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Graph Alignment Problem (GAP)

Given two n x n adjacency matrices A and B, the graph alignment problem is
to minimize ||A — PBPT||r over all permutation matrices P and where | - || is
the Frobenius norm :

GAP = min Z ij — ﬂ(,)ﬂ- )2 9

TESh

where 7 is the permutation associated to the permutation matrix P. We
denote by 778 a solution to the graph alignment problem.
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where 7 is the permutation associated to the permutation matrix P. We
denote by 778 a solution to the graph alignment problem.

For unweighted graphs, the coefficients of the matrices A and B are in {0, 1},
hence 778 also solves :

max > AjBx(in()
LJ

which is finding a maximum common subgraph in G4 and Gg, known to be
APX-hard.



Measure of performances

For an algorithm producing a candidate permutation &, we measure its
performance through two quantities :

e the accuracy defined by

acc(r, ™ 8) = %Z1(7r(i) = *=5(j)). (1)

i=1

e the number of common edges defined by

1
NCE(TF) = 5 ZAijBﬁ(i),r(j) < nCE(T('A_’B). (2)
i
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P = ey ZAw(i)wu)Bii
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e Take G, a graph on n vertices and Gg a path (or a cycle) of length n.



Graph alignment is a hard problem

P = ey ZAw(i)wu)Bii
1)

e Take G, a graph on n vertices and Gg a path (or a cycle) of length n.
Then, GAP is the Hamiltonian path/cycle problem on G,.

e Take G a graph on n vertices and Gg a union of two clique of sizes n/2.



Graph alignment is a hard problem

P = ey ZAw(i)wu)Bii
1)

e Take G, a graph on n vertices and Gg a path (or a cycle) of length n.
Then, GAP is the Hamiltonian path/cycle problem on G,.

e Take G a graph on n vertices and Gg a union of two clique of sizes n/2.
Then, GAP is the minimum bisection problem on G,.



Graph alignment is a hard problem

P = ey ZAw(i)wu)Bii
1)

e Take G, a graph on n vertices and Gg a path (or a cycle) of length n.
Then, GAP is the Hamiltonian path/cycle problem on G,.

e Take G a graph on n vertices and Gg a union of two clique of sizes n/2.
Then, GAP is the minimum bisection problem on G,.

e Take Ga = Gg, then GAP is the graph isomorphism problem solvable in
quasipolynomial time Babai (2016).



Synthetic datasets

Random pairs of graphs (Ga, Gg) such that the marginals are the same, i.e.
the laws of G4 and Gg are identical but G4 and Gg are correlated. This
correlation allows us to control the difficulty of the graph alignment
problem. Then a random permutation 7* € S, is applied on the nodes of Gg
to get G and the training is done on the generated triplets (Ga, Gg, 7).



Synthetic datasets

Random pairs of graphs (Ga, Gg) such that the marginals are the same, i.e.
the laws of G4 and Gg are identical but G4 and Gg are correlated. This
correlation allows us to control the difficulty of the graph alignment
problem. Then a random permutation 7* € S, is applied on the nodes of Gg
to get G and the training is done on the generated triplets (Ga, Gg, 7).

3 parameters :
the number of nodes n, the average degree d and the noise level p, ;..

On average, Ga and Gg have nd/2 = E[}; A;/2] edges and the noise level
Proise CONtrols the number of edges that are different between G, and Gg so
that the average number of common edges is

(1 - pno’\se)nd/2 = E[ZijAUBU/z]-



Recovering the planted permutation (without learning)

Faster algorithms for the alignment of sparse correlated Erdds-Rényi random graphs

Andrea Muratori' and Guilhem Semerjian?

impossible hard

Otter’s threshold : \/a ~ 0.581.

Ganassali et al. (2021b), Ganassali et al. (2021a), Piccioli et al. (2022), Ding
et al. (2021), Mao et al. (2023), Muratori and Semerjian (2024)



Continuous relaxations of GAP (1)

Using basic properties of permutation matrices, we get :

1A — PBPT| = [|(AP — PB)PT2
— |lAP — PBI:
— |IAJ: + 1B — 2(AP, PB).

where (C, D) = trace(C'D) is the Frobenius inner product.
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— |lAP — PBI:
— |IAJ: + 1B — 2(AP, PB).

where (C, D) = trace(C'D) is the Frobenius inner product.

Replacing the discrete set of permutations matrices S, by the set of doubly
stochastic matrices Dy, :

e convex relaxation :
. 2 _
arg min |AD — DB||F = Dcx
¢ indefinite relaxation (still NP-hard) :

max (AD, DB).

DeDp
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In both continuous relaxations, we use Frank-Wolfe algorithm and obtain a
doubly stochastic matrix in Dy, that needs to be projected to the nearest
permutation matrix by solving a linear assignment problem (in O(n®) time) :

for D € Dy, maxpes, (P, D). We denote by Proj(D) € S, the resulting
projection of D on Sp.



Continuous relaxations of GAP (2)

e convex relaxation :

arg Dnewilg ||AD — DB||} = Dcx

o FAQ indefinite relaxation :
max (AD, DB).
DeDy

In both continuous relaxations, we use Frank-Wolfe algorithm and obtain a
doubly stochastic matrix in Dy, that needs to be projected to the nearest
permutation matrix by solving a linear assignment problem (in O(n®) time) :
for D € Dy, maxpes, (P, D). We denote by Proj(D) € S, the resulting
projection of D on Sp.

FAQ(D) € Sy is the solution obtained with initial condition D and after
projection on Sy. There are cases where Proj(D«) is indeed very far from an
optimal solution and FAQ(Dc) gives a better approximation.



Erdés-Rényi (n = 500, d = 4)
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Accuracy (left) and number of common edges (right) as a function of noise.



Erdés-Rényi (n = 500, d = 80)
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Learning with graph symmetries




Graph isomorphism

G, = (Va,E7) and G, = (V», E;) are isomorphic if there is a bijection V; — V,
which preserves edges.
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Graph isomorphism

G, = (Va,E7) and G, = (V», E;) are isomorphic if there is a bijection V; — V,
which preserves edges.
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Idea: design a machine learning algorithm whose result does not depend on
the representation of the input.



Invariant and equivariant functions

For a permutation o € Sy, we define (F = RP feature space) :

e forXe Fn, (O‘*X)U(i) =PXi
e forG e ]ann, (O’ * G)U(,'1)7(,(,‘2) = G,'h,'2
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Invariant and equivariant functions

For a permutation o € Sy, we define (F = RP feature space) :
e for X € F”, (O‘*X)U(i) =X;
e forG e ]ann, (O’ * G)U(,'1)7(,(,‘2) = G,'h,'2

G,, G, are isomorphic iff Gy = o x G..

Definition
(R=10rk=2)

A function f : F™ — Fis said to be invariant if f(o x G) = f(G).
A function f : F™ — F" is said to be equivariant if f(o x G) = o x f(G).



Learning the graph alignment problem with Siamese GNNs

G e {o,1}" — M, F, eRrMb
E.El ¢ R™
G, € {o,1}" — _, F, e R"XP

e The same GNN is used for both graphs.

e From the node similarity matrix E;E}, we extract a mapping from nodes
of G, to nodes of G, (using Proj to get a permutation).



Chaining FGNNs

The second step takes as input two graphs Ga and Gg as well as a similarity
matrix $*~*8 and produces two rankings r* and r®, one for each graph.

Compute the projected permutation = = Proj(S*~8) by solving the linear
assignment problem : maxres, > _; Sm(,

Intuition : the entry S§7% is a measure of the similarity between nodes i € Ga
andj € Gg. Hence w is a mapping from nodes in G4 to nodes in Gg which
approximately solves the graph matching problem.

The goal of chaining is to improve incrementally this approximation.



Chaining FGNNs

The second step takes as input two graphs Ga and Gg as well as a similarity
matrix $*~*8 and produces two rankings r* and r®, one for each graph.

Compute the projected permutation = = Proj(S*~8) by solving the linear
assignment problem : maxres, > _; Sm(,

Intuition : the entry S§7% is a measure of the similarity between nodes i € Ga
andj € Gg. Hence w is a mapping from nodes in G4 to nodes in Gg which
approximately solves the graph matching problem.

The goal of chaining is to improve incrementally this approximation.

For this, we need to transfer the information contained in 7 into node
features for both graphs : compute a score for each node i in the graph A by
s(i) = >=; AijBx(i)n()- We can then sort the nodes in A in decreasing order of
their scores s(i) and obtain a ranking r* € S, for the nodes in A. In order to
get the ranking r®, we use the permutation « : G4 — Gg as follows :

2 = ().
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Training chained GNNs.
GNN.

Training procedure

val_loss
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Each color corresponds to a different training and



Erdés-Rényi (n = 500, d = 4)
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Erdés-Rényi (n = 500, d = 80)
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Accuracy (left) and number of common edges (right) as a function of noise.



Erdés-Rényi (n = 1000, d = 3, training 0.25)
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Training : optimal noise level

Accuracy for different models (Proj)

0.05 1 015 0.07 0.04 0.02

0.1+

0.15 4

noises for training
e
>

0.251

0.3

0.351 ). 3 .. 0.06

0.15 0.2 0.25 03
noises for inference

Each line corresponds to a chained FGNN trained at a given level of noise
and evaluated across all different level of noises. Performances are acc for
sparse Erdés-Rényi (ER 4).
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Conclusion for GNNs for GAP

BN CONV SN GNN_Proj BEE ChGNN_Proj
FAQ GNN_FAQ ChGNN_FAQ
98.8 - - QPT
81.8
77.4
71.1
67.1
53 54
a7
27
sparse ER dense ER Regular

e GNNs chaining is working for correlated random graphs!
e Results with GNNs corroborate theoretical predictions.

e New hard instances (regular graphs) are solved with GNNs (and | do not

know of any alternative solutions). ”



Maths and Al (2)

Maths and Al (2)

https://docs.google.com/presentation/d/1u_CR7c_
RSOLqyNw63JUUeDLv4rcVeRs1_jl7PxkCwAU/edit?usp=sharing
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