Chaînes montantes-descendantes et limites d'échelle

Valentin Féray joint work with Kelvin Rivera-Lopez

CNRS, Institut Élie Cartan de Lorraine (IECL)

Journées ALÉA 2025 CIRM, Luminy, 20 mars 2025

Up-down chains

Let $S = \bigcup_{n \ge 1} S_n$ be a combinatorial class, with $|S_1| = 1$. An updown chain is a Markov chain $p_n = p_n^{\uparrow} p_{n+1}^{\downarrow}$ on S_n consisting of

- an up-step p_n^{\dagger} from S_n to S_{n+1} (typically adding/duplicating an element);
- a down-step p_{n+1}^{\downarrow} from S_{n+1} to S_{n+1} (typically deleting a random element).

Up-down chains

Let $S = \bigcup_{n \ge 1} S_n$ be a combinatorial class, with $|S_1| = 1$. An updown chain is a Markov chain $p_n = p_n^{\uparrow} p_{n+1}^{\downarrow}$ on S_n consisting of

- an up-step p_n^{\dagger} from S_n to S_{n+1} (typically adding/duplicating an element);
- a down-step p_{n+1}^{\downarrow} from S_{n+1} to S_{n+1} (typically deleting a random element).

In this talk: stationary distribution, mixing time (in terms of separation distance) and scaling limit.

Up-down chains

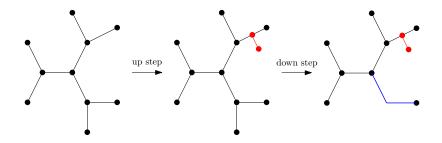
Let $S = \bigcup_{n \ge 1} S_n$ be a combinatorial class, with $|S_1| = 1$. An updown chain is a Markov chain $p_n = p_n^{\uparrow} p_{n+1}^{\downarrow}$ on S_n consisting of

- an up-step p_n^{\dagger} from S_n to S_{n+1} (typically adding/duplicating an element);
- a down-step p_{n+1}^{\downarrow} from S_{n+1} to S_{n+1} (typically deleting a random element).

In this talk: stationary distribution, mixing time (in terms of separation distance) and scaling limit.

Motivations: tractable dynamic models, construction of diffusions on infinite-dimensional space states, Stein method.

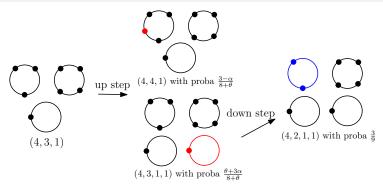
Example 1: trees (Aldous, 2000)



• up step: choose a uniform random edge, and attach to it a new leaf.

• down step: erase a uniform random leaf (and the corresponding edge and branching point).

Example 2: partitions (Petrov 2009)



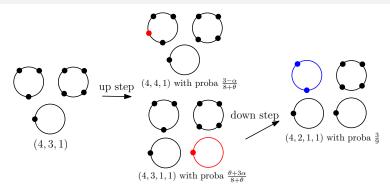
• up step: increase a part of size *i* with probability $(i - \alpha)/(n + \theta)$, and create a new part with probability $(\theta + \alpha \ell)/(n + \theta)$, where ℓ is the number of parts.

(For $\theta = 1$, $\alpha = 0$, this is a step of the Chinese Restaurant Process.)

• down step: remove a uniform random element (i.e. each part of size i decreases with probability i/(n+1)).

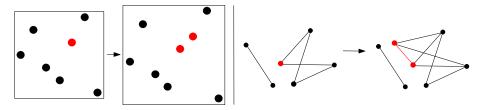
V. Féray (CNRS, IECL)

Example 2: partitions (Petrov 2009)



- \rightarrow many variants in the literature:
- Involving Schur functions, z-measures on partitions/Thoma simplex (Borodin–Olshanski 2009), and Jack polynomials (Olshanski 2010);
- Strict partitions (Petrov 2010);
- Ordered version on integer compositions (Rivera-Lopez-Rizzolo 2022).

Example 3: permutations/graphs

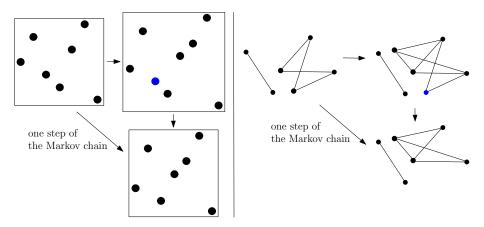


Upstep : duplicate a uniform random element/vertex.

With probability $p \in (0, 1)$,

the "twin" elements are in increasing order (permutation case); the two "twin" vertices are connected with probability *p* (graph case).

Example 3: permutations/graphs



Downstep: delete a uniform random element/vertex

Example 3: permutations/graphs - simulation

Simulation of the up-down chain on permutations. Here, we take q = 1/2, n = 1,000, and we plot the permutation after *m* steps, where $m \in \{0,...,50\} \cdot 2,000$.

V. Féray (CNRS, IECL)

Key assumption: the commutation relation

- Let p[↑]_n ∈ M(S_n×S_{n+1}) be the up transition matrix, i.e. p[↑]_n(τ,σ) is the probability to find σ when duplicating a uniform random point in τ.
- Let p[↓]_{n+1} ∈ M(S_{n+1}×S_n) be the down transition matrix, i.e. p[↓]_{n+1}(σ,τ) is the probability to find τ when deleting a uniform random point in σ.

Assumption (C)

For any $n \ge 2$, we have

$$p_n^{\dagger} p_{n+1}^{\downarrow} = \beta_n p_n^{\downarrow} p_{n-1}^{\dagger} + (1 - \beta_n) \operatorname{Id}_{\mathbb{S}_n},$$

Assumption (C) is fulfilled in the previous examples (with $\beta_n = \frac{n(2n-7)}{(n+1)(2n-5)}, \frac{n(n-1+\theta)}{(n+1)(n+\theta)}, \frac{n-1}{n+1}$ respectively).

(Intuition: adding and removing an element in different places commute, adding and removing an element in the same place gives Id_{S_n} .)

V. Féray (CNRS, IECL)

Stationary distribution

Proposition (general case)

Assume (C). For $s \in S_n$, let $M_n(s) = p_1^{\dagger} p_2^{\dagger} \dots p_{n-1}^{\dagger}(s_1, s)$, where s_1 is the unique element of S_1 . Then M_n is the unique stationary measure of p_n .

Stationary distribution

Proposition (general case)

Assume (C). For $s \in S_n$, let $M_n(s) = p_1^{\dagger} p_2^{\dagger} \dots p_{n-1}^{\dagger}(s_1, s)$, where s_1 is the unique element of S_1 . Then M_n is the unique stationary measure of p_n .

Proposition (alternative description in the permutation case)

For each $k \ge 1$, let $\sigma_k, \sigma'_k, \sigma''_k$ be independent random permutations with law M_k . Then, if I is uniform in $\{1, ..., n-1\}$

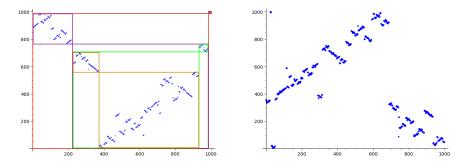
$$\mathsf{Law}(\sigma_n) = p \, \mathsf{Law}(\sigma'_I \oplus \sigma''_{(n-I)}) + (1-p) \, \mathsf{Law}(\sigma'_I \oplus \sigma''_{(n-I)}).$$

We call σ_n the recursive separable permutation.

V. Féray (CNRS, IECL)

Up-down chains

Convergence to the stationary distribution - simulation



Left: Simulation of the stationary distribution (n = 1000), the colored square emphasizes the recursive structure of the limit. Right: Simulation of the up-down chain on permutations after 250000 steps (n = 1000, p = 1/2).

Separation distance (exact formula)

Definition (separation distance, Aldous–Diaconis, '87)

Let $(X(m))_{m\geq 0}$ be a Markov chain on a finite space S with stationary distribution M

$$\Delta(m) := \max_{\substack{x,y\in S\\M(y)\neq 0}} 1 - \frac{\mathbb{P}_{\times}(X(m) = y)}{M(y)}.$$

It is a standard way to quantify speed of convergence for Markov chains.

Separation distance (exact formula)

2

Definition (separation distance, Aldous–Diaconis, '87)

Let $(X(m))_{m\geq 0}$ be a Markov chain on a finite space S with stationary distribution M

$$\Delta(m) := \max_{\substack{x,y\in S\\ M(y)\neq 0}} 1 - \frac{\mathbb{P}_{\times}(X(m) = y)}{M(y)}.$$

Assumption (S1): for each $n \ge 1$, there exist $r_n \ne s_n$ in S_n which are at distance n-1.

(Fulfilled in the partition and permutation examples

$$r_n =$$

Separation distance (exact formula)

2

Definition (separation distance, Aldous–Diaconis, '87)

Let $(X(m))_{m\geq 0}$ be a Markov chain on a finite space S with stationary distribution M

$$\Delta(m) := \max_{\substack{x,y\in S\\ M(y)\neq 0}} 1 - \frac{\mathbb{P}_{\times}(X(m) = y)}{M(y)}.$$

Assumption (S1): for each $n \ge 1$, there exist $r_n \ne s_n$ in S_n which are at distance n-1.

Proposition (F.-Rivera-Lopez, '25, based on Fulman, '09)

Assume (C) and (S1). Then, if Δ_n is the separation distance of X_n ,

$$\Delta_n(m) = \sum_{i=0}^{n-1} \left(1 - \frac{c_i}{c_n}\right)^m \prod_{\substack{0 \le j \le n-1 \\ i \ne i}} \frac{c_j}{c_j - c_i},$$

where $c_n = (\beta_1 \dots \beta_n)^{-1}$, $c_n = \Theta(n^2)$ in the examples.

Density functions and eigenvalues of p_n

For τ in \mathbb{S}_k and σ in \mathbb{S}_n , with $k \leq n$

$$d_{\tau}(\sigma) = (p_n^{\downarrow} \dots p_{k+1}^{\downarrow})(\sigma, \tau).$$

In words, $d_{\tau}(\sigma)$ is the probability to obtain τ when deleting n-k uniform random elements in σ , or the "proportion of τ " in σ .

Density functions and eigenvalues of p_n

For τ in \mathbb{S}_k and σ in \mathbb{S}_n , with $k \leq n$

$$d_{\tau}(\sigma) = (p_n^{\downarrow} \dots p_{k+1}^{\downarrow})(\sigma, \tau).$$

In words, $d_{\tau}(\sigma)$ is the probability to obtain τ when deleting n-k uniform random elements in σ , or the "proportion of τ " in σ .

Proposition (F., Rivera-Lopez, '25)

Under assumption (C), seeing d_{τ} as a vector in $\mathbb{C}^{\mathbb{S}_n}$,

$$p_n d_{\tau} = (1 - \beta_k \cdots \beta_n) d_{\tau} + (\beta_k \cdots \beta_n) \sum_{\rho \nearrow \tau} p_{k-1}^{\dagger}(\rho, \tau) d_{\rho}.$$

The eigenvalues of p_n are $\lambda_k = 1 - \beta_k \cdots \beta_n$, with multiplicity $|S_k| - |S_{k-1}|$. (Eigenvalues were known from Fulman, 2009, but without diagonal/triangular descriptions.)

Scaling limit: assumption on limiting space

Informally, we assume that we have an inclusion $\mathbb{S} \hookrightarrow E$ in some space E, and that

convergence in E is equivalent to the convergence of the functions d_{τ} .

Scaling limit: assumption on limiting space

Informally, we assume that we have an inclusion $\mathbb{S} \hookrightarrow E$ in some space E, and that

convergence in E is equivalent to the convergence of the functions d_{τ} .

Examples :

- For permutations/graphs, such spaces are known and well-understood: permutons and graphons.
- In our partition example, *E* is the Kingman simplex

$$\left\{ \left(x_1 \ge x_2 \ge \dots\right), \sum x_i \le 1 \right\}.$$

• For trees, we need to use the space of algebraic trees introduced by Löhr–Mytnik–Winter, 2020 (it is a weaker topology than Gromov–Hausdorff convergence).

Scaling limit result

Theorem (F., Rivera-Lopez, '25)

Let X_n be updown Markov chains satisfying assumption (C), and E be an appropriate limiting space. Assume that $X_n(0)$ converge to \times in E.

Then there exists a Feller diffusion F on E

$$(X_n(c_nt \rfloor))_{t\geq 0} \Longrightarrow (F(t))_{t\geq 0},$$

in distribution in the Skorokhod space $D([0, +\infty), \mathscr{P})$.

Moreover, the generator \mathscr{A} of F admits $\text{Span}(d_{\tau}, \tau \in \mathbb{S})$ as a core, and we have, for τ in \mathbb{S}_k ,

$$\mathscr{A}d_{\tau} = -c_{k-1}\Big(d_{\tau} - \sum_{\rho \nearrow \tau} p_{k-1}^{\dagger}(\rho,\tau)d_{\rho}\Big).$$

Generator of a process $F: \mathscr{A}g := \frac{d}{dt} \mathbb{E}[g(F(t))]\Big|_{t=0}$.

V. Féray (CNRS, IECL)

Scaling limit result

Theorem (F., Rivera-Lopez, '25)

Let X_n be updown Markov chains satisfying assumption (C), and E be an appropriate limiting space. Assume that $X_n(0)$ converge to \times in E.

Then there exists a Feller diffusion F on E

$$(X_n(c_nt \rfloor))_{t\geq 0} \Longrightarrow (F(t))_{t\geq 0},$$

in distribution in the Skorokhod space $D([0, +\infty), \mathscr{P})$.

Moreover, the generator \mathscr{A} of F admits $\text{Span}(d_{\tau}, \tau \in \mathbb{S})$ as a core, and we have, for τ in \mathbb{S}_k ,

$$\mathscr{A}d_{\tau} = -c_{k-1}\Big(d_{\tau} - \sum_{\rho \nearrow \tau} p_{k-1}^{\dagger}(\rho,\tau)d_{\rho}\Big).$$

 \rightarrow unifies a number of previous results; new for the permutation/graph chain.

V. Féray (CNRS, IECL)

Separation distance (asymptotics)

Theorem (F.-Rivera-Lopez, '25) Assume (C) and (S1), and in addition • $p_n^{\downarrow}(r_n, r_{n-1}) = 1$ for $n \ge 2$; • $\sum_{n\ge 0} \frac{1}{c_n} < \infty$, and that $\{c_{n+1} - c_n\}_{n\ge 0}$ is an unbounded, nondecreasing sequence. Then $\Delta_F(t) = \lim \Delta_n(\lfloor c_n t \rfloor) = \sum_{i=0}^{\infty} e^{-tc_i} \prod_{\substack{j \ne 0 \\ j \ne i}}^{\infty} \frac{c_j}{c_j - c_i}$,

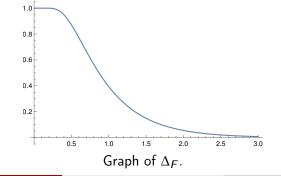
where Δ_F is the separation distance of the limiting process F.

Asymptotics of the separation distance (permutation case)

Example

For the updown chain on permutations, we have

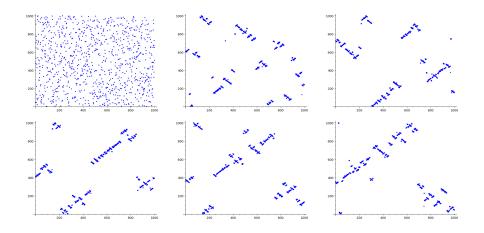
$$\lim_{n \to +\infty} \Delta_n(\lfloor n^2 t \rfloor) = \Delta_F(t) = \sum_{j=1}^{+\infty} (-1)^{j-1} (2j+1) e^{-tj(j+1)}$$



V. Féray (CNRS, IECL)

Up-down chains

Thank you for your attention



Up-down chains