Automorphism groups of algebraic curves in positive characteristic

Maria Montanucci

Technical University of Denmark (DTU)

Arithmetic, Geometry, Cryptography and Coding Theory

09-13 June. 2025

DTU Compute

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}(x)$ Department of Applied Mathematics and Computer Science

Outline

• Preliminaries

- Notation and terminology
- Open Problem 1: d-group of automorphisms, $d \neq p$ prime number
 - (Korchmáros-M., 2020)
- Open Problem 2: Automorphism groups of ordinary curves
 - (Korchmáros-M., 2019)
 - (Korchmáros-M.-Speziali, 2018)
 - (M.-Zini, 2018)
 - (M.-Speziali, 2019)
- Open Problem 3: large automorphism groups imply p-rank zero
 - (M., 2023)
- Applications of automorphism groups and future work

Preliminaries Algebraic curves and birational invariants

- K: algebraically closed field of characteristic p
- $\mathcal{X} \subseteq \mathbb{P}^r = \mathbb{P}^r(K)$: projective, geometrically irreducible, non-singular algebraic curve
- Algebraic function field F/K: $F = K(\mathcal{X})$
- $g = g(\mathcal{X}) \ge 0$: genus of $\mathcal{X} \to \operatorname{Aut}(\mathcal{X})$ is infinite, if $g \le 1$
- $\gamma = \gamma(\mathcal{X})$: *p*-rank (Hasse-Witt invariant) of $\mathcal{X} \to 0 \leq \gamma \leq g$
- $Aut(\mathcal{X})$: (full) automorphism group of \mathcal{X} over K

Preliminaries

Automorphism groups and quotient curves

G:= finite automorphism group of ${\mathcal X}$

- $\bullet~G$ acts faithfully on ${\mathcal X}$
- G has a finite number of short orbits $\theta_1,...,\theta_k$
- $\bullet \ \exists \ {\rm curve} \ {\mathcal Y}$ whose points are the $G{\rm -orbits}$ of ${\mathcal X}$
- $\mathcal{Y}:=\mathcal{X}/G$ is called quotient curve of \mathcal{X} by G
- $N_{\operatorname{Aut}(\mathcal{X})}(G)/G \leq \operatorname{Aut}(\mathcal{Y})$

Riemann-Hurwitz Formula:

$$2g(\mathcal{X}) - 2 = |G|(2g(\mathcal{Y}) - 2) + \text{Diff}(\mathcal{X}|\mathcal{Y})$$

Deuring-Shafarevic Formula: If $|G| = p^h$ then

$$\gamma(\mathcal{X}) - 1 = |G|(\gamma(\mathcal{Y}) - 1) + \sum_{i=1}^{k} (|G| - |\theta_i|)$$

Preliminaries How many automorphisms?

[Schmid (1938), Iwasawa-Tamagawa (1951), Roquette (1952), Rosenlicht (1954), Garcia (1993)]

If $g\geq 2$ then $Aut(\mathcal{X})$ is a finite group

Classical Hurwitz bound (1892)

If p = 0 and $g \ge 2$ then $|\operatorname{Aut}(\mathcal{X})| \le 84(g-1)$

Example: Klein quartic

 $\mathcal{K}: X^3 + Y + XY^3 = 0, \ g(\mathcal{K}) = 3, \ |Aut(\mathcal{K})| = |PSL(2,7)| = 84(3-1)$

- If $gcd(p, |\operatorname{Aut}(\mathcal{X})|) = 1$ then $|\operatorname{Aut}(\mathcal{X})| \le 84(g-1)$
- If $gcd(p, |\operatorname{Aut}(\mathcal{X})|) > 1$ interesting behaviours can occur

Preliminaries What if p divides $|Aut(\mathcal{X})|$?

• Hermitian curve $\mathcal{H}: X^{q+1} = Y^q + Y$, $q = p^h$, $|\operatorname{Aut}(\mathcal{H})| = |PGU(3,q)| \ge 16g(\mathcal{H})^4$

Stichtenoth (1973)

If $g = g(\mathcal{X}) \geq 2$ and $|\operatorname{Aut}(\mathcal{X})| \geq 16g^4$ then \mathcal{X} is the Hermitian curve \mathcal{H} (up to isomorphism). In particular $\gamma(\mathcal{X}) = 0$.

Henn (1976)

If $g = g(\mathcal{X}) \ge 2$ and $|\operatorname{Aut}(\mathcal{X})| > 8g^3$ then $\gamma(\mathcal{X}) = 0$ and \mathcal{X} is one of the following curves (up to isomorphism):

•
$$\mathcal{Y}: Y^2 + Y + X^{2^k+1} = 0$$
, $p = 2$, $g = 2^{k-1}$ and $|\operatorname{Aut}(\mathcal{Y})| = 2^{2k+1}(2^k + 1)$.

- The Roquette curve $\mathcal{R}: Y^2 (X^q X) = 0$ with p > 2, g = (q 1)/2. Also $\operatorname{Aut}(\mathcal{R})/M \cong PSL(2,q), PGL(2,q)$, where $q = p^r$ and |M| = 2;
- The Hermitian curve $\mathcal{H}: X^{q+1} = Y^q + Y$, $q = p^h$, p prime.
- The Suzuki curve $S: X^{q_0}(X^q + X) + Y^q + Y = 0$, with p = 2, $q_0 = 2^r \ge 2$, $q = 2q_0^2$, $g(S) = q_0(q-1)$, and Aut(S) = Sz(q) (Suzuki group).

Theorem (Nakajima, 1987)

1 If \mathcal{X} is ordinary, then $|\operatorname{Aut}(\mathcal{X})| \leq 84(g^2 - g) \rightarrow \text{ no extremal examples provided!}$

2 Let S be a p-subgroup of $Aut(\mathcal{X})$. Then

$$|S| \leq \begin{cases} g(\mathcal{X}) - 1, \text{ if } \gamma(\mathcal{X}) = 1, \\ 4(\gamma(\mathcal{X}) - 1), \text{ if } \gamma(\mathcal{X}) \ge 2, \\ \max\{g(\mathcal{X}), 4p/(p-1)^2 g(\mathcal{X})^2\}, \text{ if } \gamma(\mathcal{X}) = 0. \end{cases}$$

3 If $|S| > \frac{2p}{p-1}g(\mathcal{X})$ then $\gamma(\mathcal{X}) = 0$.

- Open Problem 1: What if S is a d-group where $d \neq p$ is a prime?
- Open Problem 2: Can Nakajima's bound 1 be improved?
- Open Problem 3: Find an optimal f(g) such that if $|\operatorname{Aut}(\mathcal{X})| > f(g)$ then $\gamma(\mathcal{X}) = 0$ (clearly $f(g) \le 8g^3$), e.g. can $f(g) \sim g^2$?

What if the classical Hurwitz bound does not hold? Classification results

Let G automorphism group of a curve ${\mathcal X}$ of genus $g\geq 2.$ A consequence of the Riemann-Hurwitz Formula:

- If G has more than 4 short orbits, then $|G| \leq 4(g-1)$
- If $G = G_P$ and p does not divide |G|, then $|G| \le 4g + 2$

Exceptions to the classical Hurwitz bound, for a group |G|>84(g-1), occur only in the following cases:

- () G has two short orbits and both are non-tame; here $|G| \leq 16g^2$
- ${\rm 2}{\rm 2}\,G$ has three short orbits with precisely one non-tame orbit; here $|G|\leq 24g^2$
- **(3)** G has a unique short orbit which is non-tame; here $|G| \le 8g^3$
- $\ensuremath{\textbf{@}}\xspace G$ has two short orbits and one short orbit is tame, one non-tame

 \rightarrow IDEA: What about bounds for |G| in Case 3? All the curves in Henn's result satisfy case 4

Open Problem 1: *d*-group of automorphisms, $d \neq p$ prime number Our contributions to Open Problem 1

Let G be a $d\text{-}\mathsf{group}$ of automorphisms of a curve $\mathcal X$ of genus $g\geq 2.$

- **1** How large is |G| with respect to g?
- $\ensuremath{ 2 \ }$ Structure in terms of generators and relations of extremal groups G
- **(3)** Is the bound sharp? Explicit construction of extremal examples (\mathcal{X}, G)

Zomorrodian (1985-1987): the case Char(K) = 0

 $|G| \leq 9(g-1)$ and the bound is sharp if and only if $g-1=3^k$ and $g \geq 10$

• (Giulietti-Korchmáros 2010-2017, Stichtenoth 1973) Nakajima extremal curves

Our results:

 \bullet Zomorrodian's result holds also when ${\rm Char}(K)=p\neq 0$ and $d\neq 2,p$

For the interesting case d = 3:

- \bullet the group structure of G is uniquely determined
- two general methods to construct extremal examples (\mathcal{X}, G) .
- 9 DTU Compute

Theorem (Korchmáros-M., 2020)

Let $g(\mathcal{X})\geq 2.$ If G is a d-subgroup of $\operatorname{Aut}(\mathcal{X})$ with $d\neq p$ and d odd then

$$|G| \le \begin{cases} 9(g-1), \text{ if } d = 3, \\ \frac{2d}{d-3}(g-1), \text{ if } d > 3 \end{cases}$$

For d = 3 if equality holds then G is not abelian and $g \neq 2$.

Remark: the bound is sharp for $d \ge 5$ (abelian groups)

Fermat curve $\mathcal{F}_d : x^d + y^d + 1 = 0$ has genus (d-1)(d-2)/2, $C_d \times C_d \cong G < \operatorname{Aut}(\mathcal{F}_d)$ of order $d^2 = 2d(g-1)/(d-3)$:

$$G = \{ (x, y) \mapsto (\lambda x, \mu y) \mid \lambda^d = \mu^d = 1 \}$$

• known: G abelian then $|G| \le 4g + 4 \implies$ if G is extremal and d = 3 then G is non-abelian (interesting case)

Theorem (Korchmáros-M., 2020)

Let G be a non-abelian d-subgroup of $\operatorname{Aut}(\mathcal{X})$. If Z is an order d subgroup of Z(G) such that the quotient curve $\overline{\mathcal{X}} = \mathcal{X}/Z$ has genus at most 1 then $\overline{\mathcal{X}}$ is elliptic and

$$|G| \le \frac{2d}{d-1}(g-1)$$

apart from the case where d = 3 and |G| = 9(g - 1).

- $g(\mathcal{X}/Z) \ge 2 \implies \mathcal{X}/Z$ is still extremal as $G/Z \le \operatorname{Aut}(\mathcal{X}/Z)$
- "Minimal" extremal examples are those for which $g(\mathcal{X}/Z) \leq 1$
- Interesting case: d = 3 ($d \ge 5$ G is abelian)
- An Extremal 3-Zomorrodian curve is a curve \mathcal{X} of genus $g \ge 2$ admitting $G \le \operatorname{Aut}(\mathcal{X})$ with |G| = 9(g-1)

Open Problem 1: *d*-group of automorphisms, $d \neq p$ prime number Minimal Extremal 3-Zomorrodian curves: structure of G

DTU

Proposition (Korchmáros-M., 2020)

Let G be a Sylow 3-subgroup of a curve of an Extremal 3-Zomorrodian curve of elliptic type and genus $g=3^h+1,\,h\geq 3.$ Then

- either $Z(G) \cong C_3$ or $Z(G) \cong C_3 \times C_3$,
- G has 3 short orbits θ,σ,Ω of sizes |G|/3,~|G|/3 and |G|/9
- G can be generated by 2 elements $\implies [G: \Phi(G)] = 9;$
- maximal subgroups of G are normal of index 3. Exactly one of them is either abelian or minimal non-abelian.
- Minimal non-abelian case: Qu Haipeng, Yang Sushan, Xu Mingyao, and An Lijian, Finite p-groups with a minimal non-abelian subgroup of index p (I), J. Algebra 358 (2012), 178-188.
- Abelian case: N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92.

Open Problem 1: *d*-group of automorphisms, $d \neq p$ prime number Elliptic type: structure of G

Theorem (Korchmáros-M., 2020)

If $\left|Z(G)\right|=3$ then G has no abelian maximal subgroups of index 3 and

- $|G| = 3^{2e}$ and $G = \langle s_1, s_2, s | s_1^{3^e} = s_2^{3^{e-1}} = 1, s^3 = s_1^{\delta 3^{e-1}}, [s_1, s] = s_2, [s_2, s] = s_2^{-3} s_1^{-3}, [s_2, s_1] = s_1^{3^{e-1}} \rangle$ where $\delta = 0, 1, 2$;
- $|G| = 3^{2e+1}$ and $G = \langle s_1, s_2, s | s_1^{3^e} = s_2^{3^e} = 1, s^3 = s_2^{\delta^{3^{e-1}}}, [s_1, s] = s_2, [s_2, s] = s_2^{-3} s_1^{-3}, [s_2, s_1] = s_2^{3^{e-1}} \rangle$ where $\delta = 0, 1, 2$.

If |Z(G)| = 9 then G has no abelian subgroups of index 3 and

- $G = \langle s_1, s_2, \beta, x | s_1^{3^n} = s_2^{3^{n-1}} = x^3 = 1, \beta^3 = x^2, [s_1, \beta] = s_2, [s_2, \beta] = s_2^{-3} s_1^{-3}, [s_1, s_2] = x, [x, s_1] = [x, s_2] = 1 \rangle$, for $|G| = 3^{2n+1}$, $e \ge 3$;
- $G = \langle s_1, s_2, \beta, x | s_1^{3^n} = s_2^{3^n} = x^3 = 1, \beta^3 = x^2, [s_1, \beta] = s_2, [s_2, \beta] = s_2^{-3} s_1^{-3}, [s_1, s_2] = x, [x, s_1] = [x, s_2] = 1 \rangle$, for $|G| = 3^{2n+2}, n \ge 2$.

Can we construct infinite families of Extremal 3-Zomorrodian curves?

Open Problem 1: *d*-group of automorphisms, $d \neq p$ prime number **Construction of Elliptic type Extremal** 3-**Zomorrodian curves** for every $(g, |G|) = (3^h + 1, 3^{h+2})$

- Elliptic curve $\mathcal{E}: X^3 + Y^3 + Z^3 = 0$ ($J(\mathcal{E}) =$ Jacobian group)
- P = (-1, 0, 1) is an inflection point of \mathcal{E} , and $\bar{\alpha} : (X, Y, Z) \mapsto (X, \epsilon Y, Z)$ with $\epsilon^3 = 1$ primitive, is an order 3 automorphism of \mathcal{E} fixing P
- $\bar{\alpha}$ has two more fixed points on \mathcal{E} , namely $P_1 = (-\epsilon, 0, 1)$ and $P_2 = (-\epsilon^2, 0, 1)$ $\implies \bar{\alpha} \notin J(\mathcal{E})$

Theorem (Korchmáros-M. 2020)

A 3-group \overline{G} of automorphisms of \mathcal{E} can be written up to conjugation as $\overline{G} = \overline{H} \rtimes \langle \overline{\alpha} \rangle = \overline{H} \rtimes \overline{G}_P$ where $\overline{H} = \overline{G} \cap J(\mathcal{E})$ and \overline{G} can be generated by 2 elements

- let $\bar{G} = \bar{H} \rtimes \langle \bar{\alpha} \rangle \leq \operatorname{Aut}(\mathcal{E})$ with $|\bar{G}| = 3^{h+1}$, $h \geq 2$
- Since \bar{G} can be generated by 2 elements, $\bar{G}/\Phi(\bar{G})$ is elementary abelian of order 9
- since \bar{H} is maximal, $\Phi(\bar{G}) \leq \bar{H}$
- $\theta_1 = \Phi(\bar{G})$ -orbit containing $P \implies |\theta_1| = 3^{h-1}$
- $\Phi(\bar{G})$ is a normal subgroup of \bar{H} , the \bar{H} -orbit θ containing P is partitioned into three $\Phi(\bar{G})$ -orbits which may be parameterized by $\Phi(\bar{G})$ together with its two cosets in \bar{H}

• (Korchmáros-Nagy-Pace, 2014) If $Q \in \theta_2$ then the line through P and Q meets \mathcal{E} in a point $R \in \theta_3$

- r has homogenous equation mX Y + mZ = 0 for some $m \in K$
- (inflectional) tangent to \mathcal{E} at P is i: X + Z = 0

• in $K(\mathcal{E})=K(x,y)$ with $x^3+y^3+1=0$ define $t=\frac{mx-y+m}{x+1}$ then (t)=Q+R-2P

• let $w = \prod_{f \in \Phi(\bar{G})} f(t)$. Then $(w) = -2\theta_1 + \theta_2 + \theta_3$ and $\bar{g} \in \bar{G}$ acts on $\{\theta_1, \theta_2, \theta_3\}$.

$$\begin{cases} (1) \ \bar{g}(w)/w = \lambda, \ for \ some \ \lambda \in K \\ (2) \ (\bar{g}(w)/w) = -2\theta_1 + \theta_2 + \theta_3 - (-2\theta_3 + \theta_1 + \theta_2) = -3\theta_1 + 3\theta_3 \end{cases}$$

In any case

4

(key property) $\bar{g}(w)/w = v^3$, for some $v \in K(x,y)$

We define

$$\mathcal{X}: \begin{cases} x^3+y^3+1=0,\\ z^3=w \end{cases} \implies g(\mathcal{X})=3^h+1$$

- Also every $\bar{g} \in \bar{G}$ can be lifted in three ways creating a group $G \leq \operatorname{Aut}(\mathcal{X})$ of order $3|\bar{G}| = 3^{h+2} = 9(g-1)$
- Indeed for $\bar{g} \in \bar{G}$ we define,

$$g:(x,y,z)\mapsto (\bar{g}(x),\bar{g}(y),vz),$$

where $v^3=\bar{g}(w)/w.$ Then

$$g(z^3) = v^3 z^3 = \frac{\bar{g}(w)}{w} w = \bar{g}(w) = g(w) \implies \mathcal{X} \text{ is preserved!}$$

Open Problem 1: *d*-group of automorphisms, $d \neq p$ prime number **Explicit examples using MAGMA**

• g = 10, |G| = 81

$$\begin{cases} x^3 + y^3 + 1 = 0; \\ z^3 = \frac{x}{y^2}. \end{cases}$$

• g = 28, |G| = 729

$$\left\{ \begin{array}{l} x^3+y^3+1=0;\\ z^3=(y^{18}+3y^{15}+52y^{12}+26y^9+52y^6+3y^3\\ +1)/(y^{17}+3y^{14}+5y^{11}+5y^8+3y^5+y^2)x. \end{array} \right.$$

• g = 82, |G| = 2187

$$\left\{ \begin{array}{l} x^3+y^3+1=0;\\ z^3=(y^{54}+9y^{51}+151y^{48}+191y^{45}+243y^{42}+21y^{39}+86y^{36}\\ +184y^{33}+y^{30}+153y^{27}+y^{24}+184y^{21}+86y^{18}+21y^{15}\\ +243y^{12}+191y^9+151y^6+9y^3+1)/(y^{53}+9y^{50}+261y^{47}\\ +258y^{44}+138y^{41}+146y^{38}+206y^{35}+24y^{32}+12y^{29}+12y^{26}\\ +24y^{23}+206y^{20}+146y^{17}+138y^{14}+258y^{11}\\ +261y^8+9y^5+y^2)x. \end{array} \right.$$

Open Problem 2: Automorphism groups of ordinary curves Ordinary algebraic curves with many automorphisms

- ${\mathcal X}$ is ordinary if $g({\mathcal X})=\gamma({\mathcal X})$
- Nakajima (1987): $|Aut(\mathcal{X})| \le 84(g(\mathcal{X}) 1)g(\mathcal{X}) \to \text{can this bound be improved?}$

Theorem (Korchmáros-M., 2019)

Let \mathcal{X} be an ordinary curve of genus $g(\mathcal{X}) \geq 2$ defined over an algebraically closed field of odd characteristic p. If $G \leq Aut(\mathcal{X})$ is solvable then

$$|G| \le 34(g(\mathcal{X})+1)^{3/2} < 68\sqrt{2}g(\mathcal{X})^{3/2}$$

- This is the best bound known for automorphism groups of ordinary curves
- (Korchmáros-M.-Speziali, 2018) Extremal example up to the constant term: a generalized Artin-Schreier extension of the Artin-Mumford curve
- (M.-Zini, 2018) An infinite family of extremal examples: Generalized Artin-Mumford curves
- \implies Our bound cannot be improved!

- First observation: if $g(\mathcal{X}) = 2$ then $|G| \le 48$ (known), so the statement is true. We assume $g(\mathcal{X}) \ge 3$.
- By contradiction: $(G, g(\mathcal{X}))$ is a **minimal counterexample**, that is, $|G| > 34(g(\mathcal{X}) + 1)^{3/2}$ and if $g(\mathcal{Y}) < g(\mathcal{X})$, \mathcal{Y} is ordinary and $H \leq Aut(\mathcal{Y})$ is solvable then $|H| \leq 34(g(\mathcal{Y}) + 1)^{3/2}$
- \bullet Since G is solvable, it admits a minimal normal subgroup S which is elementary abelian.
- Two cases are treated separately: either S is a p-group, or it has order prime to p.
- In both cases we try to construct a quotient curve which is still ordinary and gives a contradiction to the minimality of $(G, g(\mathcal{X}))$.

Open Problem 2: Automorphism groups of ordinary curves Our bound is sharp (up to the constant term)

$$q=p^h,\,h\geq 1$$
 and $K=\overline{\mathbb{F}}_q.$ For $(m,p)=1$ let
$$\mathcal{Y}:y^q+y=x^m+1/x^m$$

and $F = K(\mathcal{Y})$ its function field. Let $t = x^{m(q-1)}$. F|K(t) is not Galois

Theorem (Korchmáros-M.-Speziali, 2018)

The Galois closure of F|K(t) is L=K(x,y,z) where $y^q+y=x^m+1/x^m$ and $z^a+z=x^m.$ Also

- $g(L) = (q-1)(q^m 1), \ \gamma(L) = (q-1)^2,$
- $|Aut(L)| \ge m(q-1)$,
- if m = 1, L is ordinary and $|Aut(\mathcal{X})| > 2g^{3/2}$.
- (M.-Zini, 2018): infinite family of extremal examples (Generalized Artin-Mumford curves) $\mathcal{X}_{L_1,L_2}: L_1(x) \cdot L_2(y) = 1$, where L_1 and L_2 are linearized polynomials.

Open Problem 2: Automorphism groups of ordinary curves Large automorphism groups of ordinary curves Natural questions:

- What if p = 2 and G is solvable?
- What if p is odd but G is not solvable?

Theorem (M.-Speziali, 2019)

Let \mathcal{X} be an ordinary curve of even genus $g(\mathcal{X}) \geq 2$ defined over an algebraically closed field of odd characteristic 2. If $G \leq Aut(\mathcal{X})$ is solvable then

 $|G|\leq 35(g(\mathcal{X})+1)^{3/2}$

Theorem (M.-Speziali, 2019)

Let \mathcal{X} be an ordinary curve of genus $g(\mathcal{X}) \geq 2$ defined over an algebraically closed field of odd characteristic p. If $G \leq Aut(\mathcal{X})$ is not solvable then

 $|G| \le 822g(\mathcal{X})^{7/4}$

• A general and sharp refinement of Nakajima's bound is still an open problem!

Open Problem 3: large automorphism groups imply *p*-rank zero The third open problem: improving Henn's result

- If $G \leq \operatorname{Aut}(\mathcal{X})$ is such that $|G| > 84(g(\mathcal{X}) 1)$ then one of the following occurs:
- (1) G has two short orbits and both are non-tame; here $|G| \leq 16g^2$
- **2** G has three short orbits with precisely one non-tame orbit; here $|G| \leq 24g^2$
- **3** G has a unique short orbit which is non-tame; here $|G| \le 8g^3$
- **4** G has two short orbits and one short orbit is tame, one non-tame (if $|G| \ge 8g^3$ then G is known and $\gamma(\mathcal{X}) = 0$).

Open Problem 3

Is it possible to find a (optimal) function f(g) such that the existence of an automorphism group G of \mathcal{X} with |G| > f(g) implies that \mathcal{X} has p-rank zero?

- we already see that if $|Aut(\mathcal{X})| > 24g^2$ then either Case 3 or 4 occurs.
- \longrightarrow Natural idea: improve the bounds in 3 and/or 4 to obtain (up to finite exceptions) a function $f(g) = cg^2$ for some constant c

Theorem (M., 2023)

Let $G \leq Aut(\mathcal{X})$, where $g = g(\mathcal{X}) \geq 2$ and \mathcal{X} is defined over an algebraically closed field of characteristic p > 0.

- 1 If G satisfies Case 3 then $|G| \leq 336g(\mathcal{X})^2$.
- **2** If $|G| \ge 60g^2$ and Case 3 is satisfied than $\gamma(\mathcal{X})$ is positive and congruent to zero modulo p.
- **③** If $|G| ≥ 900g^2$ then Case 4 is satisfied. If γ(X) ≠ 0 then g(X) is odd. Furthermore, if for $P, R ∈ O_1$ (non-tame short orbit) one has $g(X/G_P^{(1)}) = 0$ and $G_{P,R}$ is either a *p*-group or a prime to *p* group then γ(X) = 0.

Work in progress: Is it true that if $|G| \ge 900g^2$ then $\gamma(\mathcal{X}) = 0$?

Open Problem 3: large automorphism groups imply *p*-rank zero Sketch of the proof of the first item

- By contradiction $|G| > 336g^2$
- Let $O := P^G$ be the unique short orbit of G
- [Case 1: $\mathbf{O} = \{\mathbf{P}\}$] Thus, $G = G_P$. Let $\mathcal{X}_1 := \mathcal{X}/G_P^{(1)}$
- If \mathcal{X}_1 is not rational $\longrightarrow |G| = |G_P| = |G_P^{(1)} \rtimes H| \le g(4g+2) < 5g^2$, a contradiction
- Let \mathcal{X}_1 be rational. Thus, $G_P = G_P^{(1)} \rtimes H$. If $\alpha \in H$ then α induces an automorphism α' on \mathcal{X}_1
- Since every automorphism of a rational function field whose order is prime to p has exactly 2 fixed places $\to \alpha'$ fixes a place $Q \neq P$
- This implies that Q^G is short and $Q^G \neq O$, a contradiction
- This shows that if $G = G_P$ and Case 3 is satisfied then $|G| < 5g^2$

Open Problem 3: large automorphism groups imply *p*-rank zero Sketch of the proof of the first item

- [Case 2: $O \supset \{P\}$]
- $g(\mathcal{X}/G_P) = 0$ and either $\gamma(\mathcal{X}) = 0$ or $\gamma(\mathcal{X}) > 0$ and G_P , $G_P^{(1)}$ have the same two (non-tame) short orbits
- First aim: To prove that the case $\gamma=\gamma(\mathcal{X})>0$ is impossible
- If $\gamma > 0$ then G_P has 2 short orbits $O_1 = \{P\}$ and O_2
- $O = \{P\} \cup O_2$
- Since G_P acts transitively on $O_2 = O \setminus \{P\} \longrightarrow G$ acts 2-transitively on O
- Idea: Use the complete list of finite 2-transitive groups to exclude the case $\gamma>0$
- Second aim: the case $\gamma=0$ is not possible from the Deuring-Shafarevic formula

• Example 1: GK Curve:

$$C_n: Y^{n^3+1} + (X^n + X)(\sum_{i=0}^n (-1)^{i+1} X^{i(n-1)})^{n+1}) = 0$$

1
$$|Aut(\mathcal{C}_n)| = (n^3 + 1)n^3(n - 1) \sim 4g^2$$

• Example 2: Skabelund curves

$$\tilde{S}: \begin{cases} y^{q} + y = x^{q_{0}}(x^{q} + x), \\ t^{m} = x^{q} + x \end{cases}$$

where $q = 2q_0^2 = 2^{2s+1}$ and $m = q - 2q_0 + 1$ (Giulietti-M.-Quoos-Zini, 2017) $|Aut(\tilde{S})| = m(q^2 + 1)q^2(q - 1) \sim 4g^2$

Applications of automorphism groups and future work Automorphism groups as a tool: classifications and constructions

- Coding theory:
 - (Bartoli-M.-Quoos, 2021) Locally recoverable codes (LRC) from curves of genus $g \ge 1$
 - (Bartoli-M.-Zini, 2021) Construction of self-orthogonal AG codes (quantum codes)
- Classification of maximal curves
 - (Bartoli-M.-Torres, 2021) Classification of \mathbb{F}_{p^2} -maximal curves with many automorphisms
- Construction of maximal curves
 - (Giulietti-Kawakita-Lia-M., 2021) Construction of maximal curves of low genus (Kani-Rosen)
 - (Beelen-M.-Niemann-Quoos, 2025) A family of non-isomorphic maximal curves
 - (Beelen-Drue-M.-Zini, 2025) New maximal function fields (as subcovers of the BM maximal curves)

- Find a sharp bound for non-solvable automorphism groups of ordinary curves
- Link between automorphism groups and a-number
- \bullet For p-rank zero complete the proof $f(g)\sim g^2$
- Classification results for extremal ordinary curves
- Classify maximal curves based on their automorphisms

Technical University of Denmark

Thank you

Maria Montanucci Department of Applied Mathematics and Computer Science Technical University of Denmark (DTU)

Building 303B, Room 150 2800 Kgs. Lyngby, Denmark marimo@dtu.dk