MATHS AND AI

Marc Lelarge INRIA, DI/ENS, PSL Research University

ALEA - Marseille - Mars 2025

Séminaire Philippe Flajolet

Séminaire bimestriel de combinatoire à l'Institut Henri Po

2021 - 2022

30 septembre 2021

Marc Lelarge (INRIA),
 Deep learning with symmetries.
 Transparents.

Ca y est le seminaire Flajolet est rattrape par la hype, j'espere que vous ne m'en voudrez pas trop...

Info

Page Où e

<u>Philip</u>

Or

Com

Can GNN solve combinatorial optimization problems?

Combinatorial Optimization and Reasoning with Graph Neural Networks

Quentin Cappart QUENTIN.CAPPART@POLYMTL.CA

Department of Computer Engineering and Software Engineering Polytechnique Montréal

Montréal, Canada

Didier Chételat

DIDIER CHETELAT@POLYMTL.CA CERC in Data Science for Real-Time Decision-Making

Polytechnique Montréal

Montréal. Canada

Elias B. Khalil KHALIL@MIE.UTORONTO.CA

Department of Mechanical & Industrial Engineering

University of Toronto Toronto, Canada

Andrea Lodi ANDREA LODI@CORNELL EDII

Jacobs Technion-Cornell Institute Cornell Tech and Technion - IIT New York, USA

Christopher Morris MORRIS@CS.RWTH-AACHEN.DE

Department of Computer Science RWTH Aachen University

Aachen, Germany

Petar Veličković PETARV@DEEPMIND.COM

DeepMindLondon, UK

Graph Alignment Problem (GAP)

Given two $n \times n$ adjacency matrices A and B, the graph alignment problem is to minimize $||A - PBP^T||_F$ over all permutation matrices P and where $||\cdot||_F$ is the Frobenius norm :

$$\mathsf{GAP} = \min_{\pi \in \mathcal{S}_n} \sum_{i,j} \left(A_{ij} - B_{\pi(i)\pi(j)} \right)^2,$$

where π is the permutation associated to the permutation matrix P. We denote by $\pi^{A \to B}$ a solution to the graph alignment problem.

Graph Alignment Problem (GAP)

Given two $n \times n$ adjacency matrices A and B, the graph alignment problem is to minimize $||A - PBP^T||_F$ over all permutation matrices P and where $||\cdot||_F$ is the Frobenius norm :

$$\text{GAP} = \min_{\pi \in \mathcal{S}_n} \sum_{i,j} \left(A_{ij} - B_{\pi(i)\pi(j)} \right)^2,$$

where π is the permutation associated to the permutation matrix P. We denote by $\pi^{A \to B}$ a solution to the graph alignment problem.

For unweighted graphs, the coefficients of the matrices **A** and **B** are in $\{0,1\}$, hence $\pi^{A\to B}$ also solves :

$$\max_{\pi \in \mathcal{S}_n} \sum_{i,j} A_{ij} B_{\pi(i)\pi(j)},$$

which is finding a maximum common subgraph in G_A and G_B , known to be APX-hard.

Measure of performances

For an algorithm producing a candidate permutation π , we measure its performance through two quantities :

the accuracy defined by

$$\operatorname{acc}(\pi, \pi^{A \to B}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(\pi(i) = \pi^{A \to B}(i)). \tag{1}$$

the number of common edges defined by

$$\mathbf{nce}(\pi) = \frac{1}{2} \sum_{i,j} A_{ij} B_{\pi(i)\pi(j)} \le \mathbf{nce}(\pi^{A \to B}). \tag{2}$$

$$\mathsf{GAP} = \max_{\pi \in \mathcal{S}_n} \sum_{i,j} A_{\pi(i)\pi(j)} B_{ij}$$

• Take G_A a graph on n vertices and G_B a path (or a cycle) of length n.

$$\mathsf{GAP} = \max_{\pi \in \mathcal{S}_n} \sum_{i,j} A_{\pi(i)\pi(j)} B_{ij}$$

- Take G_A a graph on n vertices and G_B a path (or a cycle) of length n. Then, GAP is the **Hamiltonian path/cycle problem** on G_A .
- Take G_A a graph on n vertices and G_B a union of two clique of sizes n/2.

$$\mathsf{GAP} = \max_{\pi \in \mathcal{S}_n} \sum_{i,j} A_{\pi(i)\pi(j)} B_{ij}$$

- Take G_A a graph on n vertices and G_B a path (or a cycle) of length n. Then, GAP is the **Hamiltonian path/cycle problem** on G_A .
- Take G_A a graph on n vertices and G_B a union of two clique of sizes n/2. Then, GAP is the **minimum bisection problem** on G_A .

$$\mathsf{GAP} = \max_{\pi \in \mathcal{S}_n} \sum_{i,j} A_{\pi(i)\pi(j)} B_{ij}$$

- Take G_A a graph on n vertices and G_B a path (or a cycle) of length n. Then, GAP is the **Hamiltonian path/cycle problem** on G_A .
- Take G_A a graph on n vertices and G_B a union of two clique of sizes n/2. Then, GAP is the **minimum bisection problem** on G_A .
- Take $G_A = G_B$, then GAP is the **graph isomorphism problem** solvable in quasipolynomial time Babai (2016).

Synthetic datasets

Random pairs of graphs (G_A, G_B) such that the marginals are the same, i.e. the laws of G_A and G_B are identical but G_A and G_B are correlated. This correlation allows us to control the difficulty of the graph alignment problem. Then a random permutation $\pi^* \in \mathcal{S}_n$ is applied on the nodes of G_B to get G_B' and the training is done on the generated triplets (G_A, G_B', π^*) .

Synthetic datasets

Random pairs of graphs (G_A, G_B) such that the marginals are the same, i.e. the laws of G_A and G_B are identical but G_A and G_B are correlated. This correlation allows us to control the difficulty of the graph alignment problem. Then a random permutation $\pi^* \in \mathcal{S}_n$ is applied on the nodes of G_B to get G_B' and the training is done on the generated triplets (G_A, G_B', π^*) .

3 parameters:

the number of nodes n, the average degree d and the noise level p_{noise} .

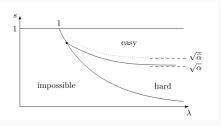
On average, G_A and G_B have $nd/2 = \mathbb{E}[\sum_{ij} A_{ij}/2]$ edges and the noise level p_{noise} controls the number of edges that are different between G_A and G_B so that the average number of common edges is

$$(1-p_{\text{noise}})nd/2=\mathbb{E}[\sum_{ij}A_{ij}B_{ij}/2].$$

Recovering the planted permutation (without learning)

Faster algorithms for the alignment of sparse correlated Erdős-Rényi random graphs

Andrea $Muratori^1$ and $Guilhem Semerjian^2$



Otter's threshold : $\sqrt{\alpha} \approx$ 0.581.

Ganassali et al. (2021b), Ganassali et al. (2021a), Piccioli et al. (2022), Ding et al. (2021), Mao et al. (2023), Muratori and Semerjian (2024)

Continuous relaxations of GAP (1)

Using basic properties of permutation matrices, we get :

$$||A - PBP^{T}||_{F}^{2} = ||(AP - PB)P^{T}||_{F}^{2}$$

$$= ||AP - PB||_{F}^{2}$$

$$= ||A||_{F}^{2} + ||B||_{F}^{2} - 2\langle AP, PB \rangle.$$

where $\langle C, D \rangle = \operatorname{trace}(C^T D)$ is the Frobenius inner product.

Continuous relaxations of GAP (1)

Using basic properties of permutation matrices, we get :

$$||A - PBP^{T}||_{F}^{2} = ||(AP - PB)P^{T}||_{F}^{2}$$

$$= ||AP - PB||_{F}^{2}$$

$$= ||A||_{F}^{2} + ||B||_{F}^{2} - 2\langle AP, PB \rangle.$$

where $\langle C, D \rangle = \text{trace}(C^T D)$ is the Frobenius inner product.

Replacing the discrete set of permutations matrices S_n by the set of doubly stochastic matrices D_n :

convex relaxation :

$$\arg\min_{D\in\mathcal{D}_n}\|AD-DB\|_F^2=D_{\text{CX}}$$

• indefinite relaxation (still NP-hard) :

$$\max_{D \in \mathcal{D}_n} \langle AD, DB \rangle.$$

Continuous relaxations of GAP (2)

• convex relaxation :

$$\arg\min_{D\in\mathcal{D}_n}\|AD-DB\|_F^2=D_{CX}$$

• FAQ indefinite relaxation :

$$\max_{D\in\mathcal{D}_n}\langle AD,DB\rangle.$$

Continuous relaxations of GAP (2)

• convex relaxation :

$$\arg\min_{D\in\mathcal{D}_n}\|AD-DB\|_F^2=D_{CX}$$

• FAQ indefinite relaxation :

$$\max_{D \in \mathcal{D}_n} \langle AD, DB \rangle$$
.

In both continuous relaxations, we use Frank-Wolfe algorithm and obtain a doubly stochastic matrix in \mathcal{D}_n that needs to be projected to the nearest permutation matrix by solving a linear assignment problem (in $O(n^3)$ time): for $D \in \mathcal{D}_n$, $\max_{P \in \mathcal{S}_n} \langle P, D \rangle$. We denote by $\operatorname{Proj}(D) \in \mathcal{S}_n$ the resulting projection of D on \mathcal{S}_n .

Continuous relaxations of GAP (2)

• convex relaxation :

$$\arg\min_{D\in\mathcal{D}_n}\|AD-DB\|_F^2=D_{CX}$$

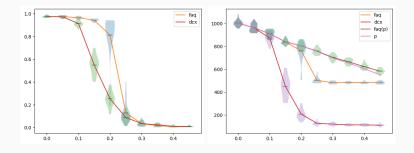
• FAQ indefinite relaxation :

$$\max_{D \in \mathcal{D}_n} \langle AD, DB \rangle$$
.

In both continuous relaxations, we use Frank-Wolfe algorithm and obtain a doubly stochastic matrix in \mathcal{D}_n that needs to be projected to the nearest permutation matrix by solving a linear assignment problem (in $O(n^3)$ time): for $D \in \mathcal{D}_n$, $\max_{P \in \mathcal{S}_n} \langle P, D \rangle$. We denote by $\operatorname{Proj}(D) \in \mathcal{S}_n$ the resulting projection of D on \mathcal{S}_n .

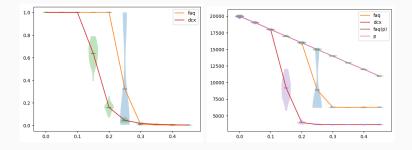
 $\mathbf{FAQ}(D) \in \mathcal{S}_n$ is the solution obtained with initial condition D and after projection on \mathcal{S}_n . There are cases where $\mathbf{Proj}(D_{cx})$ is indeed very far from an optimal solution and $\mathbf{FAQ}(D_{cx})$ gives a better approximation.

Erdős-Rényi (n = 500, d = 4**)**



Accuracy (left) and number of common edges (right) as a function of noise.

Erdős-Rényi (n = 500, d = 80**)**

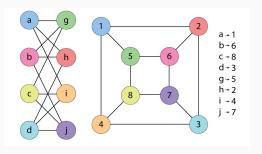


Accuracy (left) and number of common edges (right) as a function of noise.

Learning with graph symmetries

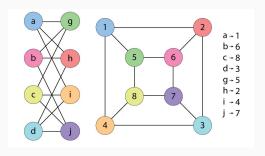
Graph isomorphism

 $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there is a bijection $V_1\longrightarrow V_2$ which preserves edges.



Graph isomorphism

 $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there is a bijection $V_1\longrightarrow V_2$ which preserves edges.



Idea: design a machine learning algorithm whose result does not depend on the representation of the input.

Invariant and equivariant functions

For a permutation $\sigma \in \mathcal{S}_n$, we define ($\mathbb{F} = \mathbb{R}^p$ feature space):

- for $X \in \mathbb{F}^n$, $(\sigma \star X)_{\sigma(i)} = X_i$
- ullet for $G\in \mathbb{F}^{n imes n}$, $(\sigma\star G)_{\sigma(i_1),\sigma(i_2)}=G_{i_1,i_2}$

Invariant and equivariant functions

For a permutation $\sigma \in \mathcal{S}_n$, we define ($\mathbb{F} = \mathbb{R}^p$ feature space):

- for $X \in \mathbb{F}^n$, $(\sigma \star X)_{\sigma(i)} = X_i$
- ullet for $G\in\mathbb{F}^{n imes n}$, $(\sigma\star G)_{\sigma(i_1),\sigma(i_2)}=G_{i_1,i_2}$

 G_1, G_2 are isomorphic iff $G_1 = \sigma \star G_2$.

Invariant and equivariant functions

For a permutation $\sigma \in \mathcal{S}_n$, we define ($\mathbb{F} = \mathbb{R}^p$ feature space):

- for $X \in \mathbb{F}^n$, $(\sigma \star X)_{\sigma(i)} = X_i$
- ullet for $G\in \mathbb{F}^{n imes n}$, $(\sigma\star G)_{\sigma(i_1),\sigma(i_2)}=G_{i_1,i_2}$

 G_1, G_2 are isomorphic iff $G_1 = \sigma \star G_2$.

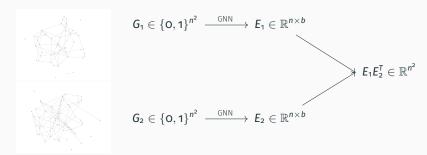
Definition

$$(k = 1 \text{ or } k = 2)$$

A function $f: \mathbb{F}^{n^k} \to \mathbb{F}$ is said to be invariant if $f(\sigma \star G) = f(G)$.

A function $f: \mathbb{F}^{n^k} \to \mathbb{F}^n$ is said to be equivariant if $f(\sigma \star G) = \sigma \star f(G)$.

Learning the graph alignment problem with Siamese GNNs



- The same GNN is used for both graphs.
- From the node similarity matrix $E_1E_2^T$, we extract a mapping from nodes of G_1 to nodes of G_2 (using **Proj** to get a permutation).

Chaining FGNNs

The **second step** takes as input two graphs G_A and G_B as well as a similarity matrix $S^{A \to B}$ and produces two rankings r^A and r^B , one for each graph.

Compute the projected permutation $\pi = \mathbf{Proj}(S^{A \to B})$ by solving the linear assignment problem : $\max_{\pi \in \mathcal{S}_n} \sum_i S_{i\pi(i)}^{A \to B}$.

Intuition: the entry $S_{ij}^{A \to B}$ is a measure of the similarity between nodes $i \in G_A$ and $j \in G_B$. Hence π is a mapping from nodes in G_A to nodes in G_B which approximately solves the graph matching problem.

The goal of chaining is to improve incrementally this approximation.

Chaining FGNNs

The **second step** takes as input two graphs G_A and G_B as well as a similarity matrix $S^{A \to B}$ and produces two rankings r^A and r^B , one for each graph.

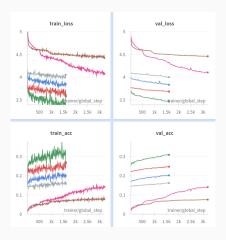
Compute the projected permutation $\pi = \mathbf{Proj}(S^{A \to B})$ by solving the linear assignment problem : $\max_{\pi \in \mathcal{S}_n} \sum_i S_{i\pi(i)}^{A \to B}$.

Intuition: the entry $S_{ij}^{A \to B}$ is a measure of the similarity between nodes $i \in G_A$ and $j \in G_B$. Hence π is a mapping from nodes in G_A to nodes in G_B which approximately solves the graph matching problem.

The goal of chaining is to improve incrementally this approximation.

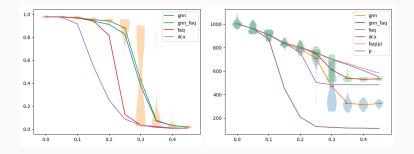
For this, we need to transfer the information contained in π into node features for both graphs: compute a score for each node i in the graph A by $s(i) = \sum_j A_{ij} B_{\pi(i)\pi(j)}$. We can then sort the nodes in A in decreasing order of their scores s(i) and obtain a ranking $r^A \in \mathcal{S}_n$ for the nodes in A. In order to get the ranking r^B , we use the permutation $\pi: G_A \to G_B$ as follows: $r^B_i = \pi(r^A_i)$.

Training procedure



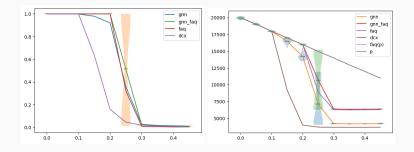
Training chained GNNs. Each color corresponds to a different training and GNN.

Erdős-Rényi (n = 500, d = 4**)**



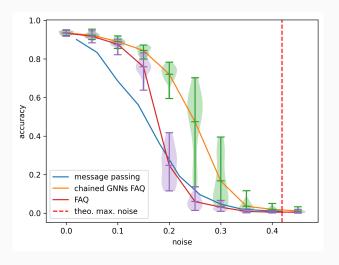
Accuracy (left) and number of common edges (right) as a function of noise.

Erdős-Rényi (n = 500, d = 80**)**

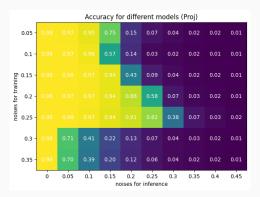


Accuracy (left) and number of common edges (right) as a function of noise.

Erdős-Rényi (n = 1000, d = 3, training 0.25)

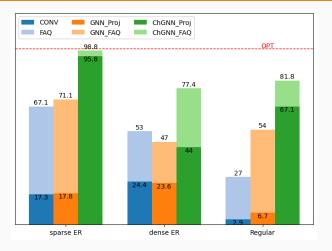


Training: optimal noise level



Each line corresponds to a chained FGNN trained at a given level of noise and evaluated across all different level of noises. Performances are **acc** for sparse Erdős-Rényi (ER 4).

Conclusion for GNNs for GAP



- GNNs chaining is working for correlated random graphs!
- Results with GNNs corroborate theoretical predictions.
- New hard instances (regular graphs) are solved with GNNs (and I do not know of any alternative solutions).

Maths and AI (2)

Maths and AI (2)

https://docs.google.com/presentation/d/1u_CR7c_ RSOLqyNw63JUUeDLv4rcVeRs1_j17PxkCwAU/edit?usp=sharing

Références

- L. Babai. Graph isomorphism in quasipolynomial time. In *Proceedings of the forty-eighth annual ACM symposium on Theory of Computing*, pages 684–697, 2016.
- J. Ding, Z. Ma, Y. Wu, and J. Xu. Efficient random graph matching via degree profiles. *Probability Theory and Related Fields*, 179:29–115, 2021.
- L. Ganassali, L. Massoulié, and M. Lelarge. Correlation detection in trees for planted graph alignment. *arXiv preprint arXiv*:2107.07623, 2021a.
- L. Ganassali, L. Massoulié, and M. Lelarge. Impossibility of partial recovery in the graph alignment problem. In *Conference on Learning Theory*, pages 2080–2102. PMLR, 2021b.
- C. Mao, Y. Wu, J. Xu, and S. H. Yu. Random graph matching at otter's threshold via counting chandeliers. In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing*, pages 1345–1356, 2023.
- A. Muratori and G. Semerjian. Faster algorithms for the alignment of sparse correlated erdös-rényi random graphs, 2024.
- G. Piccioli, G. Semerjian, G. Sicuro, and L. Zdeborová. Aligning random graphs with a sub-tree similarity message-passing algorithm. *Journal of Statistical Mechanics : Theory and Experiment*, 2022(6):063401, 2022.

L. Yu, J. Xu, and X. Lin. Seedgnn: graph neural network for supervised seeded