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Motivation

Why study supersingular elliptic curve isogeny graphs?

They have very interesting mathematical properties

They form the basis of several post-quantum cryptographic systems
(Charles-Goren-Lauter 2009, De Feo-Kohel-Leroux-Petit-Wesolowski 2020,
De Feo-Fouotsa-Kutas-Leroux-Merz-Panny-Wesolowski 2023 etc.)

▶ Hidden structures in these graphs could serve as attack vectors,
resulting in security weaknesses in these systems

▶ In fact, cryptographers typically assert that the behave
“randomly”

Our work herein analyzes some of the structure of
supersingular elliptic curve isogeny graphs
their subgraphs induced by the Fp-vertices (the spine)
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Supersingular Isogeny Graphs
For primes ℓ ̸= p, define the ℓ-isogeny graph Gℓ(Fp) as follows:

Vertices: Fp-isomorphism classes (i.e. j-invariants) of curves
Edges: ℓ-isogenies over Fp (more or less)

Example: G2(F523)
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Connection to Cryptography

Supersingular ℓ-Isogeny Path Finding Problem
Given two supersingular elliptic curves E , E ′, find a path from E to E ′ in
Gℓ(Fp).

Basis for the security of the aforementioned supersingular isogeny based
cryptosystems.

In practice, the path endpoints are often Fp-vertices.

Motivates the study of structural properties of Gℓ(Fp) and its spine.
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Isomorphic Supersingular Elliptic Curves

Every Fp-isomorphism class of supersingular elliptic curves has a
representative defined over Fp2

Some are defined over Fp

Every isogeny between supersingular elliptic curves is defined over Fp2

Some are defined over Fp

Curves defined over Fp that are non-isomorphic over Fp can become
isomorphic over Fp2 :

Example – quadratic twists: for t2 ∈ Fp, the curves

E : y2 = x3 + Ax + B and Et : y2 = x3 + At4x + Bt6

are defined over Fp and isomorphic over Fp2 via (x , y) 7→ (t2x , t3y).
They are isomorphic over Fp if and only if t ∈ Fp.
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Graphs from Supersingular Isogenies

For primes ℓ ̸= p, we consider three graphs:

Full supersingular ℓ-isogeny graph Gℓ(Fp)
Vertices: Fp-isomorphism classes (i.e. j-invariants) of supersingular
elliptic curves over Fp2

Edges: ℓ-isogenies∗ over Fp

Spine Sp
ℓ ⊂ Gℓ(Fp): subgraph induced by vertices in Fp

Vertices: Fp-isomorphism classes (i.e. j-invariants) of supersingular
elliptic curves over Fp
Edges: ℓ-isogenies∗ over Fp between these vertices

Restricted Supersingular ℓ-isogeny graph Gℓ(Fp)
Vertices: Fp-isomorphism classes (i.e. not necessarily distinct
j-invariants) of supersingular elliptic curves over Fp
Edges: ℓ-isogenies over Fp between these vertices

∗Up to post-composition by an automorphism over Fp
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Example: p = 1103, ℓ = 2 (Courtesy Sotáková 2019)

A random graph of expected S1103
2

size in G2(F1103)

How do these vertices sit inside the graph?

For crypto, we usually assume that they are randomly distributed
throughout the graph.

p = 1103, random p = 1103, the subgraph
of Fp vertices
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Gℓ(Fp) versus Sp
ℓ

Differences between Gℓ(Fp) versus Sp
ℓ :

Sp
ℓ has half as many vertices as Gℓ(Fp) because pairs of quadratic

twists correspond to different vertices in Gℓ(Fp) which merge in Sp
ℓ

Non-adjacent vertices in Gℓ(Fp) can become adjacent in Sp
ℓ (if they

are not ℓ-isogenous over Fp but ℓ-isogenous over Fp2)

The structures of Gℓ(Fp) and Gℓ(Fp) are well understood, but not Sp
ℓ .

How exactly does Gℓ(Fp) map into Gℓ(Fp) when passing from
isomorphism classes and isogenies over Fp to isomorphism classes and
isogenies over Fp2 , to become the spine Sp

ℓ ?
▶ Answered in this talk for ℓ = 2 (also done for ℓ = 3)

Connectivity properties of Gℓ(Fp) and of Sp
ℓ located inside Gℓ(Fp)

▶ Presented in this talk for ℓ = 2
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Structure of Gℓ(Fp) (Kohel 1996)

Connected with approximately p/12 vertices

Optimal expander graph

Every vertex has out-degree∗ ℓ + 1

Every vertex has in-degree ℓ + 1 except 0 and 1728 which have
smaller in-degree

By identifying isogenies with their duals, Gℓ(Fp) becomes an
undirected connected graph that is (ℓ + 1)-regular except in the
neighbourhoods of vertices 0 and 1728.

∗Corresponding to the ℓ + 1 subgroups of order ℓ of the ℓ-torsion Z/ℓZ × Z/ℓZ
representing the kernels of the corresponding isogenies
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Structure of Gℓ(Fp), ℓ > 2 (Delfs & Galbraith 2013)

Let K = Q(
√
−p) and hK the class number of K .

Type 1 vertices have endomorphism ring Z
[1 +

√
−p

2

]
(only for p ≡ 3 (mod 4))
Type 2 vertices have endomorphism ring Z[

√
−p]

If ℓ is inert or ramified in K :
No edges

If ℓ splits in K and p ≡ 1 (mod 4):
hK vertices, all of type 2, that form a cycle∗

If ℓ splits in K and p ≡ 3 (mod 4):
hK type 1 vertices that form a cycle∗

hK type 2 vertices that form a cycle∗

∗Cycles may be degenerate
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Structure of G2(Fp) (Delfs & Galbraith 2013)

If p ≡ 1 (mod 4):
hK vertices, all of type 2, that form a collection of edges

If p ≡ 3 (mod 8):
hK vertices of type 1
3hK vertices of type 2 that are joined three-to-one to the type 1
vertices (claws or tripods)

If p ≡ 7 (mod 8):
hK vertices of type 1 that form a cycle
hK vertices of type 2 that are joined one-to-one to the type 1 vertices
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Structure of G2(Fp)

p ≡ 1 (mod 4):
• • • •

• • • •

p ≡ 3 (mod 8):
• •

• • • • • •

p ≡ 7 (mod 8):

• •

• •

• • • •

• • • •

• •

• •
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Mapping Gℓ(Fp) to Gℓ(Fp)

Mapping the components of Gℓ(Fp) to become the spine Sp
ℓ ⊂ Gℓ(Fp) is

done by moving from isomorphism classes and ℓ-isogenies defined over Fp
to isomorphism classes and ℓ-isogenies defined over Fp2 :

Pairs of vertices in Gℓ(Fp) corresponding to quadratic twists merge
into one vertex in Gℓ(Fp)
Isogenies defined over Fp2 but not Fp introduce new edges
Disconnected components in Gℓ(Fp) can merge into one component

Theorem (Arpin, Camacho-Navarro, Lauter, Lim, Nelson, Scholl & Sotáková 2023)

Mapping Gℓ(Fp) to Gℓ(Fp) happens in 4 ways:
Stacking
Folding
Attachment at a vertex
Attachment by a new edge
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Stacking

j1

j2 j3 j4

jt
1

jt
2 jt

3 jt
4

j1

j2 j3j4
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Folding

j1 jt
1 j1
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Attachment at a Vertex

jt
3

j3

jt
2

j2

j1 jt
1

jt
4

j4

jt
5

j5 j3

j2
j1 j5

j4
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Attachment by a New Edge

j1

j2 j3 j4

j5

j6 j7 j8

j1

j2 j3j4

j5

j6 j7j8
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G2(Fp)→ Sp
2 for p ≡ 1 (mod 4)

Theorem (Arpin, Hedayat, S. 2024)
Let p ≥ 17 with p ≡ 1 (mod 4). Then the transition G2(Fp)→ Sp

2
proceeds as follows:

p = 29: the component containing j = jt = 8000 folds and edge
attaches to the other component.
p ≡ 29, 101 (mod 120), p ̸= 29: the component containing
j = jt = 8000 folds, all other components stack, two stacked
components edge attach.
p ≡ 41, 89 (mod 120): all components stack, and there is an edge
attachment.
p ≡ 13, 37, 53, 61, 77, 109 (mod 120): the component containing
j = jt = 8000 folds, all other components stack, no edge attachments.
p ≡ 1, 17, 49, 73, 97, 113 (mod 120): all components stack, no edge
attachments.
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G2(Fp)→ Sp
2 for p ≡ 3 (mod 4)

Theorem (Arpin, Hedayat, S. 2024)
Let p ≥ 17 with p ≡ 3 (mod 4). Then the transition G2(Fp)→ Sp

2
proceeds as follows:
If p ≡ 3 (mod 8), then the connected component containing
j = jt = 1728 always folds and we have the following:

p = 59: the folded component gets edge attached to another
component by an edge joining two type 2 vertices.
p ≡ 11, 59 (mod 120) and p ̸= 11, 59: two stacked components
become edge attached by an edge joining two type 2 vertices.
p ≡ 19, 43, 67, 83, 91, 107 (mod 120): no edge attachments.

If p ≡ 7 (mod 8), then only the component containing j = jt = 1728 and
j = jt = 8000 folds, and we have the following:

p ≡ 71, 119 (mod 120): new double-edge in Sp
2 incident with two

type 2 vertices, which may or may not be an attachment.
p ≡ 7, 23, 31, 47, 79, 103 (mod 120): no edge attachments.
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Structure of Sp
2 for p ≡ 1 (mod 4)

p = 5:

p = 29:

p ≡ 29, 101 (mod 120) and p ̸= 29:
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Structure of Sp
2 for p ≡ 1 (mod 4) (contd)

p ≡ 41, 89 (mod 120):

p ≡ 13, 37, 53, 61, 77, 109 (mod 120):

p ≡ 1, 17, 49, 73, 97, 113 (mod 120):
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Structure of Sp
2 for p ≡ 3 (mod 8)

p = 11:

p = 59:

p ≡ 11, 59 (mod 120) and p ̸= 11, 59:
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Structure of Sp
2 for p ≡ 3 (mod 8) (cont’d)

p ≡ 19, 43, 67, 83, 91, 107 (mod 120):
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Structure of Sp
2 for p ≡ 7 (mod 8)

p ≡ 71, 119 (mod 120):

or

p ≡ 7, 23, 31, 47, 79, 103 (mod 120):
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p = 71, no Edge Attachment

G2(F71) S71
2
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p = 1319, Edge Attachment

One of 5 components S1319
2

of G2(F1319)

Renate Scheidler (U Calgary) Structure of Supersingular ℓ-Isogeny Graphs AGC2T 1025 25 / 36



The case ℓ = 3

Less difficult

Three cases according to 0, 1 or 2 components folding

Separation by p (mod 840)

I will spare you the details . . .
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Proof Ingredient: Modular Polynomials

ℓ-th modular polynomial Φℓ(x , y) ∈ Z[x , y ]:

Φℓ(j , j ′) = 0 ⇐⇒ j and j ′ are ℓ-isogenous

for all (ordinary and supersingular) j-invariants j , j ′.

Properties:

Loop edge j ⇐⇒ Φℓ(j , j) = 0
Double-edge j j ′ ⇐⇒ Resℓ(j) = Resℓ(j ′) = 0 where

Resℓ(x) = Res
(

Φℓ(x , y), d
dy Φℓ(x , y); y

)
∈ Z[x ]

Higher multiplicity edges can be found via resultants between higher
derivatives of Φℓ(x , y).
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Proof Ingredient: Hilbert Class Polynomials

Let OD be the imaginary quadratic order of discriminant D < 0.

Hilbert class polynomial HD(x) ∈ Z[x ]:

HD(j) = 0 ⇐⇒ j has endomorphism ring OD

The polynomials Φℓ(x , x) and Resℓ(x) factor into Hilbert class polynomials

j supersingular ⇐⇒ p does not split in Q(
√

D)
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Example: ℓ = 2

Φ2(x , y) = − x2y2 + x3 + y3 + 1488(x2y + xy2)
− 162000(x2 + y2) + 40773375xy
+ 8748000000(x + y)− 157464000000000

Φ2(x , x) = − (x + 3375)2(x − 1728)(x − 8000)

Two loops at j-invariant −3375, one loop each at 1728 and 8000

Res2(x) = −4H−3(x)2H−4(x)H−7(x)2H−15(x)2 with

H−3(x) = x , H−4(x) = x − 1728 , H−7(x) = x + 3375
H−15(x) = x2 + 191025x − 121287375

Double edges between 0, 1728, −3375 and the roots of H−15(x)
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Proof Idea for ℓ = 2

Gℓ(Fp)→ Sp
ℓ ←→ Structure of Gℓ(Fp) and Gℓ(Fp)

(Arpin, Camacho-Navarro, Lauter, Lim, Nelson, Scholl & Sotáková 2023)

Considerations and requirements for explicit descriptions via congruence
conditions on p:

Roots of Φ2(x , x) (mod p)
Roots of Res2(x) (mod p)
Explicit isogeny computations (in some cases)
0 and 1728 supersingular
Roots of H−15(x) in Fp (quadratic formula)(

−3
p

)
=

(
−4
p

)
=

(
−7
p

)
=

(
−15

p

)
= −1

The first three govern the behaviour of how G2(Fp) maps into G2(Fp)
The last three impose additional congruence conditions on p
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Sp
ℓ for ℓ > 2

For ℓ = 3:
The required Hilbert class polynomials for D = −3, −4, −8, −11,
−20, −32, −35 are still all linear or quadratic

For ℓ = 5:
Two of the required Hilbert class polynomials (for D = −84, −96)
have degree 4 and are irreducible over Z

For ℓ > 5:
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Diameter of Sp
2

Diameters (lengths of longest directed path) of components of Sp
2 :

p ≡ 1 (mod 4) and p ≡ 3 (mod 8): between 1 and 5
p ≡ 7 (mod 8) with p ̸≡ 71, 119 (mod 120): (r + 3)/2 where r is
order of the class of a prime Z[

√
−p]-ideal above 2 in the class group

p ≡ 71, 119 (mod 120): ???

Mean component diameters in Sp
2 for the first 250 primes p ≡ 7 (mod 8)
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Centre Count of G2(Fp)

Radius: minimal length over all longest directed paths
Centre: collection of vertices for which the furthest distance to any other

vertex is at most the radius

Size of the center of G2(Fp) for 5 ≤ p ≤ 20, 000

Picture for ℓ = 3 is similar.
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Centre Count Explained

Blue: Centre size of G2(Fp)
Black: p/12 (number of vertices in G2(Fp))
Green: discrete Gauß sampling (mean 1.8 log(p), standard deviation
0.38) of longest path lengths for a 3-regular graph with (p − 1)/12
vertices where p ≡ 1 (mod 12) (thank you, Jonathan Love!)

Red: discrepancy between the theoretically possible and the actual
number of ways in which the furthest distance is at most the radius
(thank you, Thomas Decru and Jonathan Komada Eriksen!)
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Centre Count of Sp
2

Size of the center of G2(Fp) for 5 ≤ p ≤ 20, 000
p ≡ 1 (mod 3) p ≡ 1 (mod 4)
p ≡ 2 (mod 3) p ≡ 3 (mod 4)

Observations:
Centre counts spread out across full range
Higher centre counts for p ≡ 3 (mod 4) (higher radius values, lower
connectivity of 1728)
Similar wave pattern as G2(Fp) despite Frobenius-conjugate paths
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The End!
 

Merci! — Questions (ou Résponses)?
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