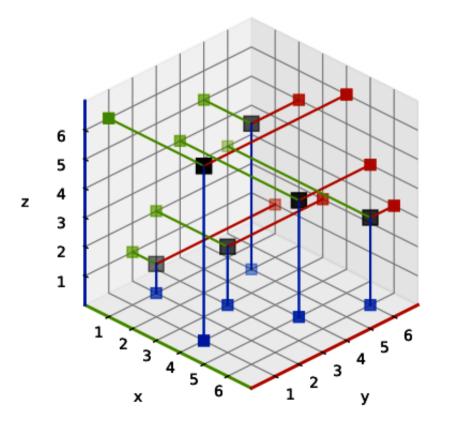
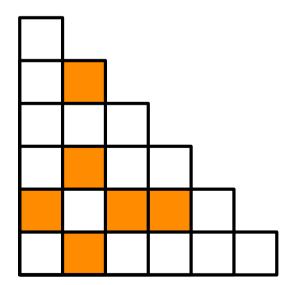
Pattern avoiding 3-permutations and triangle bases

Juliette Schabanel

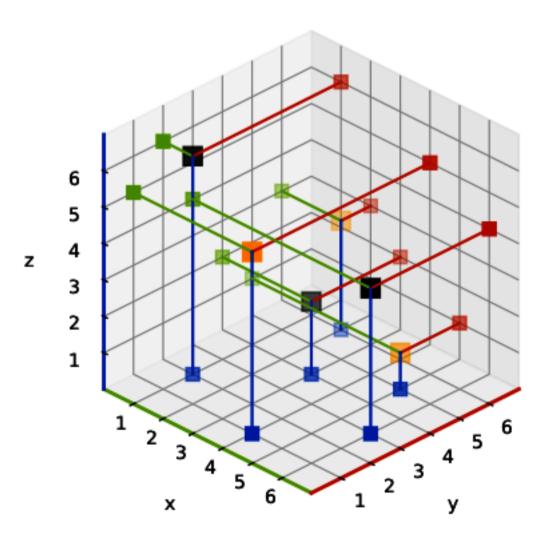
LaBRI, Université de Bordeaux





I- The objects

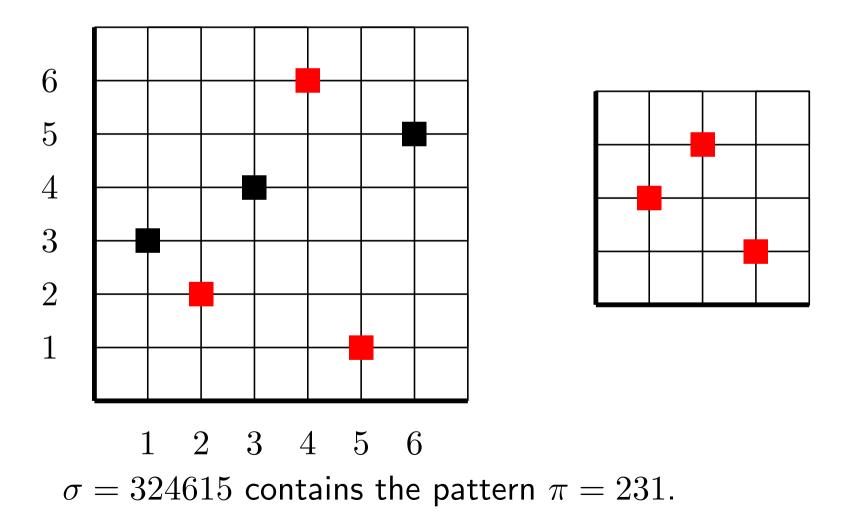
a) Pattern avoiding 3-permutations



Pattern avoidance in permutations

The diagram of a permutation $\sigma \in \mathfrak{S}_n$ is the set of points $P_{\sigma} = \{(i, \sigma(i)) \mid 1 \leq i \leq n\}$. It has exactly one point per row and per column.

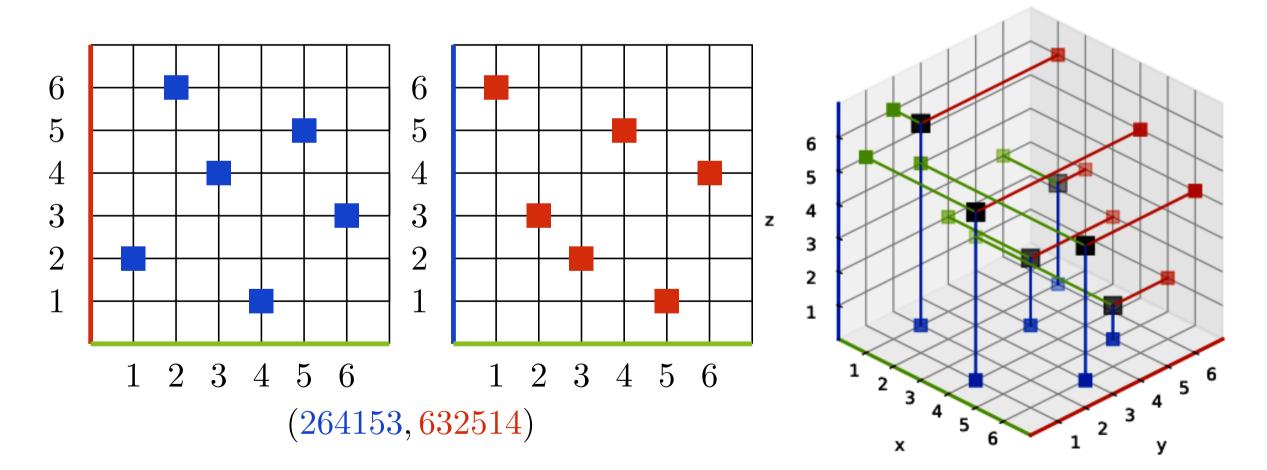
A permutation $\sigma \in \mathfrak{S}_n$ contains a pattern $\pi \in \mathfrak{S}_k$ if there is a set of indices I such that $\sigma_{|I} \simeq \pi$. Otherwise, it avoids it.



Pattern avoidance in 3-permutations

A 3-diagram has exactly one point per plane of the grid.

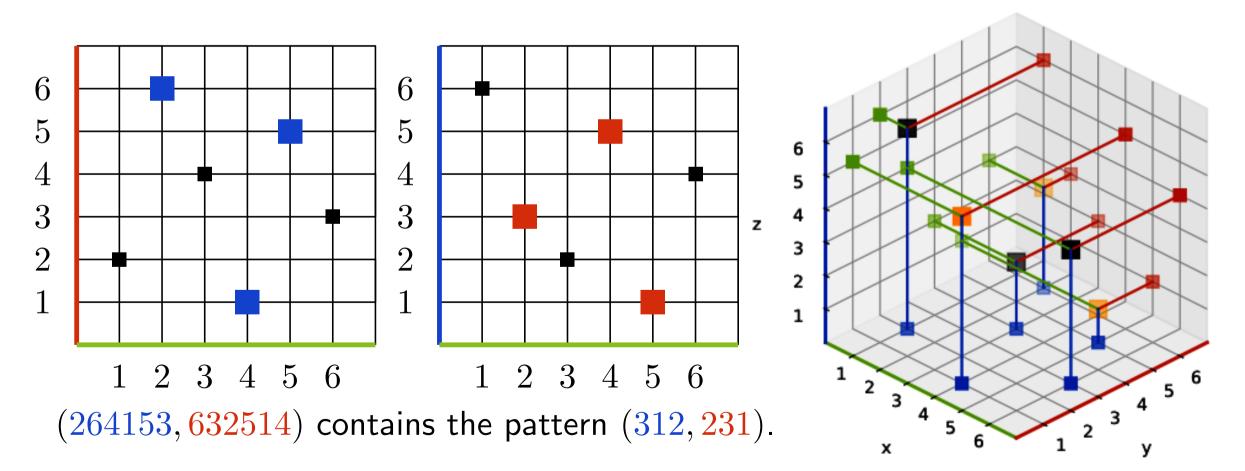
It is coded by a 3-permutation $(\sigma, \tau) \in \mathfrak{S}_n^2$: $P_{(\sigma,\tau)} = \{(i, \sigma(i), \tau(i)) \mid 1 \leq i \leq n\}.$



Pattern avoidance in 3-permutations

A 3-diagram has exactly one point per plane of the grid.

A 3-permutation $(\sigma, \tau) \in \mathfrak{S}_n^2$ contains a pattern $(\pi_1, \pi_2) \in \mathfrak{S}_k^2$ if there is a set of indices $I \subset \llbracket 1, n \rrbracket$ such that $\sigma_{|I} \simeq \pi_1$ and $\tau_{|I} \simeq \pi_2$. Otherwise it avoids it.



4/18

Pattern avoidance classes

Patterns	TWE	Sequence	Comment
(12, 12)	4	$1, 3, 17, 151, 1899, 31711, \cdots$	weak-Bruhat intervals
(12, 12), (12, 21)	6	$n! = 1, 2, 6, 24, 120 \cdots$	$\sigma_1 \Rightarrow \sigma_2$
(12, 12), (12, 21), (21, 12)	4	$1, 1, 1, 1, 1, 1, \cdots$	1 diagonal
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	$1, 0, 0, 0, 0, 0, \cdots$	
(123, 123)	4	$1, 4, 35, 524, 11774, 366352, \cdots$	new
(123, 132)	24	$1, 4, 35, 524, 11768, 365558, \cdots$	new
(132, 213)	8	$1, 4, 35, 524, 11759, 364372, \cdots$	new
(12, 12), (132, 312)	48	$(n+1)^{n-1} = 1, 3, 16, 125, 1296 \cdots$	[Atkinson et al. 93,95]
(12, 12), (123, 321)	12	$1, 3, 16, 124, 1262, 15898, \cdots$	distributive lattices inter.
(12, 12), (231, 312)	8	$1, 3, 16, 122, 1188, 13844, \cdots$	A295928?

[Bonichon & Morel '22]

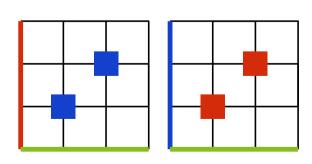
Pattern avoidance classes

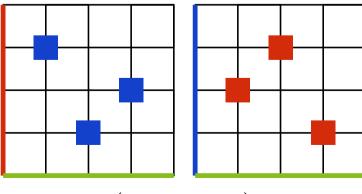
A295928	Number of triangular matrices $T(n,i,k)$, $k \le i \le n$, with entries "0" or "1" with the property that each triple { $T(n,i,k)$, $T(n,i,k+1)$, $T(n,i-1,k)$ } containing a single "0" can be successively replaced by {1, 1, 1} until finally no "0" entry remains.
(<u>list; graph; re</u>	122, 1188, 13844, 185448, 2781348, 45868268 efs; listen; history; text; internal format)
OFFSET	1,2
COMMENTS	<pre>A triple {T(n,i,k), T(n,i,k+1), T(n,i-1,k)} will be called a primitive triangle. It is easy to see that b(n) = n(n-1)/2 is the number of such triangles. At each step, exactly one primitive triangle is completed (replaced by {1, 1, 1}). So there are b(n) "0"- and n "1"-terms. Thus the starting matrix has no complete primitive triangle. Furthermore, any triangular submatrix T(m,i,k), k <= i <= m < n cannot have more than m "1"-terms because otherwise it would have less "0"-terms than primitive triangles. The replacement of at least one "0"-term would complete more than one primitive triangle. This has been excluded. So T(n, i, k) is a special case of U(n, i, k), described in <u>A101481</u>: a(n) < <u>A101481</u>(n+1). A start matrix may serve as a pattern for a number wall used on worksheets for elementary mathematics, see link "Number walls". That is why I prefer the more descriptive name "fill matrix". The algorithm for the sequence is rather slow because each start matrix is constructed separately. There exists a faster recursive algorithm which produces the same terms and therefore is likely to be correct, but it is based on a conjecture. For the theory of the recurrence, see "Recursive aspects of fill matrices". Probable extension a(10)-a(14): 821096828, 15804092592, 324709899276, 7081361097108, 163179784397820. The number of fill matrices with n rows and all "1"- terms concentrated on the last two rows, is <u>A001960</u>(n).</pre>
	See link "Reconstruction of a sequence".
LINKS	<u>Table of n, a(n) for n=19.</u> Gerhard Kirchner, <u>Recursive aspects of fill matrices</u> Gerhard Kirchner, <u>Number walls</u> Gerhard Kirchner, <u>VB-program</u> Gerhard Kirchner, <u>Reconstruction of a sequence</u> Ville Salo, <u>Cutting Corners</u> , arXiv:2002.08730 [math.DS], 2020. Yuan Yao and Fedir Yudin, <u>Fine Mixed Subdivisions of a Dilated Triangle</u> , arXiv:2402.13342 [math.CO], 2024.
EXAMPLE	Example (n=2): 0 1 1 a(2)=3 11 01 10 Example for completing a 3-matrix (3 bottom terms): 1 1 1 1 1 00 -> 10 -> 11 -> 11 110 110 110 111

Pattern avoidance classes

Patterns	TWE	Sequence	Comment
(12, 12)	4	$1, 3, 17, 151, 1899, 31711, \cdots$	weak-Bruhat intervals
(12, 12), (12, 21)	6	$n! = 1, 2, 6, 24, 120 \cdots$	$\sigma_1 \Rightarrow \sigma_2$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	$1, 1, 1, 1, 1, 1, \cdots$	1 diagonal
(12, 12), (12, 21), (21, 12), (21, 21)	1	$1, 0, 0, 0, 0, 0, \cdots$	
(123, 123)	4	$1, 4, 35, 524, 11774, 366352, \cdots$	new
(123, 132)	24	$1, 4, 35, 524, 11768, 365558, \cdots$	new
(132, 213)	8	$1, 4, 35, 524, 11759, 364372, \cdots$	new
(12, 12), (132, 312)	48	$(n+1)^{n-1} = 1, 3, 16, 125, 1296 \cdots$	[Atkinson et al. 93,95]
(12, 12), (123, 321)	12	$1, 3, 16, 124, 1262, 15898, \cdots$	distributive lattices inter.
(12, 12), (231, 312)	8	$1, 3, 16, 122, 1188, 13844, \cdots$	A295928?

[Bonichon & Morel '22]



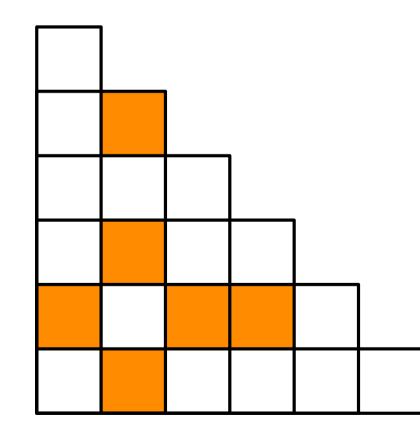


(12, 12)

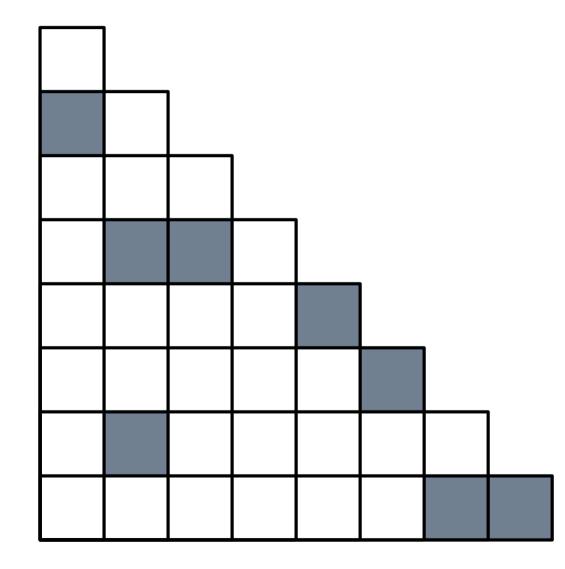
(312, 231)

I- The objects

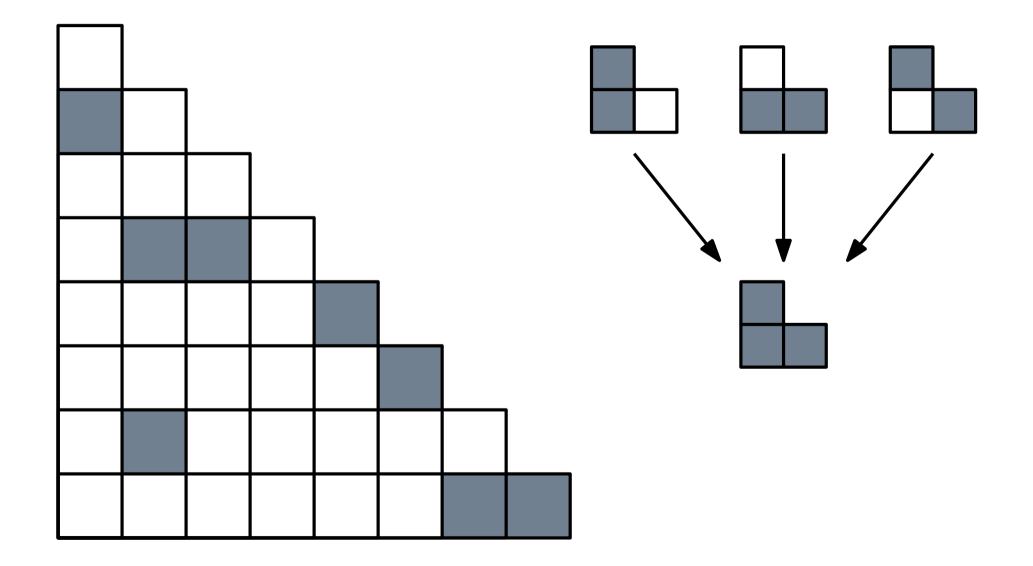
b) Triangle Bases



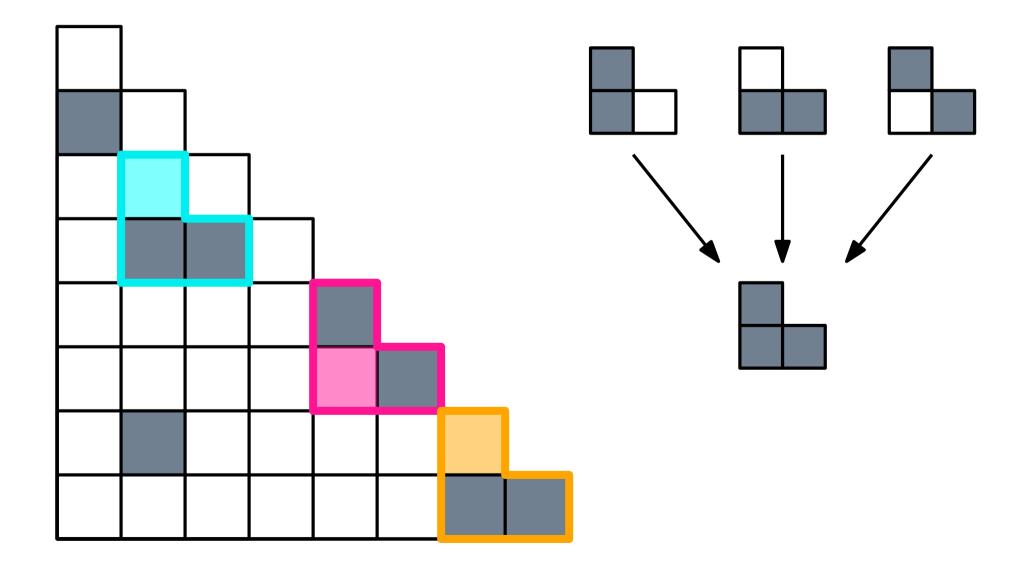
A configuration of size n is a set of n cells in the triangle T_n of size n.



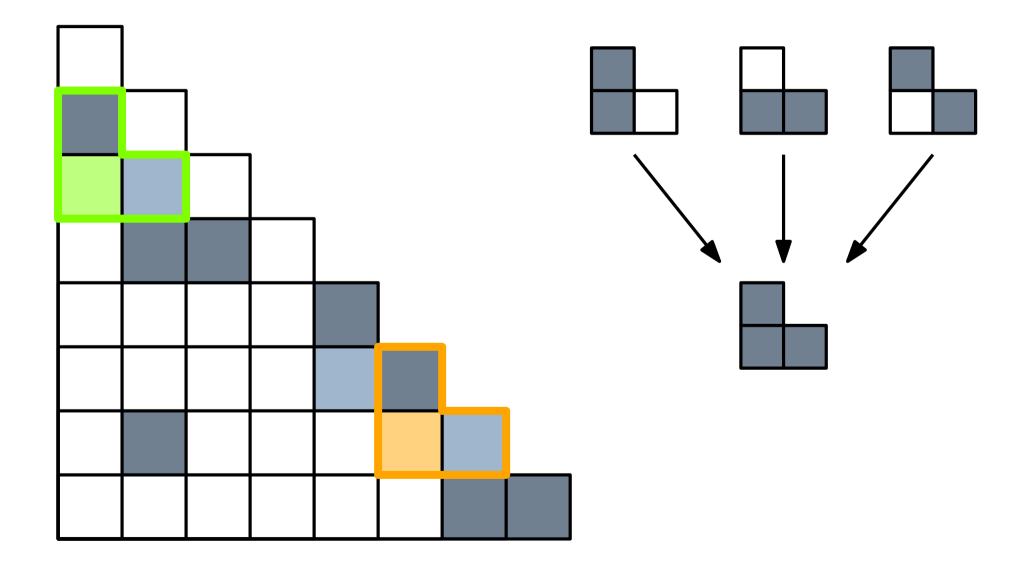
A configuration of size n is a set of n cells in the triangle T_n of size n.



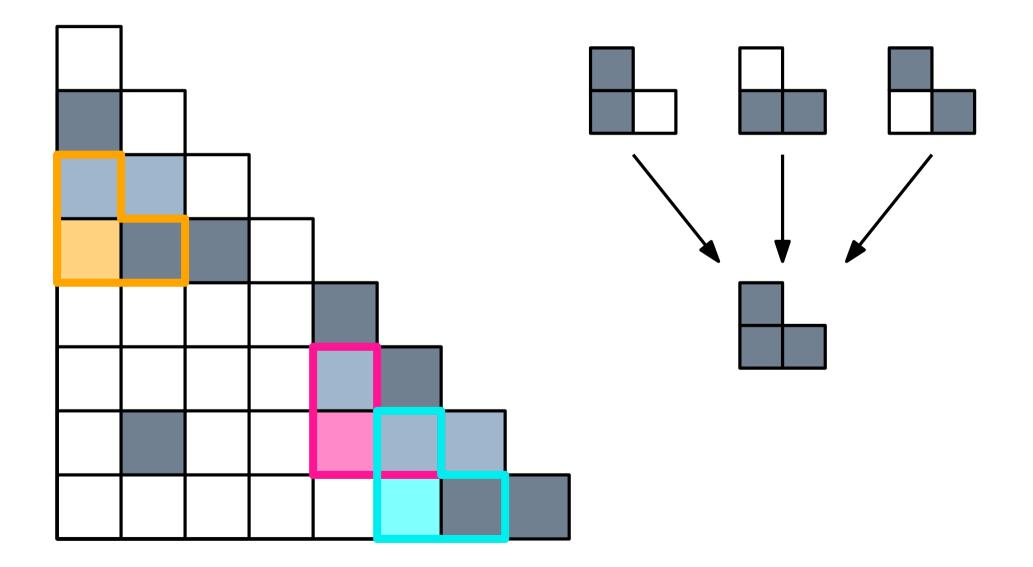
A configuration of size n is a set of n cells in the triangle T_n of size n.



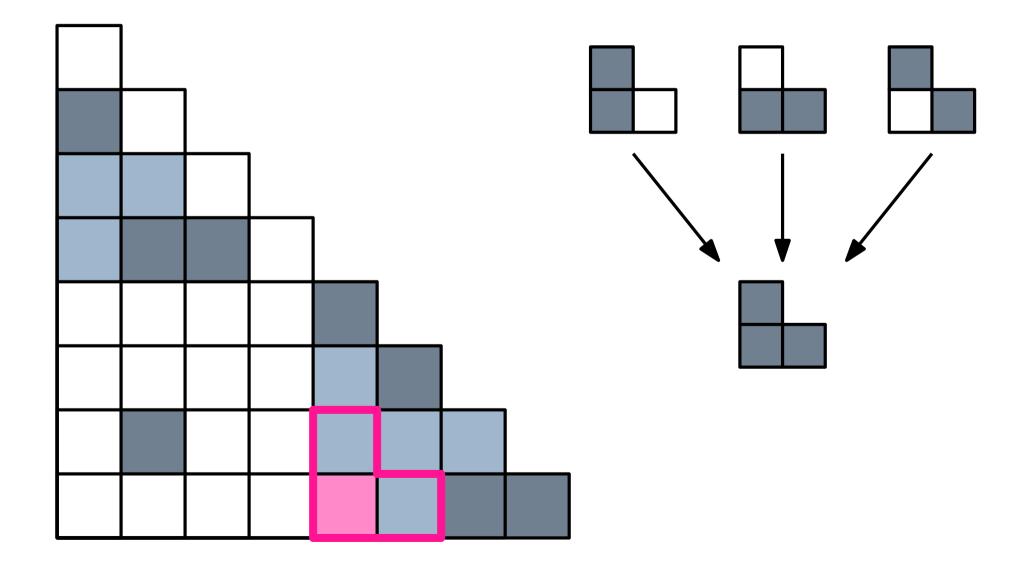
A configuration of size n is a set of n cells in the triangle T_n of size n.



A configuration of size n is a set of n cells in the triangle T_n of size n.



A configuration of size n is a set of n cells in the triangle T_n of size n.

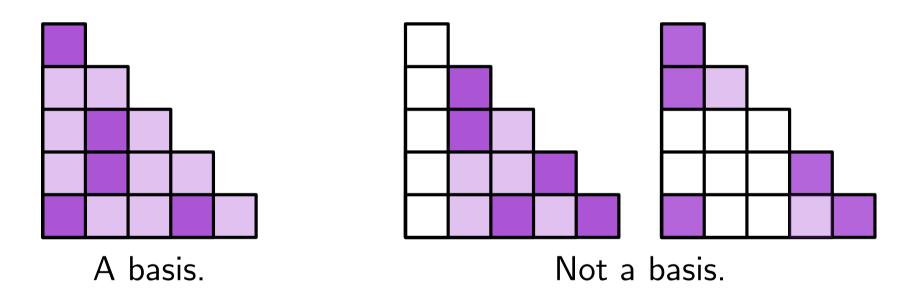


A configuration of size n is a set of n cells in the triangle T_n of size n.



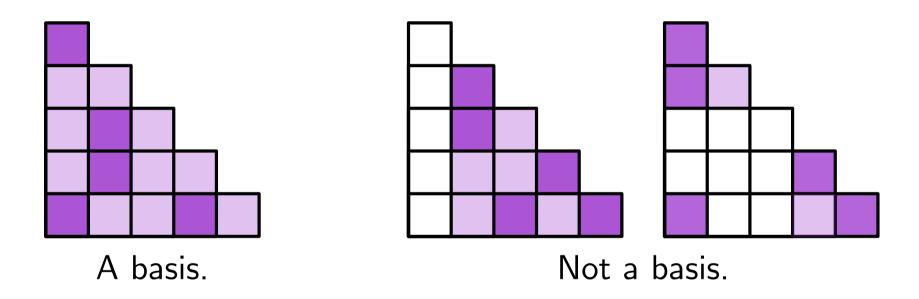
Triangle bases

A triangle basis of size n is a configuration of n points that fills T_n . Denote \mathcal{B}_n their set.



Triangle bases

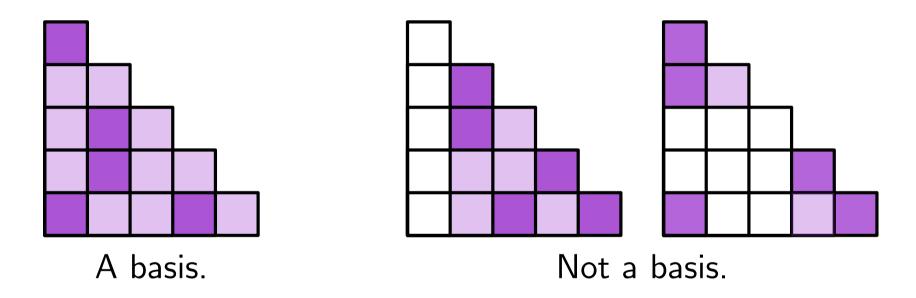
A triangle basis of size n is a configuration of n points that fills T_n . Denote \mathcal{B}_n their set.



▶ Used to study "totally extremaly permutive" tilings [Salo '20].

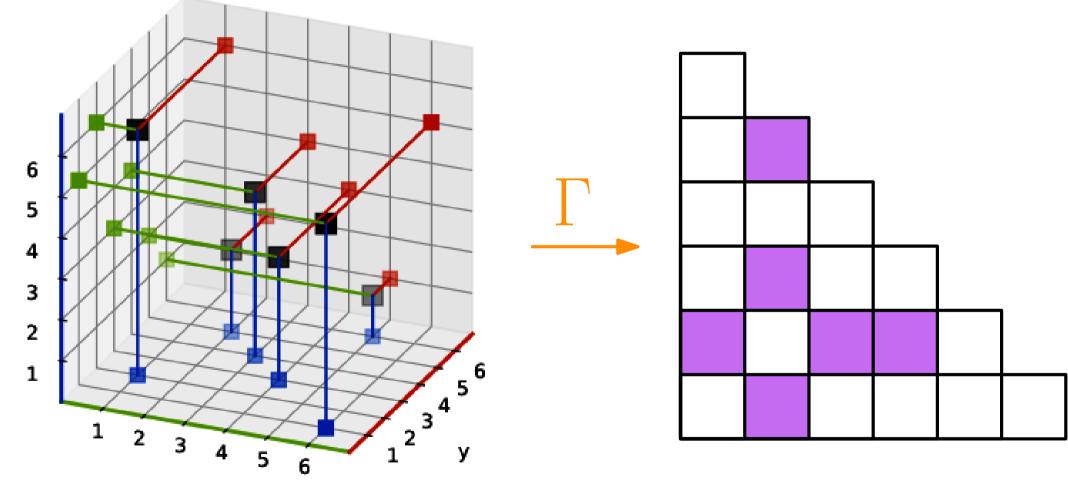
Triangle bases

A triangle basis of size n is a configuration of n points that fills T_n . Denote \mathcal{B}_n their set.



Theorem. [S. '25] For all n, the set of triangle bases of size n is in bijection with $Av_n((12, 12), (312, 231))$.

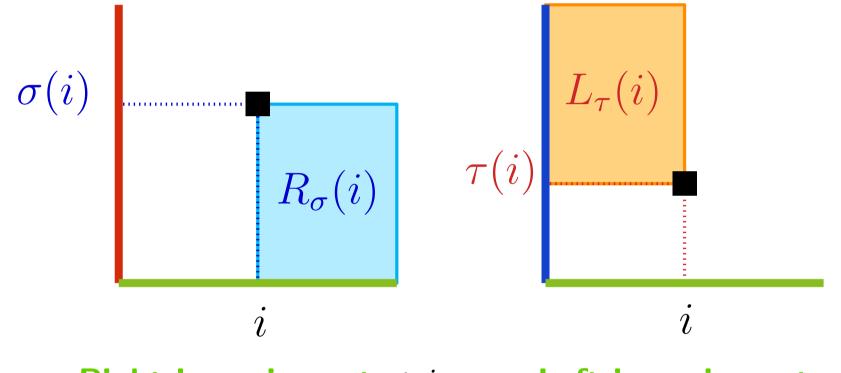
II- A bijection



z

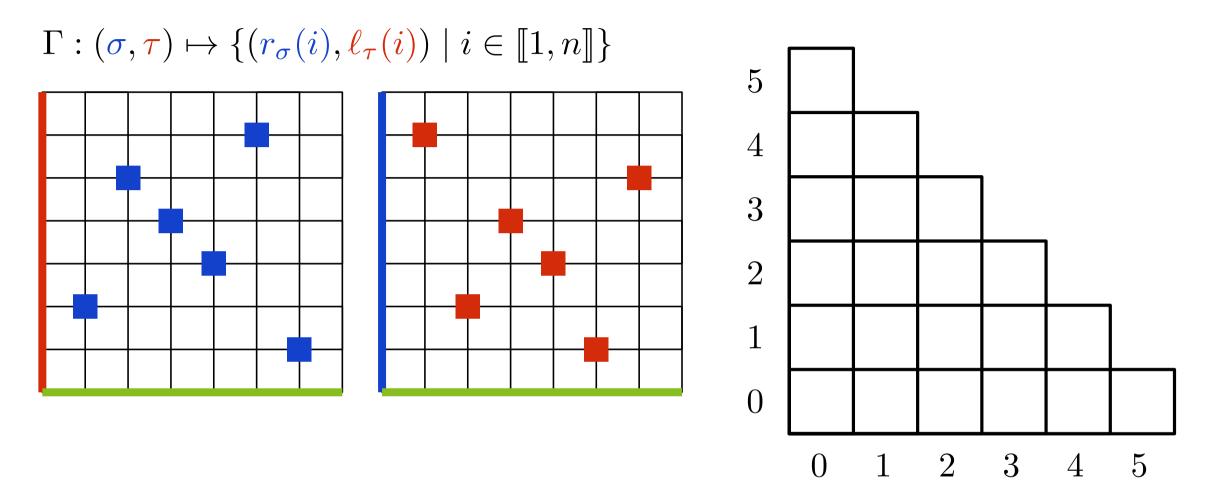
х

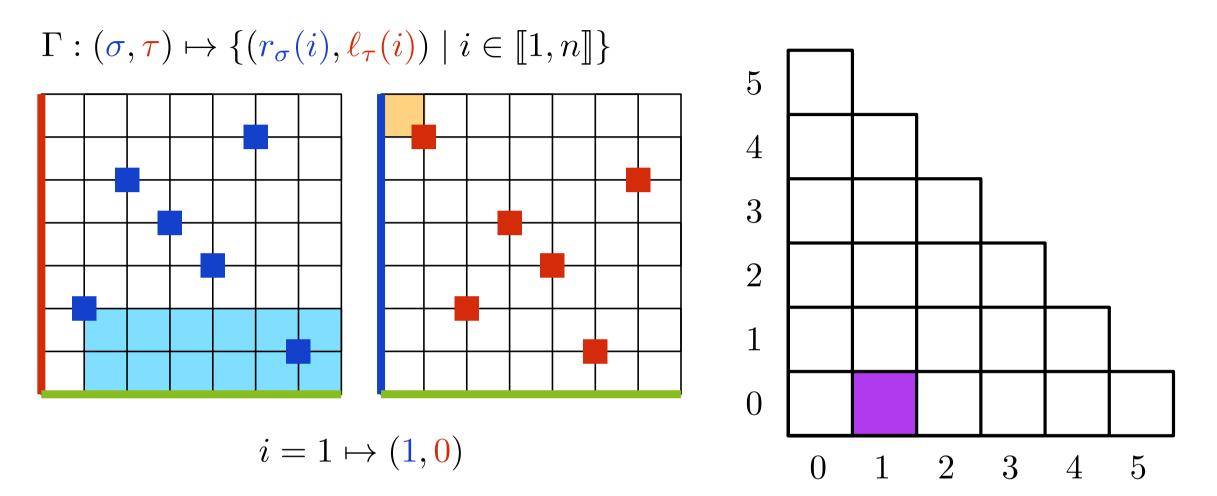
An inversion of $\sigma \in \mathfrak{S}_n$ is $(i, j) \in [\![1, n]\!]$ with i < j and $\sigma(i) > \sigma(j)$.

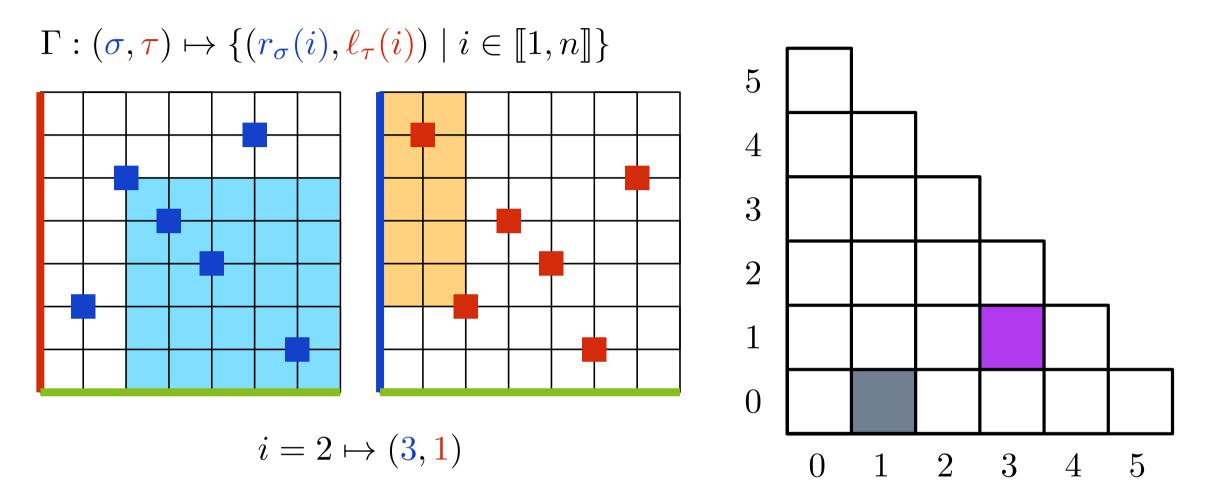


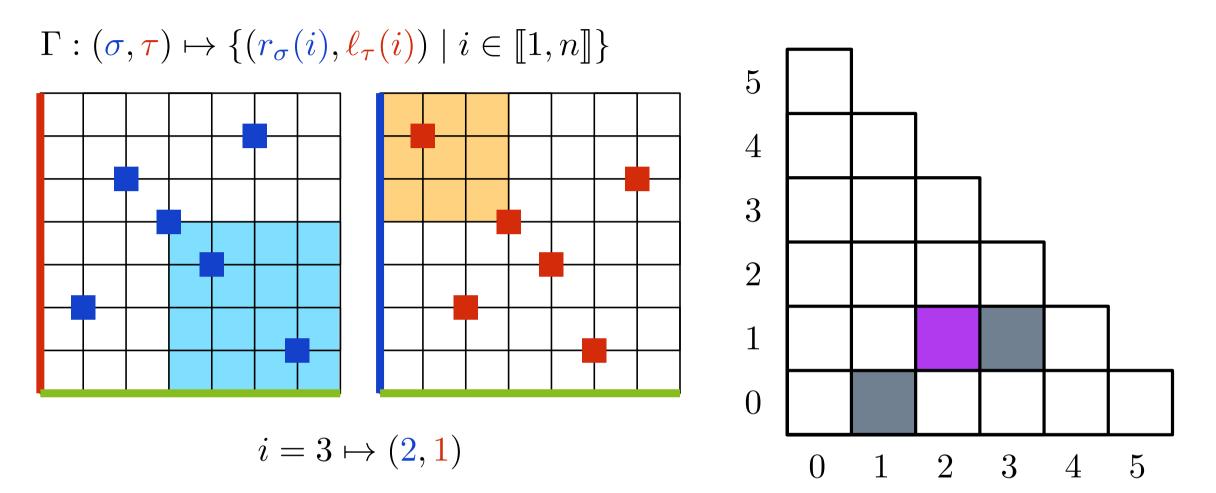
Right inversion set at i $r_{\sigma}(i) = |R_{\sigma}(i)|$ Left inversion set at i $\ell_{\tau}(i) = |L_{\tau}(i)|$

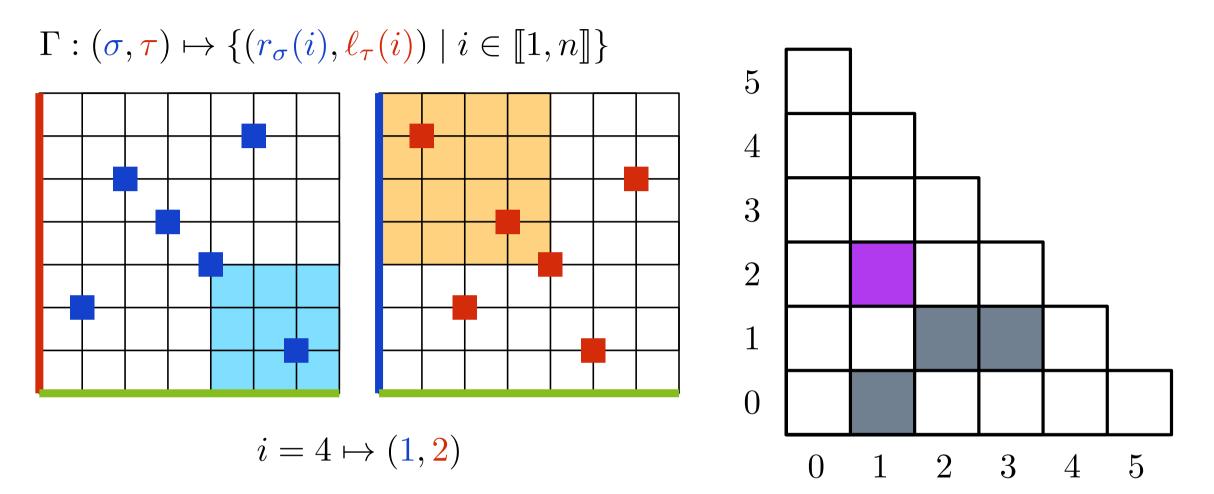
The bijection from 3-permutations to bases: $\Gamma: (\sigma, \tau) \mapsto \{ (r_{\sigma}(i), \ell_{\tau}(i)) \mid i \in \llbracket 1, n \rrbracket \}$

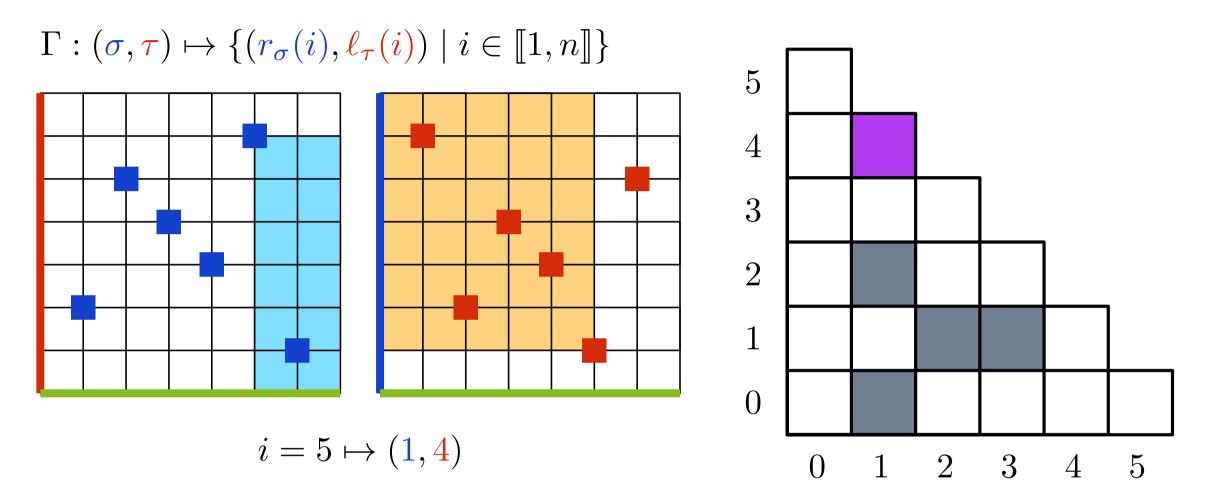


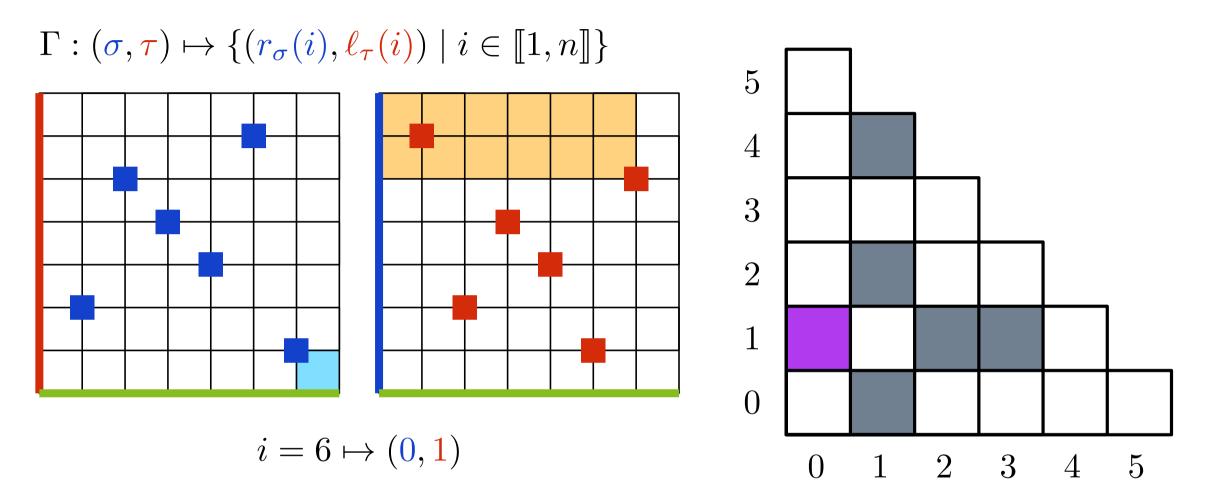


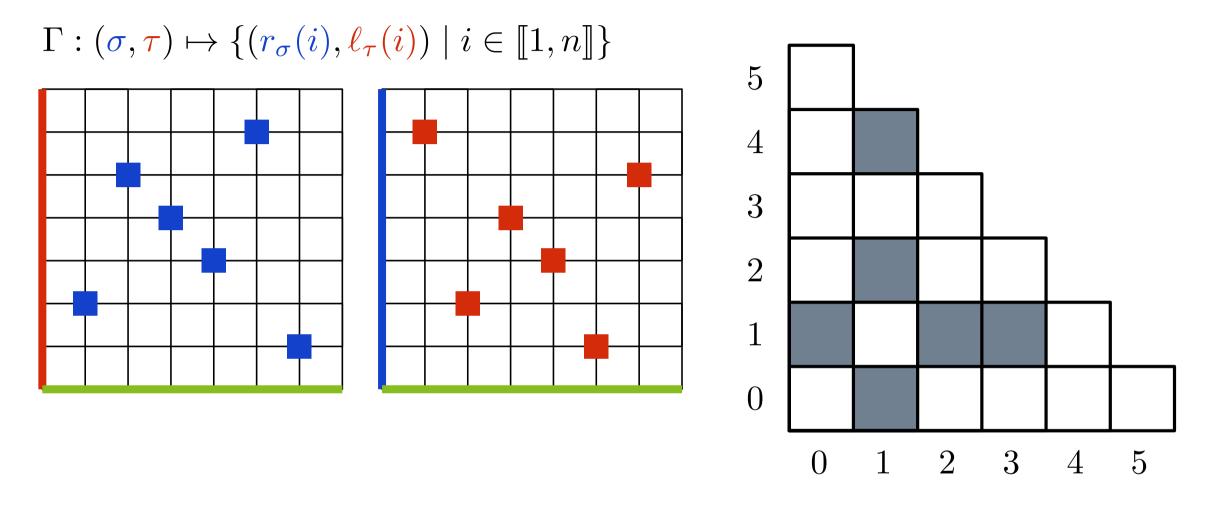








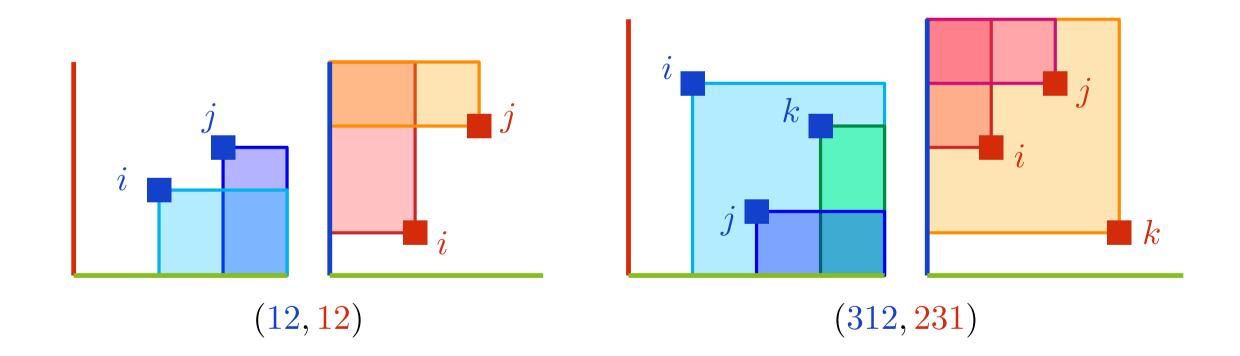




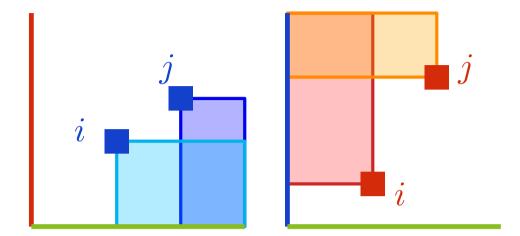
Theorem. [S. '25] For all n, Γ is a bijection between $Av_n((12, 12), (312, 231))$ and the triangle bases of size n.

Why does avoiding (12, 12) and (312, 231) lead to a triangle basis?

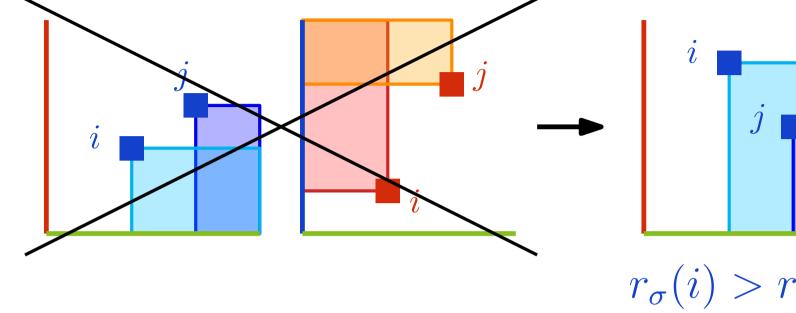
Intuition

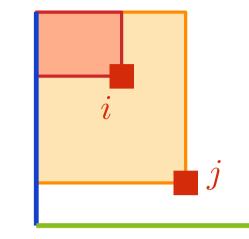


Avoiding $(12,12){:}\ \text{no}\ \text{``points too close''}$



Avoiding (12, 12): no "points too close"



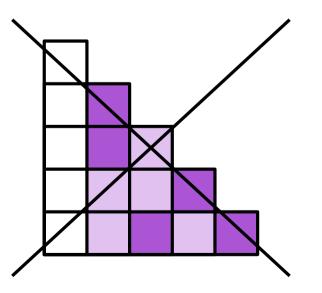


or

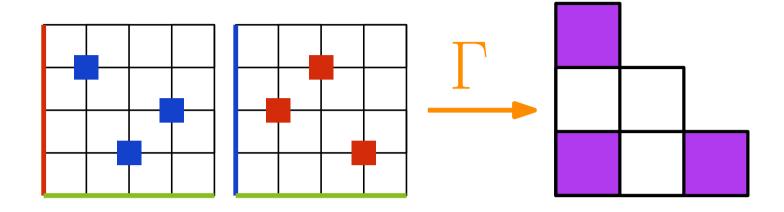
 $r_{\sigma}(i) > r_{\sigma}(j)$ $\ell_{\tau}(i) < \ell_{\tau}(j)$

Consequence: If (σ, τ) avoids (12, 12) then

- all points $(r_{\sigma}(i), \ell_{\tau}(i))$ are distinct
- the configuration is sparse: there is no triangle T of size k such that $|C \cap T| > k$.



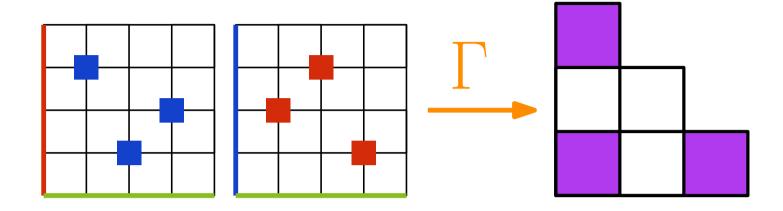
Avoiding (312, 231): no "points too far"



the only sparse configuration of size 3 that does not fill.

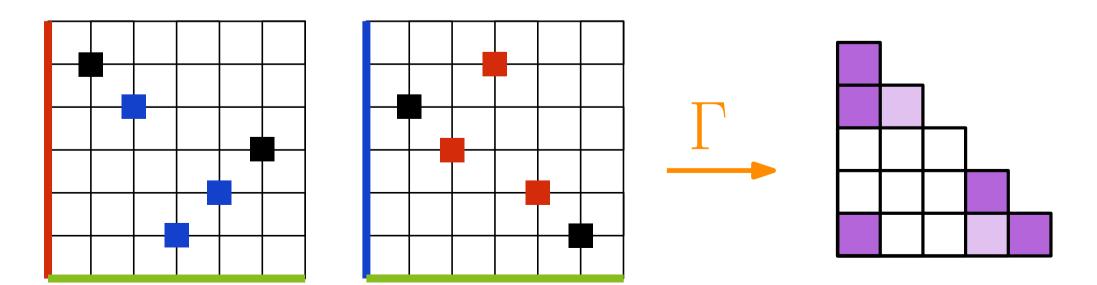
Intuition: Avoiding (312, 231) prevents "gaps".

Avoiding (312, 231): no "points too far"

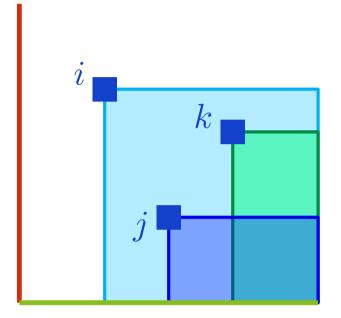


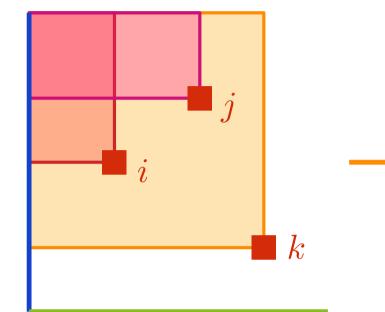
the only sparse configuration of size 3 that does not fill.

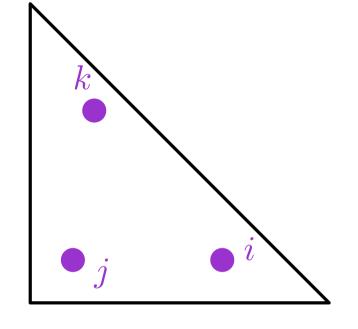
Intuition: Avoiding (312, 231) prevents "gaps".



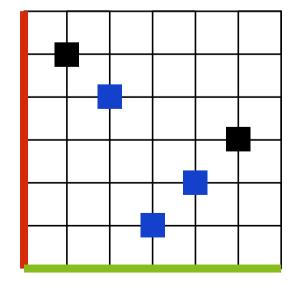
Avoiding (312, 231): no "points too far"

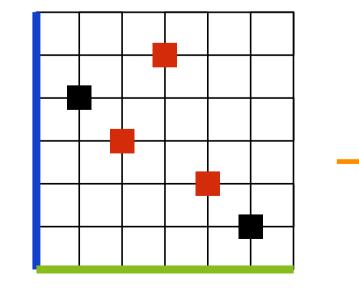


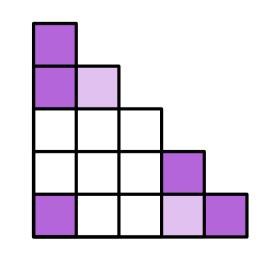




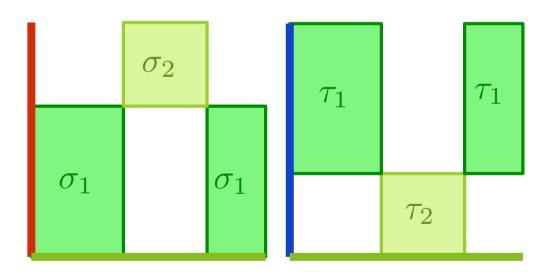
Points too far to fill



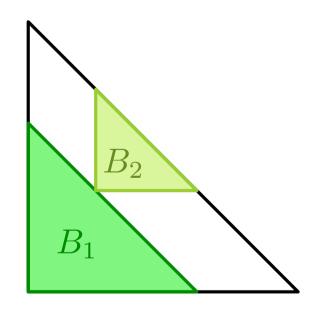




The key tool of the proof: Isomorphic recursive decompositions



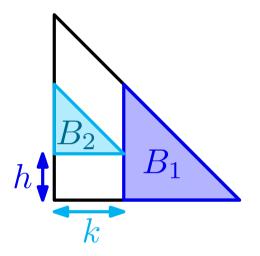
3-permutations

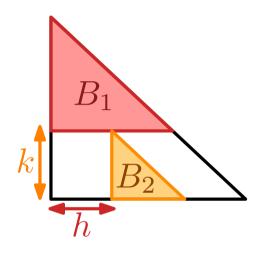


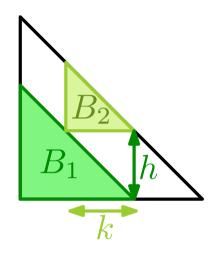
Bases

Isomorphic recursive decompositions

Lemma. [Salo, S. '22] Any basis of size $n \ge 2$ can be cut into two smaller bases in one of the 3 following ways.

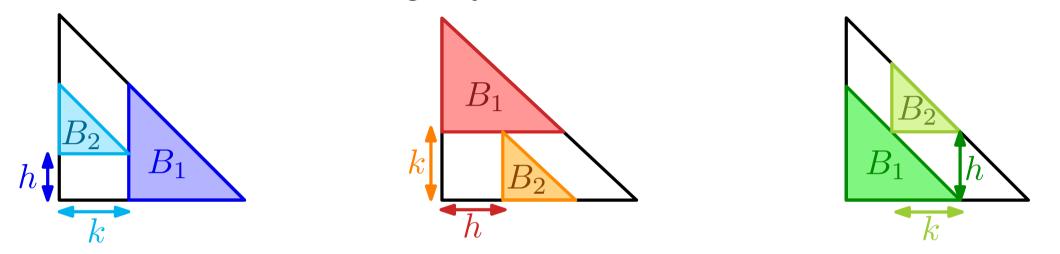




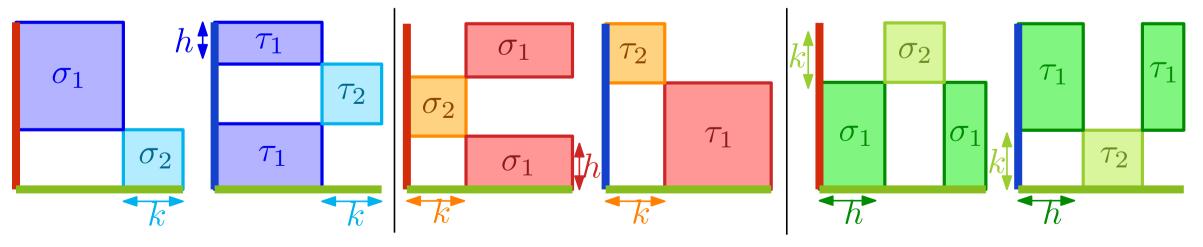


Isomorphic recursive decompositions

Lemma. [Salo, S. '22] Any basis of size $n \ge 2$ can be cut into two smaller bases in one of the 3 following ways.



Lemma. [S. '25] Any 3-permutation of $Av_n((12, 12), (312, 231))$ can be cut into two smaller 3-permutations in one of the 3 following ways.



Proposition. [S. '25] Γ transports the cuts.

Isomorphic recursive decompositions

Lemma. [Salo, S. '22] Any basis of size $n \ge 2$ can be cut into two smaller bases in one of the 3 following ways.

Lemma. [S. '25] Any 3-permutation of $Av_n((12, 12), (312, 231))$ can be cut into two smaller 3-permutations in one of the 3 following ways.

Proposition. [S. '25] Γ transports the cuts.

We can now prove everything by induction!

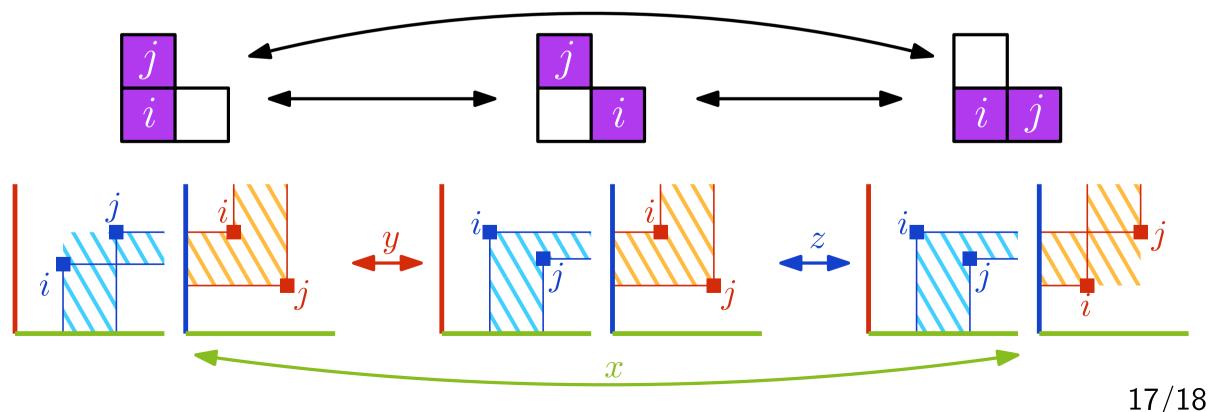
- $\Gamma(Av_n((12, 12), (312, 231))) \subset \mathcal{B}_n$
- Γ is surjective
- Γ is injective.

Nice properties and consequences

- Simple construction that transports symmetries.
- Links two objects that are understood very differently \implies tools transfer.

On bases: a canonical labelling on bases, maybe a characterisation by forbidden patterns.

On permutations: a dynamical system on 3-permutations (and others!) which could allow sampling.



• No enumerative result.

▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals (unknown).

• No enumerative result.

▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals (unknown).

• Γ is well defined on all of Av(12, 12). Could it give correspondances between other pattern avoiding classes of 3-permutations and sparse configurations?

• No enumerative result.

▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals (unknown).

- Γ is well defined on all of Av(12, 12). Could it give correspondances between other pattern avoiding classes of 3-permutations and sparse configurations?
- Extend Γ to higher dimensions?

• No enumerative result.

▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals (unknown).

- Γ is well defined on all of Av(12, 12). Could it give correspondances between other pattern avoiding classes of 3-permutations and sparse configurations?
- Extend Γ to higher dimensions?

Thank you!