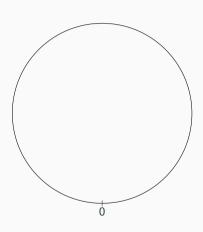
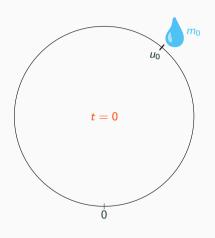


Stochastic diffusion model on the unit circle

Zoé Varin March 17th, 2025

Joint work with Jean-François Marckert

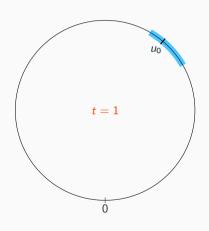




State space $C = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

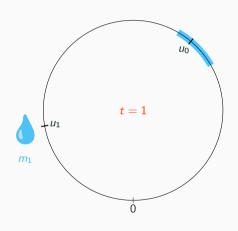
At every step k:

• arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$



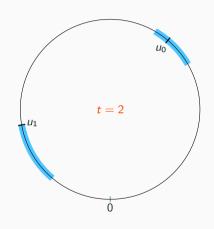
State space $C = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

- ullet arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



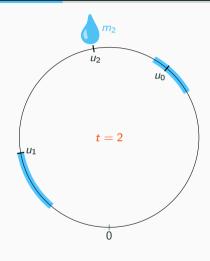
State space $C = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



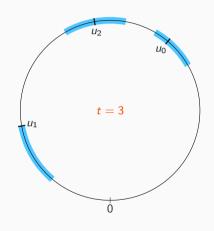
State space $C = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

- ullet arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



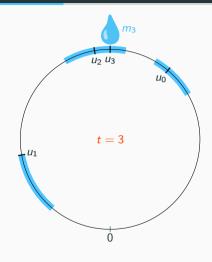
State space $\mathcal{C}=\mathbb{R}/\mathbb{Z}.$ m_0,\cdots,m_n with $\sum m_i<1.$

- ullet arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



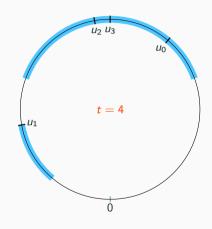
State space $C = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



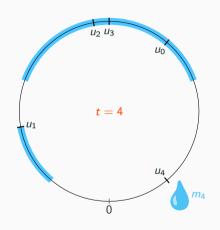
State space $C = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

- ullet arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



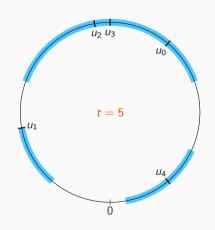
State space $C = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



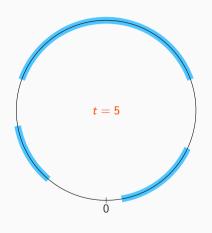
State space $\mathcal{C}=\mathbb{R}/\mathbb{Z}.$ m_0,\cdots,m_n with $\sum m_i<1.$

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



State space $C = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



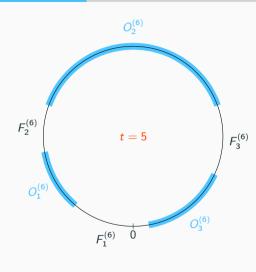
State space $C = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k:

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

Configuration at time k (i.e. after drop k-1 has been spread):

- **occupied space** $O^{(k)}$ of size Leb $\left(O^{(k)}\right) = \sum_{i=0}^{k-1} m_i$
- free space $F^{(k)} = \mathcal{C} \setminus O^{(k)}$



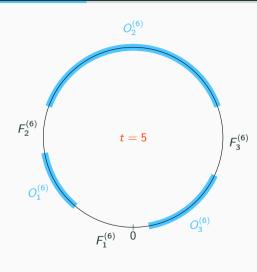
State space $C = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k:

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

Configuration at time k (i.e. after drop k-1 has been spread):

- occupied space $O^{(k)}$ of size Leb $\left(O^{(k)}
 ight) = \sum_{i=0}^{k-1} m_i$
- free space $F^{(k)} = \mathcal{C} \setminus O^{(k)}$
- more precisely, $N^{(k)}$ blocks of each type
- $\Longrightarrow (O_i^{(k)},F_i^{(k)})_{1\leq i\leq N^{(k)}}$ ordered around the circle with $0\in O_1^{(k)}\cup F_1^{(k)}$



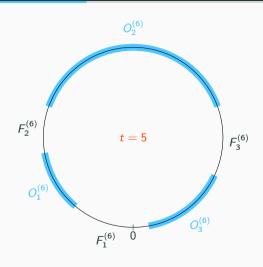
State space $C = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k:

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

Configuration at time k (i.e. after drop k-1 has been spread):

- **occupied space** $O^{(k)}$ of size Leb $O^{(k)} = \sum_{i=0}^{k-1} m_i$
- free space $F^{(k)} = \mathcal{C} \setminus O^{(k)}$
- more precisely, $N^{(k)}$ blocks of each type
- $\Longrightarrow (O_i^{(k)},F_i^{(k)})_{1\leq i\leq N^{(k)}}$ ordered around the circle with $0\in O_1^{(k)}\cup F_1^{(k)}$

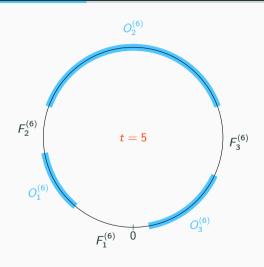


Hypotheses: local and continuous diffusion

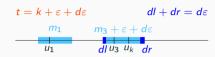
$$t = k + \varepsilon$$

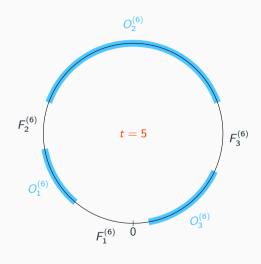
$$m_1 \qquad m_3 + \varepsilon$$

$$u_1 \qquad u_3 \ u_k$$



Hypotheses: local and continuous diffusion





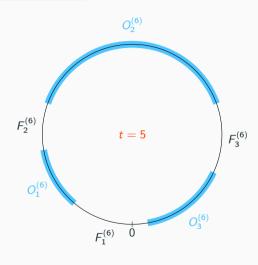
Hypotheses: local and continuous diffusion

$$t = k + \varepsilon + d\varepsilon \qquad dl + dr = d\varepsilon$$

$$m_1 \qquad m_3 + \varepsilon + d\varepsilon$$

$$u_1 \qquad dl u_3 u_k \qquad dr$$

- invariance by translation of the process
- *dl* and *dr* only depend on what is inside the current component of u_k (one of the $O_i^{(k+\varepsilon)}$)



Hypotheses: local and continuous diffusion

$$t = k + \varepsilon + d\varepsilon \qquad dl + dr = d\varepsilon$$

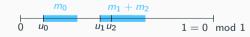
$$m_1 \qquad m_3 + \varepsilon + d\varepsilon$$

$$u_1 \qquad dl u_3 \quad u_k \quad dr$$

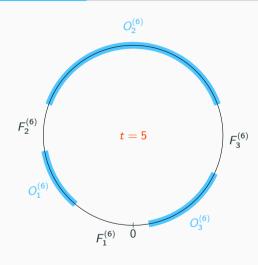
- invariance by translation of the process
- *dl* and *dr* only depend on what is inside the current component of u_k (one of the $O_i^{(k+\varepsilon)}$)

Examples:

• Right diffusion at constant speed: $\overrightarrow{O^{(k)}}$, $\overrightarrow{F^{(k)}}$



(Caravans Æ, Bertoin, Miermont [BM06])



Hypotheses: local and continuous diffusion

$$t = k + \varepsilon + d\varepsilon \qquad dl + dr = d\varepsilon$$

$$m_1 \qquad m_3 + \varepsilon + d\varepsilon$$

$$u_1 \qquad dl u_3 u_k \qquad dr$$

- invariance by translation of the process
- *dl* and *dr* only depend on what is inside the current component of u_k (one of the $O_i^{(k+\varepsilon)}$)

Examples:

• Right diffusion at constant speed: $\overrightarrow{O^{(k)}}$, $\overrightarrow{F^{(k)}}$



(Caravans En, Bertoin, Miermont [BM06])

- Diffusion to the closest side
- "short-sighted jam spreader"

We consider
$$\frac{\sigma.|F^{(k)}|}{R} = \left(\frac{|F^{(k)}_{\sigma_i}|}{R}\right)_{1 \leq i \leq N^{(k)}}$$
, for $\sigma \sim \mathcal{U}(\mathfrak{S}_{N^{(k)}})$. Let $R = 1 - \sum_{i=0}^{k-1} m_i$.

Theorem (Marckert, ZV)

Independently of the diffusion policy,

- Number of blocks: $N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k-1,R)$
- Lengths of the free blocks: $\frac{\sigma.|F^{(k)}|}{R} \sim \mathsf{Dirichlet}(N^{(k)};1,\ldots,1)$
- Lengths of the occupied blocks: a formula for $\mathbb{P}\left(|O^{(k)}|=(M_0,\ldots,M_{b-1})\right)$

We consider $\frac{\sigma.|F^{(k)}|}{R} = \left(\frac{|F_{\sigma_i}^{(k)}|}{R}\right)_{1 \le i \le N^{(k)}}$, for $\sigma \sim \mathcal{U}(\sigma_{u_1, u_2, u_3} \sim \mathcal{U}([0, 1]))$ Theorem (Marckert, ZV)

Independently of the diffusion policy.

- Number of blocks: $N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k (d_0, \dots, d_3) \sim \text{Dirichlet}(4; 1, \dots, 1))$
- Lengths of the free blocks: $\frac{\sigma.|F^{(k)}|}{R} \sim \text{Dirichlet}(N^{(k)}, 1)$
- Lengths of the occupied blocks: a formula for $\mathbb{P}\left(|O^{(k)}|=(M_0,M_{b-1})\right)$

We consider
$$\frac{\sigma.|F^{(k)}|}{R} = \left(\frac{|F^{(k)}_{\sigma_i}|}{R}\right)_{1 \leq i \leq N^{(k)}}$$
, for $\sigma \sim \mathcal{U}(\mathfrak{S}_{N^{(k)}})$. Let $R = 1 - \sum_{i=0}^{k-1} m_i$.

Theorem (Marckert, ZV)

Independently of the diffusion policy,

- Number of blocks: $N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k-1,R)$
- Lengths of the free blocks: $\frac{\sigma.|F^{(k)}|}{R} \sim \mathsf{Dirichlet}(N^{(k)};1,\ldots,1)$
- Lengths of the occupied blocks: a formula for $\mathbb{P}\left(|O^{(k)}|=(M_0,\ldots,M_{b-1})\right)$

Discrete parking

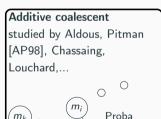
introduced by Konheim, Weiss [KW66], studied by Knuth [Knu73]

 asymptotic behavior studied by Chassaing, Louchard [CL02]

Discrete parking

 introduced by Konheim, Weiss [KW66], studied by Knuth [Knu73]

 asymptotic behavior studied by Chassaing, Louchard [CL02]



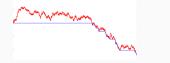
 m_j

 $\propto m_i + m_i$

Discrete parking

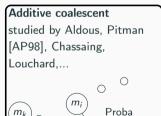
 introduced by Konheim, Weiss [KW66], studied by Knuth [Knu73]

 asymptotic behavior studied by Chassaing, Louchard [CL02]



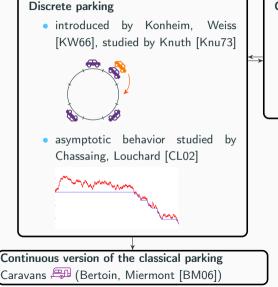
Generalized parking

- Parking on \mathbb{Z} (Przykucki, Roberts, Scott [PRS23])
- Parking on (random) trees (Contat et. al.)
- Bilateral parking procedures (Nadeau), Golf model (ZV)



 m_i

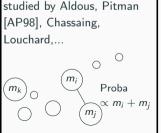
 $\propto m_i + m_i$

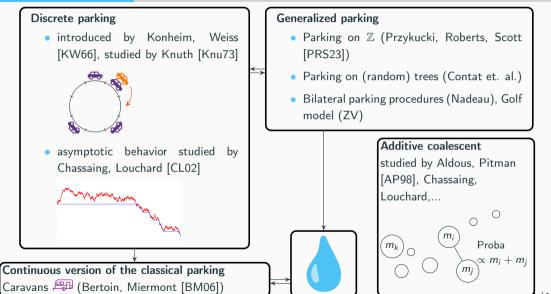


Generalized parking

- Parking on \mathbb{Z} (Przykucki, Roberts, Scott [PRS23])
- Parking on (random) trees (Contat et. al.)
- Bilateral parking procedures (Nadeau), Golf model (ZV)

Additive coalescent





We consider
$$\frac{\sigma \cdot |F^{(k)}|}{R} = \left(\frac{|F^{(k)}_{\sigma_i}|}{R}\right)_{1 < i < N^{(k)}}$$
, for $\sigma \sim \mathcal{U}(\mathfrak{S}_{N^{(k)}})$. Let $R = 1 - \sum_{i=0}^{k-1} m_i$.

Theorem

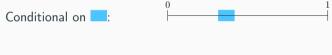
Independently of the diffusion policy,

- **Number of blocks:** $N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k-1,R)$
- Lengths of the free blocks: $\frac{\sigma \cdot |F^{(k)}|}{R} \sim \text{Dirichlet}(N^{(k)}; 1, \dots, 1)$
- Lengths of the occupied blocks: a formula for $\mathbb{P}\left(|O^{(k)}|=(M_0,\ldots,M_{b-1})\right)$

Consider 4 uniform points on [0, 1].

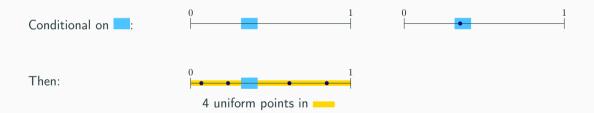
Conditional on ==:

Consider 4 uniform points on [0,1].

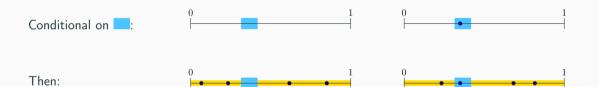


Then:

Consider 4 uniform points on [0,1].



Consider 4 uniform points on [0, 1].



4 uniform points in ____

6/14

3 uniform points in ____

Intuition on the proof

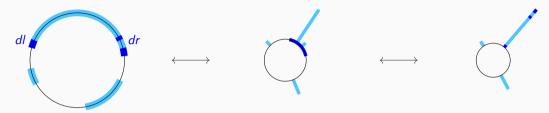
Peaks representation:

Intuition on the proof

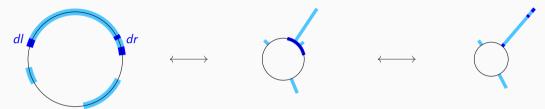
Peaks representation:

Intuition on the proof

Peaks representation:



Peaks representation:

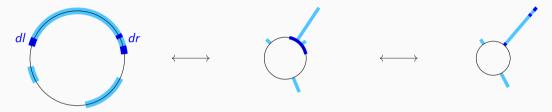


- ullet the positions of the peaks are uniform on the smaller cycle \mathcal{C}_R of size $R=1-\sum m_i$
- the distributions of the peaks number, heights and positions do not depend on the diffusion policy

Peaks representation:

- ullet the positions of the peaks are uniform on the smaller cycle \mathcal{C}_R of size $R=1-\sum m_i$
- the distributions of the peaks number, heights and positions do not depend on the diffusion policy

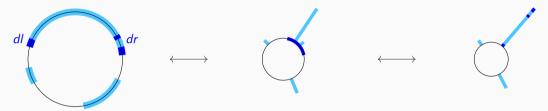
Peaks representation:



$$extstyle rac{\sigma.|F^{(k)}|}{R} \sim \mathsf{Dirichlet}(N^{(k)};1,\ldots,1)$$

- ullet the positions of the peaks are uniform on the smaller cycle \mathcal{C}_R of size $R=1-\sum m_i$
- the distributions of the peaks number, heights and positions do not depend on the diffusion policy

Peaks representation:



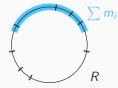
$$o ext{} rac{\sigma.|\mathcal{F}^{(k)}|}{R} \sim \mathsf{Dirichlet}(\mathcal{N}^{(k)};1,\ldots,1)$$

- ullet the positions of the peaks are uniform on the smaller cycle \mathcal{C}_R of size $R=1-\sum m_i$
- the distributions of the peaks number, heights and positions do not depend on the diffusion policy
- even more surprisingly, for the peaks number and positions: do not depend on which peak is extended by the diffusion

Distribution of the number of blocks $N^{(k)}$

Theorem

$$\mathcal{L}\left(\left|F^{(k)}\right| \mid (m_0, \cdots, m_{k-1})\right) = \mathcal{L}\left(\left|F^{(k)}\right| \mid (\sum m_i, 0, \cdots, 0)\right)$$



Distribution of the number of blocks $N^{(k)}$

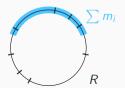
Theorem

$$\mathcal{L}\left(\left|F^{(k)}\right| \mid (m_0, \cdots, m_{k-1})\right) = \mathcal{L}\left(\left|F^{(k)}\right| \mid (\sum m_i, 0, \cdots, 0)\right)$$

Theorem (Distribution of $N^{(k)}$)

Let $B(k-1,R) \sim \text{Binomial}(k-1,R)$, then

$$N^{(k)} \stackrel{(d)}{=} 1 + B(k-1,R)$$



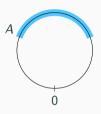
$$N^{(k)} = 1 + \sum_{j=1}^{k-1} \mathbb{1}_{u_k
otin w}$$

Distribution of the occupied blocks

One block case:

$$\mathbb{P}\left(N^{(k)}=1\right)=\left(\sum m_i\right)^{k-1}=:Q\left(\sum m_i,k\right)$$

and, conditional on $N^{(k)}=1$, $O^{(k)}$ is reduced to an interval $[A,A+\sum m_i]$ with A uniform on C



Distribution of the occupied blocks

One block case:

$$\mathbb{P}\left(N^{(k)}=1\right)=\left(\sum m_i\right)^{k-1}=:Q\left(\sum m_i,k\right)$$

and, conditional on $N^{(k)}=1$, $O^{(k)}$ is reduced to an interval $[A,A+\sum m_i]$ with A uniform on C

General case:

Theorem

$$\mathbb{P}\left(|O^{(k)}| = (M_0, \dots, M_{b-1})\right) = \mathsf{T}(M_0, \dots, M_{b-1}) \sum_{P \in \mathcal{P}(k,b)} \left[\prod_{\ell=0}^{b-1} Q(M_j, |P_j|) \ \mathbb{1}_{\sum_{i \in P_\ell} m_i = M_\ell}\right]$$

where

- $\mathcal{P}(k,b)$ is the set of partitions $P=(P_0,\ldots,P_{b-1})$ of $\{1,\ldots,k-1\}$ into b non empty parts,

$$-\mathsf{T}(M_0,\ldots,M_{b-1})=M_0\frac{(1-\Sigma M_\ell)^{b-1}}{(b-1)!}+\frac{(1-\Sigma M_\ell)^b}{b!}.$$

Summary of universality results

Theorem

For any continuous model with valid spreading policy, the following distributions are **explicit** and **independent of the spreading policy**:

- With k fixed:
 - $\mathcal{L}(O^{(k)}, F^{(k)})$
 - $\mathcal{L}\left(|F^{(k)}| \mid (m_0, \cdots, m_{k-1})\right) = \mathcal{L}\left(|F^{(k)}| \mid (\sum m_i, 0, \cdots, 0)\right)$

Summary of universality results

Theorem

For any continuous model with valid spreading policy, the following distributions are **explicit** and **independent of the spreading policy**:

- With k fixed:
 - $\mathcal{L}(O^{(k)}, F^{(k)})$
 - $\mathcal{L}\left(|F^{(k)}| \mid (m_0, \cdots, m_{k-1})\right) = \mathcal{L}\left(|F^{(k)}| \mid (\sum m_i, 0, \cdots, 0)\right)$
- As a process in k:
 - $\mathcal{L}(N^{(k)}, k \geq 0)$
 - $\mathcal{L}(\{\{|O^{(k)}|\}\}, k \geq 0)$

Summary of universality results

Theorem

For any continuous model with valid spreading policy, the following distributions are **explicit** and **independent of the spreading policy**:

- With k fixed:
 - $\mathcal{L}(O^{(k)}, F^{(k)})$
 - $\mathcal{L}\left(|F^{(k)}| \mid (m_0, \cdots, m_{k-1})\right) = \mathcal{L}\left(|F^{(k)}| \mid (\sum m_i, 0, \cdots, 0)\right)$
- As a process in k:
 - $\mathcal{L}(N^{(k)}, k \geq 0)$
 - $\mathcal{L}(\{\{|O^{(k)}|\}\}, k \geq 0)$

Corollary: results on $O^{(k)}$, $F^{(k)}$ for one spreading policy are valid for any spreading policy !

Asymptotic results

With n (random) masses, $n \to \infty$, for example

- $\forall i, m_i = 1/n$,
- $\forall i, m_i = \ell_i/n$ (where ℓ_i are i.i.d. with $\mathbb{E}[\ell_i] < \infty$ and $\mathbb{V}[\ell_i] < \infty$), before $t = \sup\{k : \sum_{i=0}^k m_i < 1\}$ \longrightarrow ,

and we consider the process after having spread a total mass $\sim 1 - \lambda/\sqrt{n}$.

Asymptotic results

With n (random) masses, $n \to \infty$, for example

- $\forall i, m_i = 1/n$,
- $\forall i, m_i = \ell_i/n$ (where ℓ_i are i.i.d. with $\mathbb{E}[\ell_i] < \infty$ and $\mathbb{V}[\ell_i] < \infty$), before $t = \sup\{k : \sum_{i=0}^k m_i < 1\}$.

and we consider the process after having spread a total mass $\sim 1 - \lambda/\sqrt{n}$.

Corollary (Bertoin, Miermont [BM06]; Marckert, V.)

$$\left(\mathsf{LargestBlock}^{(\mathsf{i})}, i \geq 1\right) \xrightarrow[n \to \infty]{(d)} \left(\mathsf{SortedExc}(e^{(\lambda)})_i, i \geq 1\right)$$

Asymptotic results

With n (random) masses, $n \to \infty$, for example

- $\forall i, m_i = 1/n$,
- $orall i, m_i = \ell_i/n$ (where ℓ_i are i.i.d. with $\mathbb{E}[\ell_i] < \infty$ and $t = \sup\{k: \sum_{i=0}^k m_i < 1\}$.

and we consider the process after having spread a total mass $\sim 1 - \lambda/\sqrt{n}$.

Corollary (Bertoin, Miermont [BM06]; Marckert, V.)

$$\left(\mathsf{LargestBlock}^{(\mathsf{i})}, i \geq 1\right) \overset{(d)}{\underset{n \to \infty}{\longrightarrow}} \left(\mathsf{SortedExc}(e^{(\lambda)})_i, i \geq 1\right)$$

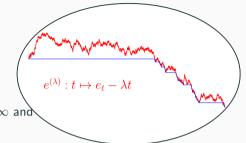
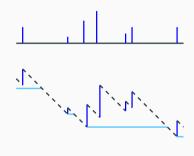


Illustration:

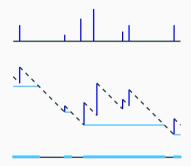


Illustration:



Definition:
$$S_x = -x + \sum_{i=0}^{k-1} m_i \mathbb{1}_{u_i \le x}, \ \forall x \in [0,1]$$

Illustration:



Definition: $S_x = -x + \sum_{j=0}^{k-1} m_j \mathbb{1}_{u_j \le x}, \ \forall x \in [0,1]$

Illustration:

Definition: $S_x = -x + \sum_{j=0}^{k-1} m_j \mathbb{1}_{u_j \le x}, \ \forall x \in [0,1]$

Convergence: when
$$\bar{S}$$
 converges to $e^{(\lambda)}$, $\left(\operatorname{SortedExc}(\bar{S})_i\right)_{1 \leq i \leq j} \xrightarrow[n \to \infty]{(d)} \left(\operatorname{SortedExc}(e^{(\lambda)})_i\right)_{1 \leq i \leq j}$.

Other results

Discrete version of the process on $C_n := \{0/n, \cdots, (n-1)/n\} \subset C$

Similar universality results

When $k = n - \lambda \sqrt{n}$ and $\forall i, m_i = 1/n$:

- Same asymptotics for the large blocks
- Different asymptotics for the number of blocks : $\frac{N_k^{(n)}}{\sqrt{n}} \xrightarrow[n \to \infty]{\mathbb{P}} \lambda(1-e^{-1})$

(versus
$$\frac{\mathcal{N}_k^{(n)}}{\sqrt{n}} \overset{\mathbb{P}}{\underset{n \to \infty}{\longrightarrow}} \lambda$$
)

Other results

Discrete version of the process on $C_n := \{0/n, \cdots, (n-1)/n\} \subset C$

Similar universality results

When $k = n - \lambda \sqrt{n}$ and $\forall i, m_i = 1/n$:

- Same asymptotics for the large blocks
- Different asymptotics for the number of blocks : $\frac{N_k^{(n)}}{\sqrt{n}} \xrightarrow[n \to \infty]{\mathbb{P}} \lambda(1-e^{-1})$

(versus
$$\frac{N_k^{(n)}}{\sqrt{n}} \xrightarrow[n \to \infty]{\mathbb{P}} \lambda$$
)

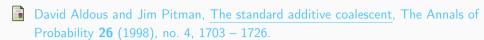
• Standard parking : if car k falls in a block of size B_k , it costs $C_k = \lfloor U.B_k \rfloor$, with $U \sim \mathcal{U}([0,1])$. Chassaing-Louchard [CL02]:

$$\frac{1}{n^{3/2}} \sum_{k=1}^{\lfloor n-\lambda\sqrt{n}\rfloor} C_k \xrightarrow[n\to\infty]{(d)} \int_0^1 e_t^{(\lambda)} dt$$

Parking with different parking policies: see Marckert-V. for some of them.

The end

References



- Jean Bertoin and Grégory Miermont,

 Asymptotics in Knuth's parking problem for caravans, Random Structures and Algorithms

 29 (2006), no. 1, 38–55, 18 pages, 2 figures.
- Philippe Chassaing and Guy Louchard, Phase transition for parking blocks, brownian excursion and coalescence, Random Structures & Algorithms **21** (2002), no. 1, 76–119.
- Donald E. Knuth, <u>The art of computer programming. Volume 3</u>, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973, Sorting and searching. MR 445948
- Alan G. Konheim and Benjamin Weiss, <u>An occupancy discipline and applications</u>, SIAM Journal on Applied Mathematics **14** (1966), no. 6, 1266–1274.
- Michał Przykucki, Alexander Roberts, and Alex Scott, Parking on the integers, Ann. Appl. Probab. **33** (2023), no. 2, 876–901. MR 4564421