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Preliminaries
Algebraic curves and birational invariants

• K: algebraically closed field of characteristic p
• X ⊆ Pr = Pr(K): projective, geometrically irreducible, non-singular algebraic
curve
• Algebraic function field F/K: F = K(X )
• g = g(X ) ≥ 0 : genus of X → Aut(X ) is infinite, if g ≤ 1
• γ = γ(X ): p-rank (Hasse-Witt invariant) of X → 0 ≤ γ ≤ g
• Aut(X ): (full) automorphism group of X over K
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Preliminaries
Automorphism groups and quotient curves
G := finite automorphism group of X

• G acts faithfully on X
• G has a finite number of short orbits θ1, ..., θk

• ∃ curve Y whose points are the G-orbits of X
• Y := X/G is called quotient curve of X by G
• NAut(X )(G)/G ≤ Aut(Y)

Riemann-Hurwitz Formula:

2g(X )− 2 = |G|(2g(Y)− 2) + Diff(X|Y)

Deuring-Shafarevic Formula: If |G| = ph then

γ(X )− 1 = |G|(γ(Y)− 1) +
k∑
i=1

(|G| − |θi|)
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Preliminaries
How many automorphisms?

[Schmid (1938), Iwasawa-Tamagawa (1951), Roquette (1952), Rosenlicht
(1954), Garcia (1993)]
If g ≥ 2 then Aut(X ) is a finite group

Classical Hurwitz bound (1892)
If p = 0 and g ≥ 2 then |Aut(X )| ≤ 84(g − 1)

Example: Klein quartic
K : X3 + Y +XY 3 = 0, g(K) = 3, |Aut(K)| = |PSL(2, 7)| = 84(3− 1)

• If gcd(p, |Aut(X )|) = 1 then |Aut(X )| ≤ 84(g − 1)
• If gcd(p, |Aut(X )|) > 1 interesting behaviours can occur
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Preliminaries
What if p divides |Aut(X )|?
• Hermitian curve H : Xq+1 = Y q + Y , q = ph,
|Aut(H)| = |PGU(3, q)|≥ 16g(H)4

Stichtenoth (1973)
If g = g(X ) ≥ 2 and |Aut(X )| ≥ 16g4 then X is the Hermitian curve H (up to
isomorphism). In particular γ(X ) = 0.

Henn (1976)
If g = g(X ) ≥ 2 and |Aut(X )| > 8g3 then γ(X ) = 0 and X is one of the following
curves (up to isomorphism):

• Y : Y 2 + Y +X2k+1 = 0, p = 2, g = 2k−1 and |Aut(Y)| = 22k+1(2k + 1).
• The Roquette curve R : Y 2 − (Xq −X) = 0 with p > 2, g = (q − 1)/2. Also

Aut(R)/M ∼= PSL(2, q), PGL(2, q), where q = pr and |M | = 2;
• The Hermitian curve H : Xq+1 = Y q + Y , q = ph, p prime.
• The Suzuki curve S : Xq0(Xq +X) + Y q + Y = 0, with p = 2, q0 = 2r ≥ 2,
q = 2q2

0 , g(S) = q0(q − 1), and Aut(S) = Sz(q) (Suzuki group).
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Preliminaries
The link between Aut(X ) and γ(X )

Theorem (Nakajima, 1987)

1 If X is ordinary, then |Aut(X )| ≤ 84(g2 − g)→ no extremal examples provided!

2 Let S be a p-subgroup of Aut(X ). Then

|S| ≤


g(X )− 1, if γ(X ) = 1,
4(γ(X )− 1), if γ(X ) ≥ 2,
max{g(X ), 4p/(p− 1)2g(X )2}, if γ(X ) = 0.

3 If |S| > 2p
p−1g(X ) then γ(X ) = 0.

• Open Problem 1: What if S is a d-group where d 6= p is a prime?
• Open Problem 2: Can Nakajima’s bound 1 be improved?
• Open Problem 3: Find an optimal f(g) such that if |Aut(X )| > f(g) then
γ(X ) = 0 (clearly f(g) ≤ 8g3), e.g. can f(g) ∼ g2?
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Preliminaries
What if the classical Hurwitz bound does not hold?

Classification results
Let G automorphism group of a curve X of genus g ≥ 2. A consequence of
the Riemann-Hurwitz Formula:

• If G has more than 4 short orbits, then |G| ≤ 4(g − 1)
• If G = GP and p does not divide |G|, then |G| ≤ 4g + 2

Exceptions to the classical Hurwitz bound, for a group |G| > 84(g − 1), occur only
in the following cases:

1 G has two short orbits and both are non-tame; here |G| ≤ 16g2

2 G has three short orbits with precisely one non-tame orbit; here |G| ≤ 24g2

3 G has a unique short orbit which is non-tame; here |G| ≤ 8g3

4 G has two short orbits and one short orbit is tame, one non-tame

→ IDEA: What about bounds for |G| in Case 3? All the curves in
Henn’s result satisfy case 4
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Open Problem 1: d-group of automorphisms, d 6= p prime number
Our contributions to Open Problem 1
Let G be a d-group of automorphisms of a curve X of genus g ≥ 2.

1 How large is |G| with respect to g?
2 Structure in terms of generators and relations of extremal groups G
3 Is the bound sharp? Explicit construction of extremal examples (X , G)

Zomorrodian (1985-1987): the case Char(K) = 0

|G| ≤ 9(g − 1) and the bound is sharp if and only if g − 1 = 3k and g ≥ 10

• (Giulietti-Korchmáros 2010-2017, Stichtenoth 1973) Nakajima extremal curves

Our results:

• Zomorrodian’s result holds also when Char(K) = p 6= 0 and d 6= 2, p

For the interesting case d = 3:
• the group structure of G is uniquely determined
• two general methods to construct extremal examples (X , G).
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Theorem (Korchmáros-M., 2020)
Let g(X ) ≥ 2. If G is a d-subgroup of Aut(X ) with d 6= p and d odd then

|G| ≤

{
9(g − 1), if d = 3,
2d
d−3 (g − 1), if d > 3.

For d = 3 if equality holds then G is not abelian and g 6= 2.

Remark: the bound is sharp for d ≥ 5 (abelian groups)

Fermat curve Fd : xd + yd + 1 = 0 has genus (d− 1)(d− 2)/2,
Cd × Cd ∼= G < Aut(Fd) of order d2 = 2d(g − 1)/(d− 3):

G = {(x, y) 7→ (λx, µy) | λd = µd = 1}

• known: G abelian then |G| ≤ 4g + 4 =⇒ if G is extremal and d = 3 then G is
non-abelian (interesting case)
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Open Problem 1: d-group of automorphisms, d 6= p prime number
Improvements of the bound for non-abelian groups

Theorem (Korchmáros-M., 2020)
Let G be a non-abelian d-subgroup of Aut(X ). If Z is an order d subgroup of
Z(G) such that the quotient curve X̄ = X/Z has genus at most 1 then X̄ is
elliptic and

|G| ≤ 2d
d− 1(g − 1)

apart from the case where d = 3 and |G| = 9(g − 1).

• g(X/Z) ≥ 2 =⇒ X/Z is still extremal as G/Z ≤ Aut(X/Z)
• "Minimal" extremal examples are those for which g(X/Z) ≤ 1
• Interesting case: d = 3 (d ≥ 5 G is abelian)
• An Extremal 3-Zomorrodian curve is a curve X of genus g ≥ 2 admitting
G ≤ Aut(X ) with |G| = 9(g − 1)
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Open Problem 1: d-group of automorphisms, d 6= p prime number
Minimal Extremal 3-Zomorrodian curves: structure of G

Proposition (Korchmáros-M., 2020)
Let G be a Sylow 3-subgroup of a curve of an Extremal 3-Zomorrodian curve of
elliptic type and genus g = 3h + 1, h ≥ 3. Then
• either Z(G) ∼= C3 or Z(G) ∼= C3 × C3,
• G has 3 short orbits θ, σ,Ω of sizes |G|/3, |G|/3 and |G|/9
• G can be generated by 2 elements =⇒ [G : Φ(G)] = 9;
• maximal subgroups of G are normal of index 3. Exactly one of them is either
abelian or minimal non-abelian.

• Minimal non-abelian case: Qu Haipeng, Yang Sushan, Xu Mingyao, and An
Lijian, Finite p-groups with a minimal non-abelian subgroup of index p (I), J.
Algebra 358 (2012), 178-188.
• Abelian case: N. Blackburn, On a special class of p-groups, Acta Math. 100
(1958), 45-92.
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Open Problem 1: d-group of automorphisms, d 6= p prime number
Elliptic type: structure of G

Theorem (Korchmáros-M., 2020)
If |Z(G)| = 3 then G has no abelian maximal subgroups of index 3 and

• |G| = 32e and G = 〈s1, s2, s|s3e

1 = s3e−1

2 = 1, s3 = sδ3
e−1

1 , [s1, s] = s2, [s2, s] =
s−3

2 s−3
1 , [s2, s1] = s3e−1

1 〉 where δ = 0, 1, 2;

• |G| = 32e+1 and G = 〈s1, s2, s|s3e

1 = s3e

2 = 1, s3 = sδ3
e−1

2 , [s1, s] = s2, [s2, s] =
s−3

2 s−3
1 , [s2, s1] = s3e−1

2 〉 where δ = 0, 1, 2.

If |Z(G)| = 9 then G has no abelian subgroups of index 3 and

• G = 〈s1, s2, β, x|s3n

1 = s3n−1

2 = x3 = 1, β3 = x2, [s1, β] = s2, [s2, β] =
s−3

2 s−3
1 , [s1, s2] = x, [x, s1] = [x, s2] = 1〉, for |G| = 32n+1, e ≥ 3;

• G = 〈s1, s2, β, x|s3n

1 = s3n

2 = x3 = 1, β3 = x2, [s1, β] = s2, [s2, β] =
s−3

2 s−3
1 , [s1, s2] = x, [x, s1] = [x, s2] = 1〉, for |G| = 32n+2, n ≥ 2.

Can we construct infinite families of Extremal 3-Zomorrodian curves?
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Open Problem 1: d-group of automorphisms, d 6= p prime number
Construction of Elliptic type Extremal 3-Zomorrodian curves
for every (g, |G|) = (3h + 1, 3h+2)

• Elliptic curve E : X3 + Y 3 + Z3 = 0 (J(E) = Jacobian group)
• P = (−1, 0, 1) is an inflection point of E , and ᾱ : (X,Y, Z) 7→ (X, εY, Z) with
ε3 = 1 primitive, is an order 3 automorphism of E fixing P
• ᾱ has two more fixed points on E , namely P1 = (−ε, 0, 1) and P2 = (−ε2, 0, 1)

=⇒ ᾱ 6∈ J(E)

Theorem (Korchmáros-M. 2020)

A 3-group Ḡ of automorphisms of E can be written up to conjugation as
Ḡ = H̄ o 〈ᾱ〉 = H̄ o ḠP where H̄ = Ḡ ∩ J(E) and Ḡ can be generated by 2
elements
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• let Ḡ = H̄ o 〈ᾱ〉 ≤ Aut(E) with |Ḡ| = 3h+1, h ≥ 2
• Since Ḡ can be generated by 2 elements, Ḡ/Φ(Ḡ) is elementary abelian of order

9
• since H̄ is maximal, Φ(Ḡ) ≤ H̄
• θ1 = Φ(Ḡ)−orbit containing P =⇒ |θ1| = 3h−1

• Φ(Ḡ) is a normal subgroup of H̄, the H̄-orbit θ containing P is partitioned into
three Φ(Ḡ)-orbits which may be parameterized by Φ(Ḡ) together with its two
cosets in H̄
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• (Korchmáros-Nagy-Pace, 2014) If Q ∈ θ2 then the line through P and Q meets
E in a point R ∈ θ3

• r has homogenous equation mX − Y +mZ = 0 for some m ∈ K

• (inflectional) tangent to E at P is i : X + Z = 0
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• in K(E) = K(x, y) with x3 + y3 + 1 = 0 define t = mx−y+m
x+1 then

(t) = Q+R− 2P

• let w =
∏
f∈Φ(Ḡ) f(t). Then (w) = −2θ1 + θ2 + θ3 and ḡ ∈ Ḡ acts on

{θ1, θ2, θ3}.{
(1) ḡ(w)/w = λ, for some λ ∈ K
(2) (ḡ(w)/w) = −2θ1 + θ2 + θ3 − (−2θ3 + θ1 + θ2) = −3θ1 + 3θ3

In any case
(key property) ḡ(w)/w = v3, for some v ∈ K(x, y)
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• We define

X :
{
x3 + y3 + 1 = 0,
z3 = w

=⇒ g(X ) = 3h + 1

• Also every ḡ ∈ Ḡ can be lifted in three ways creating a group G ≤ Aut(X ) of
order 3|Ḡ| = 3h+2 = 9(g − 1)
• Indeed for ḡ ∈ Ḡ we define,

g : (x, y, z) 7→ (ḡ(x), ḡ(y), vz),

where v3 = ḡ(w)/w. Then

g(z3) = v3z3 = ḡ(w)
w

w = ḡ(w) = g(w) =⇒ X is preserved!
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Open Problem 1: d-group of automorphisms, d 6= p prime number
Explicit examples using MAGMA
• g = 10, |G| = 81 {

x3 + y3 + 1 = 0;
z3 = x

y2 .

• g = 28, |G| = 729 x3 + y3 + 1 = 0;
z3 = (y18 + 3y15 + 52y12 + 26y9 + 52y6 + 3y3

+1)/(y17 + 3y14 + 5y11 + 5y8 + 3y5 + y2)x.

• g = 82, |G| = 2187

x3 + y3 + 1 = 0;
z3 = (y54 + 9y51 + 151y48 + 191y45 + 243y42 + 21y39 + 86y36

+184y33 + y30 + 153y27 + y24 + 184y21 + 86y18 + 21y15

+243y12 + 191y9 + 151y6 + 9y3 + 1)/(y53 + 9y50 + 261y47

+258y44 + 138y41 + 146y38 + 206y35 + 24y32 + 12y29 + 12y26

+24y23 + 206y20 + 146y17 + 138y14 + 258y11

+261y8 + 9y5 + y2)x.
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Open Problem 2: Automorphism groups of ordinary curves
Ordinary algebraic curves with many automorphisms
X is ordinary if g(X ) = γ(X )

• Nakajima (1987): |Aut(X )| ≤ 84(g(X )− 1)g(X ) → can this bound be
improved?

Theorem (Korchmáros-M., 2019)
Let X be an ordinary curve of genus g(X ) ≥ 2 defined over an algebraically closed
field of odd characteristic p. If G ≤ Aut(X ) is solvable then

|G| ≤ 34(g(X ) + 1)3/2 < 68
√

2g(X )3/2

• This is the best bound known for automorphism groups of ordinary curves
• (Korchmáros-M.-Speziali, 2018) Extremal example up to the constant term: a
generalized Artin-Schreier extension of the Artin-Mumford curve
• (M.-Zini, 2018) An infinite family of extrermal examples: Generalized
Artin-Mumford curves
• =⇒ Our bound cannot be improved!
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Open Problem 2: Automorphism groups of ordinary curves
Why is the hypothesis G solvable relevant/useful?

• First observation: if g(X ) = 2 then |G| ≤ 48 (known), so the statement is true.
We assume g(X ) ≥ 3.
• By contradiction: (G, g(X )) is a minimal counterexample, that is,
|G| > 34(g(X ) + 1)3/2 and if g(Y) < g(X ), Y is ordinary and H ≤ Aut(Y) is
solvable then |H| ≤ 34(g(Y) + 1)3/2

• Since G is solvable, it admits a minimal normal subgroup S which is elementary
abelian.
• Two cases are treated separately: either S is a p-group, or it has order prime
to p.
• In both cases we try to construct a quotient curve which is still ordinary and
gives a contradiction to the minimality of (G, g(X )).
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Open Problem 2: Automorphism groups of ordinary curves
Our bound is sharp (up to the constant term)
q = ph, h ≥ 1 and K = Fq. For (m, p) = 1 let

Y : yq + y = xm + 1/xm

and F = K(Y) its function field. Let t = xm(q−1). F |K(t) is not Galois

Theorem (Korchmáros-M.-Speziali, 2018)
The Galois closure of F |K(t) is L = K(x, y, z) where yq + y = xm + 1/xm and
za + z = xm. Also
• g(L) = (q − 1)(qm − 1), γ(L) = (q − 1)2,
• |Aut(L)| ≥ m(q − 1),
• if m = 1, L is ordinary and |Aut(X )| > 2g3/2.

• (M.-Zini, 2018): infinite family of extremal examples (Generalized
Artin-Mumford curves) XL1,L2 : L1(x) · L2(y) = 1, where L1 and L2 are
linearized polynomials.
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Open Problem 2: Automorphism groups of ordinary curves
Large automorphism groups of ordinary curves
Natural questions:

• What if p = 2 and G is solvable?
• What if p is odd but G is not solvable?

Theorem (M.-Speziali, 2019)
Let X be an ordinary curve of even genus g(X ) ≥ 2 defined over an algebraically
closed field of odd characteristic 2. If G ≤ Aut(X ) is solvable then

|G| ≤ 35(g(X ) + 1)3/2

Theorem (M.-Speziali, 2019)
Let X be an ordinary curve of genus g(X ) ≥ 2 defined over an algebraically closed
field of odd characteristic p. If G ≤ Aut(X ) is not solvable then

|G| ≤ 822g(X )7/4

• A general and sharp refinement of Nakajima’s bound is still an open problem!
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Open Problem 3: large automorphism groups imply p-rank zero
The third open problem: improving Henn’s result

If G ≤ Aut(X ) is such that |G| > 84(g(X )− 1) then one of the following occurs:

1 G has two short orbits and both are non-tame; here |G| ≤ 16g2

2 G has three short orbits with precisely one non-tame orbit; here |G| ≤ 24g2

3 G has a unique short orbit which is non-tame; here |G| ≤ 8g3

4 G has two short orbits and one short orbit is tame, one non-tame ( if |G| ≥ 8g3

then G is known and γ(X ) = 0).

Open Problem 3
Is it possible to find a (optimal) function f(g) such that the existence of an
automorphism group G of X with |G| > f(g) implies that X has p-rank zero?

• we already see that if |Aut(X )| > 24g2 then either Case 3 or 4 occurs.
• −→ Natural idea: improve the bounds in 3 and/or 4 to obtain (up to finite
exceptions) a function f(g) = cg2 for some constant c
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Open Problem 3: large automorphism groups imply p-rank zero
The result: An improvement of the Henn’s result, Case 3

Theorem (M., 2023)
Let G ≤ Aut(X ), where g = g(X ) ≥ 2 and X is defined over an algebraically
closed field of characteristic p > 0.

1 If G satisfies Case 3 then |G| ≤ 336g(X )2.

2 If |G| ≥ 60g2 and Case 3 is satisfied than γ(X ) is positive and congruent to zero
modulo p.

3 If |G| ≥ 900g2 then Case 4 is satisfied. If γ(X ) 6= 0 then g(X ) is odd.
Furthermore, if for P,R ∈ O1 (non-tame short orbit) one has g(X/G(1)

P ) = 0
and GP,R is either a p-group or a prime to p group then γ(X ) = 0.

Work in progress: Is it true that if |G| ≥ 900g2 then γ(X ) = 0?
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Open Problem 3: large automorphism groups imply p-rank zero
Sketch of the proof of the first item

• By contradiction |G| > 336g2

• Let O := PG be the unique short orbit of G

• [Case 1: O = {P}] Thus, G = GP . Let X1 := X/G(1)
P

• If X1 is not rational −→ |G| = |GP | = |G(1)
P oH| ≤ g(4g + 2) < 5g2, a

contradiction
• Let X1 be rational. Thus, GP = G

(1)
P oH. If α ∈ H then α induces an

automorphism α′ on X1

• Since every automorphism of a rational function field whose order is prime to p
has exactly 2 fixed places → α′ fixes a place Q 6= P

• This implies that QG is short and QG 6= O, a contradiction
• This shows that if G = GP and Case 3 is satisfied then |G| < 5g2
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Open Problem 3: large automorphism groups imply p-rank zero
Sketch of the proof of the first item
• [Case 2: O ⊃ {P}]

• g(X/GP ) = 0 and either γ(X ) = 0 or γ(X ) > 0 and GP , G(1)
P have the same

two (non-tame) short orbits
• First aim: To prove that the case γ = γ(X ) > 0 is impossible
• If γ > 0 then GP has 2 short orbits O1 = {P} and O2

• O = {P} ∪O2

• Since GP acts transitively on O2 = O \ {P} −→ G acts 2-transitively on O
• Idea: Use the complete list of finite 2-transitive groups to exclude the case γ > 0
• Second aim: the case γ = 0 is not possible from the Deuring-Shafarevic formula
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Open Problem 3: large automorphism groups imply p-rank zero
Examples: Curves satisfying case 4

• Example 1: GK Curve:

Cn : Y n
3+1 + (Xn +X)(

n∑
i=0

(−1)i+1Xi(n−1))n+1) = 0

1 |Aut(Cn)| = (n3 + 1)n3(n− 1) ∼ 4g2

• Example 2: Skabelund curves

S̃ :
{
yq + y = xq0(xq + x),
tm = xq + x

where q = 2q2
0 = 22s+1 and m = q − 2q0 + 1

1 (Giulietti-M.-Quoos-Zini, 2017) |Aut(S̃)| = m(q2 + 1)q2(q − 1) ∼ 4g2
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Applications of automorphism groups and future work
Automorphism groups as a tool: classifications and
constructions
• Coding theory:

• (Bartoli-M.-Quoos, 2021) Locally recoverable codes (LRC) from curves of
genus g ≥ 1
• (Bartoli-M.-Zini, 2021) Construction of self-orthogonal AG codes (quantum
codes)

• Classification of maximal curves
• (Bartoli-M.-Torres, 2021) Classification of Fp2-maximal curves with many
automorphisms

• Construction of maximal curves
• (Giulietti-Kawakita-Lia-M., 2021) Construction of maximal curves of low
genus (Kani-Rosen)
• (Beelen-M.-Niemann-Quoos, 2025) A family of non-isomorphic maximal
curves
• (Beelen-Drue-M.-Zini, 2025) New maximal function fields (as subcovers of
the BM maximal curves)
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Applications of automorphism groups and future work
What’s next? Some possible interesting questions

• Find a sharp bound for non-solvable automorphism groups of ordinary curves

• Link between automorphism groups and a-number

• For p-rank zero complete the proof f(g) ∼ g2

• Classification results for extremal ordinary curves

• Classify maximal curves based on their automorphisms
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