ $0z_{1} + 6z_{2} + w \ge 0$ $0z_{1} + 5z_{2} + w \ge -2$ $0z_{1} + 4z_{2} + w \ge -4$ $0z_{1} + 3z_{2} + w \ge -6$

Step 2: nonarchimedean toric reduction, example

Consider p = 2 and

$$f(x_1, x_2) = -256x_1^2 + 256x_1 + x_2^6 - 12x_2^5 + 48x_2^4 - 64x_2^3$$

We rescale by $2^{w} f(2^{z_1}x_1, 2^{z_2}x_2)$, with

$$u = (2,0), (1,0), (0,6), (0,5), (0,4), (0,3)$$
ord₂(a_{ν}) = 8,8,0,2,4,6

The minimum of $3x_1 + 18x_2 + 6w$ in the feasible domain occurs at the vertex

$$(z,w) = (4,2,-12) \quad \leftrightarrow \quad (b,c) = (2^4,2^2,2^{-12})$$

giving the reduction

$$(b,c) \cdot f(x) = -16x_1^2 + x_1 + x_2^6 - 3x_2^5 + 3x_2^4 - x_2^3.$$

Step 2: nonarchimedean toric reduction, class number issues

Idea

Even if $h(\mathbb{Z}_K) > 1$, principal elements lie in a finite index sublattice.

Let S be a set of primes (containing the support of the coefficients). We repeat with

$$b_i \mathbb{Z}_K = \prod_{\mathfrak{p} \in \mathcal{S}}, \qquad c \mathbb{Z}_K = \mathfrak{p}^{w_\mathfrak{p}}$$

and we now want to minimize

$$\sum_{\mathfrak{p}\in \mathcal{S}} \log \mathsf{Nm}(\mathfrak{p}) \bigg(\bigg(\sum_{\nu} \nu \bigg) \cdot z_{\mathfrak{p}} + w_{\mathfrak{p}} \bigg)$$

subject to

$$\begin{split} \nu \cdot z_\mathfrak{p} + w_\mathfrak{p} \geq -\operatorname{ord}_\mathfrak{p}(a_\nu) \quad \text{ for all } \nu \text{ and all } \mathfrak{p} \\ \sum_{\mathfrak{p} \in S} z_\mathfrak{p} \equiv \sum_{\mathfrak{p} \in S} w_\mathfrak{p} \equiv 0 \pmod{h(\mathbb{Z}_K)}. \end{split}$$

This is still a linear program (just over a sublattice)!

For the archimedean places, we proceed similarly but now with a norm coming from the log Minkowski embedding

$$\lambda \colon K^{\times} \hookrightarrow \mathbb{R}^m.$$

As a measure of "small", we take the L_2 -norm $\| \|$ on \mathbb{R}^m (and restrict to K^{\times}).

Our action is now restricted to $(\mathbb{Z}_{\kappa}^{\times})^{n+1}$ on K[x]. The set $\lambda(ua)$ is constrained lattice points in a hyperplane; the minimal norm in this plane is obtained by

$$\underline{a} = rac{\log(|\operatorname{\mathsf{Nm}}(a)|)}{m} \cdot (1, \dots, 1).$$

Accordingly, to minimize a coefficient *a* means finding $u \in (\mathbb{Z}_{K}^{\times})^{n+1}$ which minimizes

$$\|\lambda(ua) - \underline{a}\| = \|\lambda(u) - (\underline{a} - \lambda(a))\|.$$

Step 2: archimedean toric reduction, program

We look to minimize

$$\sum_{
u} \|\lambda(b^
u c) - (\underline{a_
u} - \lambda(a_
u))\|$$

with $(b,c)\in (\mathbb{Z}_K^{ imes})^{n+1}.$

Idea

Minimizing sums of distances give a semidefinite integer quadratic program.

Writing (b, c) in terms of a basis of units and expanding out, we need to solve:

minimize
$$z^{\mathsf{T}}Qz + (c')^{\mathsf{T}}z$$
, for $z \in \mathbb{Z}^{m-1}$,

where $Q \in M_{m-1}(\mathbb{R})_{sym,\geq 0}$ is positive semidefinite.

The standard approach to solve this: first do so over the reals using a Cholesky decomposition $Q = B^{T}B$, and then find a closest vector.

Step 2: archimedean toric reduction, example

Consider the polynomial

$$f(x_1, x_2) = (338\sqrt{2} - 478)x_1x_2 + 5x_2^3$$

We have $\mathbb{Z}_{K}^{ imes}/\{\pm 1\}=\langle 1-\sqrt{2}
angle =\langle\epsilon
angle$, and

$$f(x_1, x_2) = -2\epsilon^7 x_1 x_2 + 5x_2^3.$$

We have $(b, c) = (\epsilon^{z_1}, \epsilon^{z_2}, \epsilon^{z_3})$ (for convenience), and the function to minimize is:

$$\left\| \begin{pmatrix} -5.48\\ 6.86 \end{pmatrix} + (z_1 + z_2 + z_3) \begin{pmatrix} -0.88\\ 0.88 \end{pmatrix} \right\| + \left\| \begin{pmatrix} 1.61\\ 1.61 \end{pmatrix} + (3z_2 + z_3) \begin{pmatrix} -0.88\\ 0.88 \end{pmatrix} \right\|$$

$$\doteq 1.55z_1^2 + 3.11z_1z_2 + 3.11z_1z_3 + 21.75z_1 + 15.54z_2^2 + 12.43z_2z_3 + 21.75z_2$$

$$+ 3.11z_3^2 + 21.75z_3$$

We are reducing the polynomial

$$f(x_1, x_2) = (338\sqrt{2} - 478)x_1x_2 + 5x_2^3.$$

We minimize a quadratic polynomial, written as $\frac{1}{2}z^TQz + (c')^Tz$ where

$$Q = egin{pmatrix} 3.11 & 3.11 & 3.11 \ 3.11 & 31.1 & 12.4 \ 3.11 & 12.4 & 6.21 \end{pmatrix}, \quad c' = egin{pmatrix} 21.8 \ 21.8 \ 21.8 \end{pmatrix}.$$

We find a minimum at z = (-5, 1, -3) (both a real and integer solution). We reduce $f(x_1, x_2)$ to get

$$\epsilon^{-3}f(\epsilon^{-5}x_1,\epsilon^1x_2) = -2x_1x_2 + 5x_2^3.$$

- We described an algorithm for reduction of a branched cover of the projective line φ: X → ℙ¹.
- The two steps: find small plane model, then rescale the equation (reducing via a torus action).
- We ran this algorithm on the 1111 Belyi maps in the LMFDB, sometimes with dramatic reduction.
- Next step: write the coefficients in a number field with respect to an LLL-reduced basis (instead of a power basis).
- The toric reduction works in principle for any variety.