Structure of Supersingular Elliptic Curve Isogeny Graphs

Renate Scheidler

Joint work with **Sarah Arpin** (Virginia Tech) and **Taha Hedayat** (U Calgary) (arXiv:2502.03613v2 [math.NT]; conditionally accepted at LuCaNT 2025)

> Arithmetic, Geometry, Cryptography and Coding Theory CIRM Luminy, Marseille June 10, 2025

Why study supersingular elliptic curve isogeny graphs?

- They have very interesting mathematical properties
- They form the basis of several post-quantum cryptographic systems (Charles-Goren-Lauter 2009, De Feo-Kohel-Leroux-Petit-Wesolowski 2020, De Feo-Fouotsa-Kutas-Leroux-Merz-Panny-Wesolowski 2023 etc.)
 - Hidden structures in these graphs could serve as attack vectors, resulting in security weaknesses in these systems
 - In fact, cryptographers typically assert that the behave "randomly"

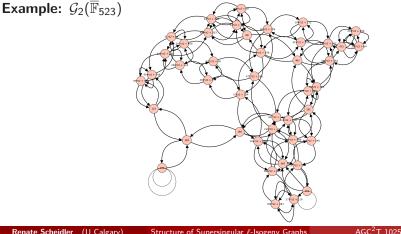
Our work herein analyzes some of the structure of

- supersingular elliptic curve isogeny graphs
- their subgraphs induced by the \mathbb{F}_p -vertices (the *spine*)

Supersingular Isogeny Graphs

For primes $\ell \neq p$, define the ℓ -isogeny graph $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$ as follows:

- Vertices: $\overline{\mathbb{F}}_{p}$ -isomorphism classes (i.e. *j*-invariants) of curves
- Edges: ℓ -isogenies over $\overline{\mathbb{F}}_p$ (more or less)



Supersingular *l*-Isogeny Path Finding Problem

Given two supersingular elliptic curves E, E', find a path from E to E' in $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p})$.

Basis for the security of the aforementioned supersingular isogeny based cryptosystems.

In practice, the path endpoints are often \mathbb{F}_p -vertices.

Motivates the study of structural properties of $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$ and its spine.

Isomorphic Supersingular Elliptic Curves

Every $\overline{\mathbb{F}}_p$ -isomorphism class of supersingular elliptic curves has a representative defined over \mathbb{F}_{p^2}

• Some are defined over \mathbb{F}_p

Every isogeny between supersingular elliptic curves is defined over \mathbb{F}_{p^2}

• Some are defined over \mathbb{F}_p

Curves defined over \mathbb{F}_p that are non-isomorphic over \mathbb{F}_p can become isomorphic over \mathbb{F}_{p^2} :

• Example – quadratic twists: for $t^2 \in \mathbb{F}_p$, the curves

 $E: y^2 = x^3 + Ax + B$ and $E_t: y^2 = x^3 + At^4x + Bt^6$

are defined over \mathbb{F}_p and isomorphic over \mathbb{F}_{p^2} via $(x, y) \mapsto (t^2 x, t^3 y)$. They are isomorphic over \mathbb{F}_p if and only if $t \in \mathbb{F}_p$.

For primes $\ell \neq p$, we consider three graphs:

Full supersingular ℓ -isogeny graph $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$

- *Vertices*: $\overline{\mathbb{F}}_p$ -isomorphism classes (i.e. *j*-invariants) of supersingular elliptic curves over \mathbb{F}_{p^2}
- Edges: ℓ -isogenies* over $\overline{\mathbb{F}}_p$

Spine $\mathcal{S}_{\ell}^{p} \subset \mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p})$: subgraph induced by vertices in \mathbb{F}_{p}

- Edges: ℓ -isogenies* over $\overline{\mathbb{F}}_p$ between these vertices

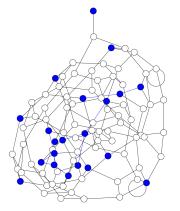
Restricted Supersingular ℓ -isogeny graph $\mathcal{G}_{\ell}(\mathbb{F}_p)$

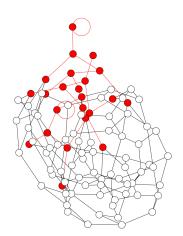
- *Vertices*: 𝔽_p-isomorphism classes (i.e. not necessarily distinct *j*-invariants) of supersingular elliptic curves **over** 𝔽_p
- Edges: ℓ -isogenies **over** \mathbb{F}_p between these vertices

*Up to post-composition by an automorphism over $\overline{\mathbb{F}}_{p}$

Example: p = 1103, $\ell = 2$ (Courtesy Sotáková 2019)

A random graph of expected size in $\mathcal{G}_2(\overline{\mathbb{F}}_{1103})$





 S_{2}^{1103}

$\mathcal{G}_{\ell}(\mathbb{F}_{p})$ versus \mathcal{S}_{ℓ}^{p}

Differences between $\mathcal{G}_{\ell}(\mathbb{F}_p)$ versus \mathcal{S}_{ℓ}^p :

- S^p_ℓ has half as many vertices as G_ℓ(𝔽_p) because pairs of quadratic twists correspond to different vertices in G_ℓ(𝔽_p) which merge in S^p_ℓ
- Non-adjacent vertices in G_ℓ(𝔽_p) can become adjacent in S^p_ℓ (if they are not ℓ-isogenous over 𝔽_p but ℓ-isogenous over 𝔽_{p²})

The structures of $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p})$ and $\mathcal{G}_{\ell}(\mathbb{F}_{p})$ are well understood, but not \mathcal{S}_{ℓ}^{p} .

How exactly does G_ℓ(𝔽_p) map into G_ℓ(𝔽_p) when passing from isomorphism classes and isogenies over 𝔽_p to isomorphism classes and isogenies over 𝔽_{p²}, to become the spine S^p_ℓ?

• Answered in this talk for $\ell = 2$ (also done for $\ell = 3$)

- Connectivity properties of $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$ and of \mathcal{S}_{ℓ}^p located inside $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$
 - Presented in this talk for $\ell = 2$

- Connected with approximately p/12 vertices
- Optimal expander graph
- Every vertex has out-degree* $\ell + 1$
- Every vertex has in-degree $\ell+1$ except 0 and 1728 which have smaller in-degree
- By identifying isogenies with their duals, $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p})$ becomes an **undirected connected** graph that is $(\ell + 1)$ -regular except in the neighbourhoods of vertices 0 and 1728.

*Corresponding to the $\ell+1$ subgroups of order ℓ of the $\ell\text{-torsion }\mathbb{Z}/\ell\mathbb{Z}\times\mathbb{Z}/\ell\mathbb{Z}$ representing the kernels of the corresponding isogenies

AGC²T 1025

Let $K = \mathbb{Q}(\sqrt{-p})$ and h_K the class number of K.

- Type 1 vertices have endomorphism ring $\mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$ (only for $p \equiv 3 \pmod{4}$)
- Type 2 vertices have endomorphism ring $\mathbb{Z}[\sqrt{-p}]$
- If ℓ is inert or ramified in K:
 - No edges
- If ℓ splits in K and $p \equiv 1 \pmod{4}$:
 - h_K vertices, all of type 2, that form a cycle^{*}
- If ℓ splits in K and $p \equiv 3 \pmod{4}$:
 - *h_K* type 1 vertices that form a cycle*
 - h_K type 2 vertices that form a cycle*

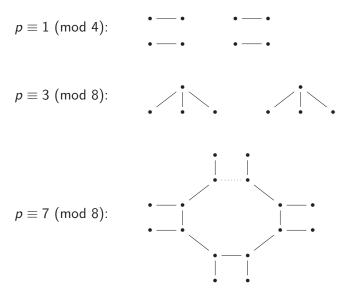
Renate Scheidler (U Calgary)

^{*}Cycles may be degenerate

If $p \equiv 1 \pmod{4}$:

- h_K vertices, all of type 2, that form a collection of edges
- If $p \equiv 3 \pmod{8}$:
 - h_K vertices of type 1
 - 3*h*_K vertices of type 2 that are joined three-to-one to the type 1 vertices (*claws* or *tripods*)
- If $p \equiv 7 \pmod{8}$:
 - h_K vertices of type 1 that form a cycle
 - h_K vertices of type 2 that are joined one-to-one to the type 1 vertices

Structure of $\mathcal{G}_2(\mathbb{F}_p)$



Mapping $\mathcal{G}_{\ell}(\mathbb{F}_p)$ to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$

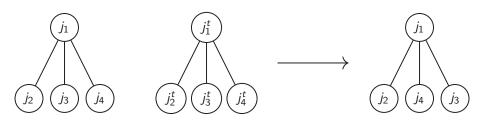
Mapping the components of $\mathcal{G}_{\ell}(\mathbb{F}_p)$ to become the spine $\mathcal{S}_{\ell}^p \subset \mathcal{G}_{\ell}(\mathbb{F}_p)$ is done by moving from isomorphism classes and ℓ -isogenies defined over \mathbb{F}_p to isomorphism classes and ℓ -isogenies defined over \mathbb{F}_{p^2} :

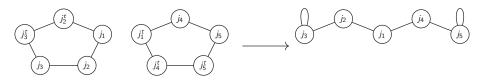
- Pairs of vertices in G_ℓ(F_p) corresponding to quadratic twists merge into one vertex in G_ℓ(F_p)
- Isogenies defined over \mathbb{F}_{p^2} but not \mathbb{F}_p introduce new edges
- Disconnected components in $\mathcal{G}_{\ell}(\mathbb{F}_p)$ can merge into one component

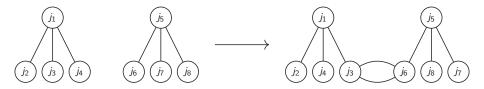
Theorem (Arpin, Camacho-Navarro, Lauter, Lim, Nelson, Scholl & Sotáková 2023)

Mapping $\mathcal{G}_{\ell}(\mathbb{F}_p)$ to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$ happens in 4 ways:

- Stacking
- Folding
- Attachment at a vertex
- Attachment by a new edge







Theorem (Arpin, Hedayat, S. 2024)

Let $p \ge 17$ with $p \equiv 1 \pmod{4}$. Then the transition $\mathcal{G}_2(\mathbb{F}_p) \to \mathcal{S}_2^p$ proceeds as follows:

- p = 29: the component containing $j = j^t = 8000$ folds and edge attaches to the other component.
- $p \equiv 29,101 \pmod{120}$, $p \neq 29$: the component containing $j = j^t = 8000$ folds, all other components stack, two stacked components edge attach.
- $p \equiv 41,89 \pmod{120}$: all components stack, and there is an edge attachment.
- $p \equiv 13, 37, 53, 61, 77, 109 \pmod{120}$: the component containing $j = j^t = 8000$ folds, all other components stack, no edge attachments.
- *p* ≡ 1, 17, 49, 73, 97, 113 (mod 120): all components stack, no edge attachments.

$\mathcal{G}_2(\mathbb{F}_p) o \mathcal{S}_2^p$ for $p \equiv 3 \pmod{4}$

CALGARY

Theorem (Arpin, Hedayat, S. 2024)

Let $p \ge 17$ with $p \equiv 3 \pmod{4}$. Then the transition $\mathcal{G}_2(\mathbb{F}_p) \to \mathcal{S}_2^p$ proceeds as follows:

If $p \equiv 3 \pmod{8}$, then the connected component containing $j = j^t = 1728$ always folds and we have the following:

- p = 59: the folded component gets edge attached to another component by an edge joining two type 2 vertices.
- *p* ≡ 11, 59 (mod 120) and *p* ≠ 11, 59: two stacked components become edge attached by an edge joining two type 2 vertices.
- $p \equiv 19, 43, 67, 83, 91, 107 \pmod{120}$: no edge attachments.

If $p \equiv 7 \pmod{8}$, then only the component containing $j = j^t = 1728$ and $j = j^t = 8000$ folds, and we have the following:

p ≡ 71, 119 (mod 120): new double-edge in S₂^p incident with two type 2 vertices, which may or may not be an attachment.
p ≡ 7, 23, 31, 47, 79, 103 (mod 120): no edge attachments.

 $AGC^{2}T 1025$

p = 5: •

.

p = 29: • — • — •

 $p \equiv 29,101 \pmod{120}$ and $p \neq 29$:

Structure of S_2^p **for** $p \equiv 1 \pmod{4}$ (contd)

 $p \equiv 41, 89 \pmod{120}$:

• — • — • — •

• — • • — • • — • · · · ·

 $p \equiv 13, 37, 53, 61, 77, 109 \pmod{120}$:

• — • • — • • — • • …

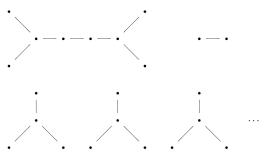
 $p \equiv 1, 17, 49, 73, 97, 113 \pmod{120}$:

Renate Scheidler (U Calgary) Structure of Supersingular *l*-Isogeny Graphs

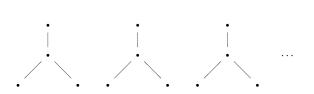
Structure of S_2^p for $p \equiv 3 \pmod{8}$

 $p = 11: \quad \bullet = \bullet$ $p = 59: \quad \bullet = \bullet = \bullet = \bullet$

 $p \equiv 11,59 \pmod{120}$ and $p \neq 11,59$:

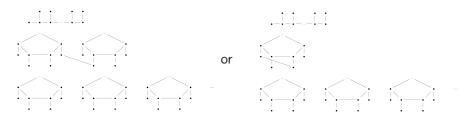


 $p \equiv 19, 43, 67, 83, 91, 107 \pmod{120}$:

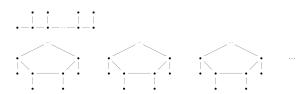


Structure of S_2^p for $p \equiv 7 \pmod{8}$

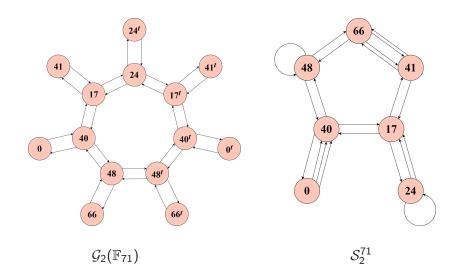
 $p \equiv 71, 119 \pmod{120}$:



 $p \equiv 7, 23, 31, 47, 79, 103 \pmod{120}$:

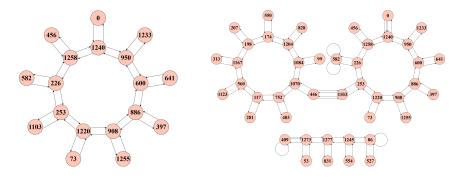


p = 71, no Edge Attachment



AGC²T 1025

p = 1319, Edge Attachment



One of 5 components of $\mathcal{G}_2(\mathbb{F}_{1319})$

 S_{2}^{1319}

• Less difficult

• Three cases according to 0, 1 or 2 components folding

• Separation by *p* (mod 840)

• I will spare you the details ...

Proof Ingredient: Modular Polynomials

 ℓ -th modular polynomial $\Phi_{\ell}(x, y) \in \mathbb{Z}[x, y]$:

 $\Phi_{\ell}(j,j') = 0 \iff j \text{ and } j' \text{ are } \ell\text{-isogenous}$

for all (ordinary and supersingular) j-invariants j, j'.

Properties:

- Loop edge (j) $\iff \Phi_{\ell}(j,j) = 0$
- Double-edge $j \longrightarrow j' \iff \operatorname{Res}_{\ell}(j) = \operatorname{Res}_{\ell}(j') = 0$ where

$$\operatorname{\mathsf{Res}}_\ell(x) = \operatorname{\mathsf{Res}}\left(\Phi_\ell(x,y), \frac{d}{dy}\Phi_\ell(x,y); y\right) \in \mathbb{Z}[x]$$

Higher multiplicity edges can be found via resultants between higher derivatives of $\Phi_{\ell}(x, y)$.

Let \mathcal{O}_D be the imaginary quadratic order of discriminant D < 0.

Hilbert class polynomial $H_D(x) \in \mathbb{Z}[x]$:

 $H_D(j) = 0 \iff j$ has endomorphism ring \mathcal{O}_D

The polynomials $\Phi_{\ell}(x, x)$ and $\text{Res}_{\ell}(x)$ factor into Hilbert class polynomials

j supersingular $\iff p$ does not split in $\mathbb{Q}(\sqrt{D})$

Example: $\ell = 2$

$$\Phi_{2}(x,y) = -x^{2}y^{2} + x^{3} + y^{3} + 1488(x^{2}y + xy^{2}) - 162000(x^{2} + y^{2}) + 40773375xy + 874800000(x + y) - 157464000000000$$

$$\Phi_2(x,x) = -(x+3375)^2(x-1728)(x-8000)$$

Two loops at *j*-invariant -3375, one loop each at 1728 and 8000

Res₂(x) =
$$-4H_{-3}(x)^2H_{-4}(x)H_{-7}(x)^2H_{-15}(x)^2$$
 with
 $H_{-3}(x) = x$, $H_{-4}(x) = x - 1728$, $H_{-7}(x) = x + 3375$
 $H_{-15}(x) = x^2 + 191025x - 121287375$

Double edges between 0, 1728, -3375 and the roots of $H_{-15}(x)$

29 / 36

$$\mathcal{G}_{\ell}(\mathbb{F}_{p}) \to \mathcal{S}_{\ell}^{p} \iff \text{Structure of } \mathcal{G}_{\ell}(\mathbb{F}_{p}) \text{ and } \mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p})$$

(Arpin, Camacho-Navarro, Lauter, Lim, Nelson, Scholl & Sotáková 2023)

Considerations and requirements for explicit descriptions via congruence conditions on p:

- Roots of $\Phi_2(x,x) \pmod{p}$
- Roots of Res₂(x) (mod p)
- Explicit isogeny computations (in some cases)
- 0 and 1728 supersingular
- Roots of $H_{-15}(x)$ in \mathbb{F}_p (quadratic formula)

•
$$\left(\frac{-3}{p}\right) = \left(\frac{-4}{p}\right) = \left(\frac{-7}{p}\right) = \left(\frac{-15}{p}\right) = -1$$

The first three govern the behaviour of how $\mathcal{G}_2(\mathbb{F}_p)$ maps into $\mathcal{G}_2(\overline{\mathbb{F}}_p)$ The last three impose additional congruence conditions on p

Renate Scheidler (U Calgary)

Structure of Supersingular *l*-Isogeny Graphs

AGC²T 1025

30 / 36

For $\ell = 3$:

• The required Hilbert class polynomials for D = -3, -4, -8, -11, -20, -32, -35 are still all linear or quadratic

For $\ell = 5$:

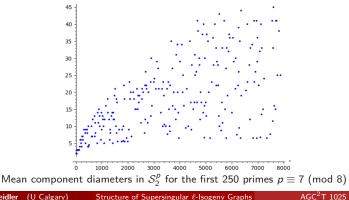
• Two of the required Hilbert class polynomials (for D = -84, -96) have degree 4 and are irreducible over \mathbb{Z}

Diameter of S_2^p

Diameters (lengths of longest directed path) of components of S_2^p :

- $p \equiv 1 \pmod{4}$ and $p \equiv 3 \pmod{8}$: between 1 and 5
- $p \equiv 7 \pmod{8}$ with $p \not\equiv 71, 119 \pmod{120}$: (r+3)/2 where r is order of the class of a prime $\mathbb{Z}[\sqrt{-p}]$ -ideal above 2 in the class group

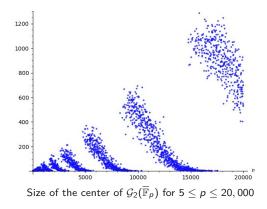
• $p \equiv 71, 119 \pmod{120}$: ???



Centre Count of $\mathcal{G}_2(\overline{\mathbb{F}}_p)$

Radius: minimal length over all longest directed paths

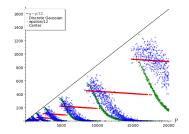
Centre: collection of vertices for which the furthest distance to any other vertex is at most the radius



Picture for $\ell = 3$ is similar.

Renate Scheidler (U Calgary) Structure of Supersingular *l*-Isogeny Graphs

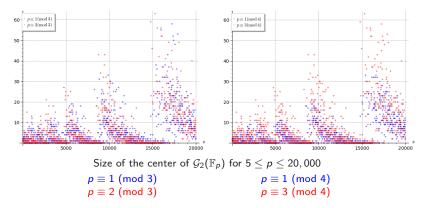
Centre Count Explained



- <u>Blue</u>: Centre size of $\mathcal{G}_2(\overline{\mathbb{F}}_p)$
- **<u>Black</u>**: p/12 (number of vertices in $\mathcal{G}_2(\overline{\mathbb{F}}_p)$)
- <u>Green</u>: discrete Gauß sampling (mean $1.8 \log(p)$, standard deviation 0.38) of longest path lengths for a 3-regular graph with (p-1)/12 vertices where $p \equiv 1 \pmod{12}$ (thank you, Jonathan Love!)
- **<u>Red</u>**: discrepancy between the theoretically possible and the actual number of ways in which the furthest distance is at most the radius (thank you, Thomas Decru and Jonathan Komada Eriksen!)

AGC²T 1025

Centre Count of S_2^p



Observations:

- Centre counts spread out across full range
- Higher centre counts for $p \equiv 3 \pmod{4}$ (higher radius values, lower connectivity of 1728)
- Similar wave pattern as $\mathcal{G}_2(\overline{\mathbb{F}}_p)$ despite Frobenius-conjugate paths

Merci! — Questions (ou Résponses)?