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Definition of the model

Hypotheses: local and continuous diffusion
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Hypotheses: local and continuous diffusion

t=k+e+de dl + dr = de

+—H—+—1#
uy dlu3s U dr

invariance by translation of the process
50) dl and dr only depend on what is inside the current
2 F® component of u (one of the O%™))

Examples:

oW F®

)

]
0 uo uyuz 1:0‘mod1

(Caravans &3, Bertoin, Miermont [BM06])
Diffusion to the closest side

“short-sighted jam spreader”
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A universality result

o |FB) [F)| k-1
We consider = — = ( —¢-  foro ~U(GSpyw). Let R=1-3""1 m.
1<i<N®)

Theorem (Marckert, ZV)

Independently of the diffusion policy,
Number of blocks: N®) @ 1 ¢ Binomial(k — 1, R)
Lengths of the free blocks: %(k)l ~ Dirichlet(N®): 1,...,1)

Lengths of the occupied blocks: a formula for P (|O®| = (Mo, ..., My_1))
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L4
dl dr

] o.|FK) 25 (K).
allow to see that, at any time: ﬁ g— ~ Dirichlet(N*; 1,...,1)

the positions of the peaks are uniform on the smaller cycle Cr of size R=1—3 m,-|
the distributions of the peaks number, heights and positions do not depend on the

diffusion policy

even more surprisingly, for the peaks number and positions: do not depend on which
peak is extended by the diffusion

7/14



Distribution of the number of blocks N)

Theorem

E(\F(k)| ‘ (mo,- - ,mk_1)> — E(\F(k)| ‘ > m;0,--- ,0)>

8/14



Distribution of the number of blocks N)

Theorem

E(\F(k)| ‘ (mo,- - ,mk_1)> — E(\F(k)| ‘ > m;0,--- ,0)>

Theorem (Distribution of N())
Let B(k — 1, R) ~ Binomial(k — 1, R), then

NO D14 Bk —1,R)

k—1
N(k) =1+ Zﬂuk¢
Jj=1
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Distribution of the occupied blocks

£ (1=1) = (Sm) = (e ‘

and, conditional on N*) =1, O is reduced to an interval [A, A+ > m]
with A uniform on C
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Distribution of the occupied blocks

£ (1=1) = (Sm) = (e

and, conditional on N*) =1, O is reduced to an interval [A, A+ > m]
with A uniform on C

Theorem

b—1
P (|o(k)| = (Mo,...,Mb,l)) =T(Mo,...,Mo-1) > {H QUM 1) ey, mimh,

PeP(k,b) Le=0
where
- P(k, b) is the set of partitions P = (Po,...,Pp_1) of {1,..., k — 1} into b non empty parts,

_ b—1 _ b
- T(M07 coog bel) - Mo(l (iﬁﬂi;' + @ i'M” .
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Summary of universality results

Theorem
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Asymptotic results

With n (random) masses, n — oo, for example

Vi,m; = 1/n,
Vi, m; = ¢;/n (where ¢; are i.i.d. with E[{;] < oo and V[{;] < o), before
t =sup{k: Zf:o m; <1} &8,

and we consider the process after having spread a total mass ~ 1 — \//n.
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Key tool : the “collecting path”

Se=—x+ g mily <y, Vx €[0,1]

when S converges to eV,
(SortedExc(S)) (@), (SortedExc(eM),)

IS 1 o 1<i<j°
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Other results

onC,:={0/n,---,(n—1)/n} CC
Similar universality results
When k= n—Xy/nand Vi,m; =1/n:
Same asymptotics for the large blocks

(n
Different asymptotics for the number of blocks : M —25 (1 — e 1)

n—o0

S
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versus & — A
( VNS )

13/14
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onC,:={0/n,---,(n—1)/n} CC
Similar universality results
When k= n—Xy/nand Vi,m; =1/n:
Same asymptotics for the large blocks

(n
Different asymptotics for the number of blocks : M —25 (1 — e 1)
n—o0o
(m

(versus A\Ikﬁ n_%)c A)

S

Standard parking : if car k falls in a block of size By, it costs Cx = |U.Bx], with
U ~ U([0,1]). Chassaing-Louchard [CLO2]:

1 (d) )
v ; Ce o, | et

Parking with different parking policies : see Marckert-V. for some of them.
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