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1. Introduction

This course aims to present some material that illustrates the kind of estimates we can
obtain in effective algebraic geometry, for affine polynomial equation systems defined over
the rational numbers Q. I’ll consider the case where polynomials are assumed to be given
in dense representation: a polynomial f in n variables is described by an a priori bound
d for its degree and the array of its

(
d+n
n

)
≤ (n + 1)d coefficients (zero-coefficients as

well as non-zero ones), and when it has integer coefficients, a bound h for their heights,
i.e. their bit sizes. The accent here is put on describing degree and height bounds
for polynomials and polynomial identities arising when solving some classical problems,
not on the algorithms to obtain them. Bounds are interesting per se as a complexity
measure, but are also useful to know in advance when performing any algorithm or to
certify results obtained by numerical algorithms. Although the estimates look somehow
coarse, I preferred to present them in detail instead of adopting the O notation, to show
that the bounds are precise with definite universal constants.
Since this is a short course, and wishing to stay at an understandable level, I’ll only focus
here on systems on equations defining a finite (possibly empty) number of solutions in
Cn: a friendly introductory reference that presents this setting is the famous book by
Cox, Little and O’Shea [CLO2015, Ch.4 & 5]. Needless to say, there are in the literature
many more results and extensions of what I am presenting here, obtained by a huge
community, in multiple different settings and directions:

• Algorithms,
• for positive dimension systems of equations as well,
• in the projective, multiprojective, sparse (with its different meanings), toric set-
tings,

• with their corresponding encodings and measures of the data, including the
straight-line program encoding.

This is just a first step to give some flavor of problems that one can consider, and what
is done or can be done in effective algebraic geometry over the rationals. I apologize for
the biased choice of references and to the people who has done all the work I am not citing.

Last but not least, I want to express my deep gratitude to the organizers of the Journées
Nationales de Calcul Formel 2025 for inviting me to present this course and give me the
opportunity to revisit all this material.
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2. Setting and notations

In all what follows, x = {x1, . . . , xn}, a set of n variables, and

f1, . . . , fs ∈ C[x] = C[x1, . . . , xn]
are s polynomials such that the the (affine) algebraic variety

V := VC(f1, . . . , fs) = {ζ ∈ Cn : f1(ζ) = · · · = fs(ζ) = 0} ⊂ Cn

is finite: either empty or finite of cardinality ≥ 1.
In terms of the ideal I = (f1, . . . , fs) ⊂ C[x], by the Nullstellensatz (see Section 5),

V = ∅ ⇐⇒ I = C[x],
while when V is finite and non-empty, we say that I is a zero-dimensional ideal, which
is equivalent to the fact that the C-vector space C[x]/I is of finite dimension ≥ 1.

We set deg(V ) := #(V ) and D := dimC
(
C[x]/I

)
.

For zero-dimensional ideals, we necessarily have that s ≥ n since k polynomials in C[x]
define a variety, which –if not empty– is of dimension at least n− k.

We will soon consider the case when the variety V is defined over the rational numbers Q,
i.e. we take f1, . . . , fs ∈ Q[x], or even simpler, in Z[x], that is, with integer coefficients,
and I = (f1 . . . , fs) ⊂ Q[x]. We observe that the dimension D remains the same when
considering the quotient rings Q[x]/I or C[x]/I, where I ⊂ Q[x] or C[x] accordingly.

By definition, the (logarithmic) height h(f) of any (non-zero) polynomial f with integer
coefficients, in any number of variables, is the logarithm of the maximum of the absolute
values of its coefficients, which are all integer. This notion essentially coincides with the
maximum bitsize of all the coefficients and is the second measure of the input polynomials
that we will use in this text, in addition to the degrees of these polynomials and their
number of variables.

3. The Bézout inequality

The Bézout inequality we are going to use all along is an affine version of the Bézout
theorem in projective varieties over algebraically closed fields.

Theorem 3.1. (Bézout inequality)
Let f1, . . . , fs ∈ C[x] define a zero-dimensional variety V ⊂ Cn.
If f1, . . . , fs ∈ C[x] are ordered such that dj := deg(fj) for 1 ≤ j ≤ s satisfy

d := d1 ≥ d2 ≥ · · · ≥ ds,

then
deg(V ) ≤ d1 · · · dn−1ds ≤ dn−1ds ≤ dn.

For example, taking d, h ∈ N, for
V1 = VC(x

d
1 − 1, . . . , xdn − 1),

we have V1 = {(ε1, . . . , εn) ∈ Cn : εd1 = · · · = εdn = 1} with deg(V1) = dn, while for

(1) V2 = VC(x1 − 2h, x2 − xd1, . . . , xn − xdn−1),
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we have V2 = {(2h, 2dh, . . . , 2dn−1h)} with deg(V2) = 1 < dn−1.

This seemingly lighter version cannot be directly deduced from the classical Bézout theo-
rem since there are zero-dimensional systems that have a finite number of common zeros
in Cn but an infinite number when taking their zeros at infinity; consider for instance
the polynomials

f1 = xy, f2 = xz, f3 = x− 1

which satisfy that V = {(1, 0, 0)}, although if one homogenizes the polynomials with a
first variable, then there are infinite projective zeros

(1 : 1 : 0 : 0) ∪ (0 : 0 : 0 : 1) ∪ {(0 : 0 : 1 : z) : z ∈ C}.

A pioneering reference for it is Joos Heintz’ PhD thesis, published in [Hei1983], where it
is shown that if V,W ⊂ Cn are arbitrary affine algebraic varieties, then

deg(V ∩W ) ≤ deg(V ) deg(W ).

Here deg(V ) is the (geometric) degree of the variety V , which for an irreducible variety of
dimension r is the maximum finite number of points that one can obtain when intersecting
the variety with n−r affine hyperplanes: For an arbitrary variety the degree is defined as
the sum of the degrees of its irreducible components; for a hypersurface V = V (g) defined
by a squarefree polynomial g, we have deg(V ) = deg(g); and for a zero-dimensional
variety V , deg(V ) = #V . Another proof counting multiplicities can also be found in
[MaWh1983, Ch.2, Cor.].
Bézout inequality proves to be very useful in Computer Algebra, because it doesn’t make
any assumption on the polynomials, neither the way they intersect (no consideration
of genericity is needed) nor their number: it is enough to consider the smallest degree
polynomial and the n−1 highest degree polynomials, since one can show that there exist
“upper triangular” linear combinations of the input polynomials f1, . . . , fs of the form

q1 = fs
q2 = a2,1f1 + · · · + a2,n−1fn−1 + · · · + a2,s−1fs−1
...

. . .

qn = an,n−1fn−1 + · · · + an,s−1fs−1,

for ai,j ∈ C, such that dim
(
V (q1, . . . , qk)

)
= n − k and therefore, V (q1, . . . , qn), which

obviously contains V , is finite, see for instance [CGH1989, Proof of Thm.14]).

Note that it is not true that there always exist n such linear combinations q1, . . . , qn so
that V (q1, . . . , qn) = V , as shows the very simple example (x3 − x, x2 − 2x) ⊂ C[x].

4. An Arithmetic Bézout inequality

The (logarithmic) height h(V ) of the zero-dimensional variety V is a parameter that
somehow measures the size of the points in V . This is part of a more general theory of
heights of varieties. I won’t use the most sophisticated definition of height, but rather a
notion introduced by Patrice Philippon in [Phi1995] that will be sufficient for our pur-
poses and is defined through the Chow form of V . A general presentation of the Chow
form can be found in [Sha1974, Sec.I.6.5] and for the connection with the height of a
variety I follow [KPS2001, Sec.1].
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From now on, f1, . . . , fs ∈ Z[x]. In that case, denoting ζ = (ζ1, . . . , ζn) for ζ ∈ V , the
polynomial ∏

ζ∈V
(U0 + ζ1U1 + · · ·+ ζnUn)

happens to belong to Q[U ] := Q[U0, U1, . . . , Un] and we can choose c ∈ N such that

(2) ChV (U) := c
∏
ζ∈V

(U0 + ζ1U1 + · · ·+ ζnUn) ∈ Z[U ]

is a primitive polynomial in Z[U ]: this is the (primitive) Chow form of the zero-dimensional
variety V . It is an homogeneous polynomial of degree deg(V ), which satisfies that for
any u ∈ Cn+1,

ChV (u) = 0 ⇐⇒ u0 + ζ1u1 + · · ·+ ζnun = 0 for some ζ ∈ V

⇐⇒ ∃ ζ ∈ V : ζ belongs to the hyperplane {u1x1 + · · ·+ unxn = −u0}.

The Chow form of the variety characterizes the variety in the sense that different varieties
have different Chow forms, and one can recover the variety from its Chow form.

The (Philippon-)height h(V ) is defined through a specific Mahler measure m(ChV ;Sn+1)
of the Chow form ChV and satisfies the following properties∑

ζ∈V
log(∥(1, ζ)∥2) ≤ h(V );(3)

|h(V )− h(ChV )| ≤ 3 log(n+ 1) deg(V ).(4)

Moreover, Corollary 2.11 in [KPS2001] applied to a hypersurface directly implies that we
can obtain an arithmetic Bézout inequality that distinguishes the degree and height of
one of the polynomials with respect to the others:

Theorem 4.1. (An Arithmetic Bézout inequality)
Let f1, . . . , fs ∈ Z[x] define a zero-dimensional variety V ⊂ Cn.
Set dj := deg(fj), hj := h(fj) for 1 ≤ j ≤ s. Assume that d := d1 ≥ d2 ≥ · · · ≥ ds−1

(with no condition with respect to ds), and set h := max{h1, . . . , hs−1}. Then

h(V ) ≤
(hs
ds

+ (n− 1)
h

dn−1
+ 2n log(n+ 1)

)
d1 · · · dn−1ds

≤ dn−1hs + (n− 1)dn−2dsh+ 2n log(n+ 1)dn−1ds.

Inequality (3) above and the Arithmetic Bézout inequality directly imply the following
upper bound for the coordinates of any root ζ = (ζ1, . . . , ζn) ∈ V : For ds ≤ d and hs ≤ h
we get

(5) log(|ζi|) ≤ ndn−1h+ 2n log(n+ 1)dn, 1 ≤ i ≤ n.

It also shows that the arithmetic Bézout bound is quite sharp in terms of the height
dependence since for instance for the variety V2 = {ζ} defined in (1) above, we have
h(ζn) = dn−1h while the estimate in Theorem 4.1 gives

h(V2) ≤ dn−1h+ 2n log(n+ 1)dn−1.

Bound (5) for the coordinates implies in turn an upper bound for the value of any complex
polynomial p ∈ C[x] at a root of our zero-dimensional variety V defined over Q:



EFFECTIVE BOUNDS FOR POLYNOMIAL SYSTEMS 5

Corollary 4.2. (Upper bounds on the roots)
Let f1, . . . , fs ∈ Z[x] define a zero-dimensional variety V ⊂ Cn, with deg(fj) ≤ d and
h(fj) ≤ h for 1 ≤ j ≤ s. Let p ∈ Z[x] and set dp := deg(p) and hp for the maximum of
the absolute value of the logarithm of all non-zero coefficients of p. Then

log(|p(ζ)|) ≤ hp + ndn−1dph+ 3n log(n+ 1)dndp.

Proof. Let p =
∑

|α|≤dp
aαx

α, which has
(
dp+n
n

)
≤ (dp + 1)n coefficients. Then, by the

bound for the coordinates (5) we have

log(|ζ1|α1 · · · |ζn|αn) ≤ ndn−1dph+ 2n log(n+ 1)dndp,

and therefore considering the multiplication by |aα| and adding up the (dp + 1)n terms
we obtain

log(|p(ζ)|) ≤ hp + ndn−1dph+ 2n log(n+ 1)dndp + n log(dp + 1)

≤ hp + ndn−1dph+ 3n log(n+ 1)dndp.

□

But more interestingly, we also obtain lower bounds for the non-zero coordinates of the
roots in V , and also for the separation of the roots, which extend the bounds for univariate
integer polynomials that appear for example in the beautiful book by Maurice Mignotte
[Mig1992], and agree with those that can be found in the literature ([Can1987], [Yap2000,
Thm.45, Cor.49], [EMT2020, Cor.9]), with the advantage that we don’t need to assume
that we have exactly n equations that determine the zero-dimensional variety, or that
the system is still zero-dimensional if one considers zeros at infinity. The following is
[BKM2024, Lem.4.2 & Lem.4.10], where we can drop the assumption that h(p) ≤ h or
deg(p) ≥ d due to the application of the more precise Proposition 4.1. (The upper bounds
are not as sharp as in the previous corollary, but I include them anyway for symmetry.)

Proposition 4.3. (Lower and separation bounds on the roots)
Let f1, . . . , fs ∈ Z[x] define a zero-dimensional variety V ⊂ Cn, with deg(fj) ≤ d and
h(fj) ≤ h for 1 ≤ j ≤ s. Let p ∈ Z[x] and set dp := deg(p) and hp := h(p). Then, for
every ζ, ξ ∈ V we have

(1)
∣∣ log(|p(ζ)|)∣∣ ≤ dnhp + 2ndn−1dph+ 4(n+ 1) log(n+ 2)dndp if p(ζ) ̸= 0;

(2)
∣∣ log(|p(ζ)− p(ξ)|)

∣∣ ≤ d2nhp + 4nd2n−1dph+ 4(2n+ 1) log(2n+ 2)d2ndp if p(ζ) ̸=
p(ξ).

In particular, for each ζ = (ζ1, . . . , ζn), ξ = (ξ1, . . . , ξn) ∈ V and i s.t. ζi ̸= 0 or ζi ̸= ξi,
we have

(1)
∣∣ log(|ζi|)∣∣ ≤ 2ndn−1h+ 4(n+ 1) log(n+ 2)dn,

(2)
∣∣ log(|ζi − ξi|)

∣∣ ≤ 4nd2n−1h+ 4(2n+ 1) log(2n+ 2)d2n.

Proof. To prove Item (1), we apply the arithmetic Bézout inequality together with In-
equality (3) above to the zero-dimensional ideals in n+ 1 variables

J1 =
(
f1(x), . . . , fs(x), xn+1 − p(x)

)
and J2 =

(
f1(x), . . . , fs(x), 1− xn+1p(x)

)
.

Since VC(J1) = {(ζ, p(ζ)) : ζ ∈ V } and VC(J2) = {(ζ, 1/p(ζ)) : ζ ∈ V, p(ζ) ̸= 0} we
deduce

log(|p(ζ)|) ≤
∑
ζ∈V

log(∥(1, ζ, p(ζ))∥2) ≤ dnhp + ndn−1dph+ 2(n+ 1) log(n+ 2)dndp.
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Similarly,

log
( ∣∣∣∣ 1

p(ζ)

∣∣∣∣ ) ≤
∑
ζ∈V

log(∥(1, ζ, 1

p(ζ)
)∥2)

≤ dnhp + ndn−1(dp + 1)h+ 2(n+ 1) log(n+ 2)dn(dp + 1)

implies that log(|p(ζ)|) ≥ −
(
dnhp + 2ndn−1dph+ 4(n+ 1) log(n+ 2)dndp

)
.

To prove Item (2), we apply Item (1) to the zero-dimensional ideal in 2n variables

J = (f1(x), . . . , fs(x), f1(y), . . . , fs(y)) ⊂ C[x,y]
and the polynomial p(x)− p(y) of degree dp and height hp.
We then obtain the bounds for the coordinates and the separation of the roots applying
this to the polynomials p = xi and p = xi − yi respectively, of degree 1 and height 0. □

These general lower bound for the coordinates of the roots are again essentially optimal
as shows the following example presented in [Can1987]:

V3 = VC(2
hx1 − 1, x2 − xd1, . . . , xn − xdn−1)

where the unique root ζ = (1/2h, . . . , 1/2d
n−1h) satisfies log(ζn) = −dn−1h while the

lower bound in Proposition 4.3 gives

log(ζn) ≥ −(2ndn−1h+ 4(n+ 1) log(n+ 2)dn).

They are also quite tight for the separation of the roots, according to the multivariate
Mignotte-type example developed in [EMT2020, Sec.4].

Finally, applying more carefully the inequality
∑
ζ∈V

log(∥(1, ζ)∥2) ≤ h(V ) to subsets of

roots, these statements can be adapted to obtain more general estimates for sums of
upper, lower and separations bounds for the roots.

5. An arithmetic Nullstellensatz

The Nullstellensatz (NSS) is a cornerstone of algebraic geometry, that first appeared in
a complete form in Hilbert’s work. These are its two forms, known as weak NSS and
strong NSS, which are in fact equivalent:

Theorem 5.1. ( The Nullstellensatz)
Let I ⊂ C[x] be an ideal. Then,

(1) Weak NSS: VC(I) = ∅ ⇐⇒ 1 ∈ I;

(2) Strong NSS: I(VC(I)) =
√
I.

(Here
√
I := {f ∈ C[x] : ∃N ∈ N s.t. fN ∈ I}) is the radical of the ideal I, and given a

set X ⊂ Cn, I(X) := {f ∈ C[x] s.t. f(ζ) = 0, ∀ ζ ∈ X} is the vanishing ideal of the set
X.

Both statements are quite well known in the univariate case but do not readily gener-
alize to the multivariate case since there is no Euclidean division algorithm in k[x] for
n ≥ 2. For both statements, the ⇐ and ⊇ direction are obvious, and (2) also easily
implies (1). The passage of (1) to (2) is usually done trough the famous Rabinowicz’
trick. There are several proofs for the (weak) NSS: one particularly elementary, based
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on an extension theorem and resultants, can be found in [CLO2015, Ch.4, Thm.2] for
instance. Another more classical proof using Zariski’s lemma shows an equivalent state-
ment: Maximal ideals M ⊂ C[x] are all of the form M = (x1 − ζ1, . . . , xn − ζn) for some
ζ = (ζ1, . . . , ζn) ∈ Cn.

When the ideal I = (f1, . . . , fs) is generated by polynomials f1, . . . , fs ∈ Z[x], then the
weak NSS reads as

Let f1, . . . , fs ∈ Z[x] be polynomials such that the equation system

f1(x) = 0, . . . , fs(x) = 0

has no solution in Cn. Then there exists a ∈ N\{0} and g1, . . . , gs ∈ Z[x]
satisfying the Bézout identity

a = g1f1 + · · ·+ gsfs.

As it is, this is a noneffective statement. Effective versions of the NSS estimate the de-
grees and the heights of polynomials satisfying the Bézout identity, and apply to many
situations in number theory, theoretical computer science and computer algebra. I men-
tion the following particular case of the best height estimate from [DKS2013, Cor.4.38],
which ”arithmeticizes” the (best) proof for degrees over varieties by Jelonek in [Jel2005,
Cor.1.1], after pioneering results by Herrmann (1926), Masser and Wüstholz (1983),
Brownawell (1987), Caniglia-Galligo-Heintz (1988) and Kollár (1988) for the degrees and
by Berenstein-Yger (1991) for height estimates (see also [KrPa1996] and [KPS2001]).

Theorem 5.2. (An Arithmetic Nullstellensatz)
Let f1, . . . , fs ∈ Z[x] be s.t. VC(f1, , . . . , fs) = ∅. Set dj := deg(fj) and hj := h(fj) for
1 ≤ j ≤ s. Assume that d := d1 ≥ d2 ≥ · · · ≥ ds−1 (with no condition with respect to ds),
and h := max{h1, . . . , hs−1}, and finally set r := min{s− 1, n}.
Then there exists a ∈ N \ {0} and g1, . . . , gs ∈ Z[x] such that for 1 ≤ i ≤ s one has

a = g1f1 + · · ·+ gsfs

with

deg(gifi) ≤ d1 · · · drds
and

h(a),h(gi) + h(fi) ≤
(hs
ds

+
r∑

k=1

h

dk
+ (6n+ 9) log(n+ 3) + 3n logmax{1, s− n}

)
d1 · · · drds

≤ drhs + rdr−1dsh+
(
(6n+ 9) log(n+ 3) + 3n logmax{1, s− n}

)
drds.

This bound is again close to optimal, as show the following examples:

(1) Brownawell-Masser-Philippon’1986: Take

f1 = xd1, f2 = x1x
d−1
n − xd2, . . . , fn−1 = xn−2x

d−1
n − xdn−1, fn = 2h − xn−1x

d−1
n .

One can show that a Bézout identity

a = g1f1 + · · ·+ gn+1fn+1
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specialized at ζ = (2d
n−2htd

n−1−1, . . . , 2dhtd
2−1, 2htd−1, 1/t) for any t ̸= 0 necessarily

implies that a = g1(ζ)2
dn−1htdn−d, which implies that

dn ≤ deg(g1f1) ≤ maxdeg(gifi) ≤ dn

dn−1h ≤ h(a) ≤ max{h(a),h(gi) + h(fi)} ≤ dn−1h+ c(n)dn,

by specialization at t = 0 for the second bound. (Here the right-hand side inequalities
are the ones obtained in the previous theorem.) (2) Take the following modification of

the finite variety V2 above:

f1 = x1 − 2h, f2 = x2 − xd1, . . . , fn = xn − xdn−1, fn+1 = xdn.

A Bézout identity

a = g1f1 + · · ·+ gn+1fn+1

specialized at ζ = (2h, 2dh, . . . , 2d
n−1h) necessarily implies that a = gn+1(ζ)2

dnh and
therefore

dnh ≤ h(a) ≤ max{h(a),h(gi) + h(fi)} ≤ dnh+ c(n)dn+1.

The arithmetic Nullstellensatz might be useful when one wants for instance to get bounds
for the polynomials in the Chinese Remainder Theorem representation of a given poly-
nomial f ∈ Q[x]/I in terms of its local representatives in Q[x]/Qk if I = Q1 ∩ · · · ∩Qt is
the primary decomposition of the zero-dimensional ideal I in Q[x].

6. An Arithmetic Shape Lemma

In what follows I = (f1, . . . , fs) ⊂ Q[x] is a radical zero-dimensional ideal, i.e.
√
I = I,

which implies that dimQ
(
Q[x]/I

)
= deg(V ) (see for instance [CLO2015, Ch.5, Prop.7]).

The following Arithmetic Shape Lemma for the radical zero-dimensional ideal I is an
arithmetic version of what is also now known as (symbolic) Geometric Resolution, Kro-
necker Parameterization or Rational Univariate Representation: The classical Shape
Lemma already appeared in the work of Kronecker [Kro1882], and it was reintroduced
adapted to the context of Computer Algebra around 40 years ago by Chistov and Grig-
oriev [ChGr1982] and Canny [Can1988], and again later on by e.g. Alonso, Becker et
al. [ABRW1996, Sec.2.3], Giusti, Heintz et al. [GHMP1995], and by Fabrice Rouil-
lier [Rou1999] among others, in the form we are using here. Its meaning is that zero-
dimensional radical ideals are essentially the same as univariate ideals, and working in the
quotient K[x]/I under a suitable isomorphism allows to use the machinery of univariate
polynomials. In particular, I will show as an application how this isomorphism allows to
obtain improved height estimates for the representative of a polynomial p ∈ Z[x] in the
quotient algebra Q[x]/I.
The first part of the statement is now kind of classical, and the second part presents
the height estimates as in [BKM2024, Lem.4.3] (just slightly more precise due to the
application of Proposition 4.1). I give a complete proof since it has its own interest, and
also for sake of completeness. As sometimes we know an a priori bound for the degree
deg(V ) of the zero-dimensional variety V that are better than the Bézout bound, I leave
the height bounds in next statement in terms of this degree. I refer to [GHHMPM1997],
[HMPS2000], [Sch2001, Ch.13], [SaSc2018, Prop.4], [HoLe2021] for algorithms, and pre-
vious and more general arithmetic estimates.
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Theorem 6.1. (An Arithmetic Shape Lemma)
Let f1, . . . , fs ∈ Z[x] define a radical zero-dimensional ideal I, with V = VC(I) ⊂ Cn

of degree D := deg(V ). Set dj := deg(fj) and hj := h(fj) for 1 ≤ j ≤ s. Assume
that d := d1 ≥ d2 ≥ · · · ≥ ds−1 (with no condition with respect to ds), and set h :=
max{h1, . . . , hs−1}. Then there exists an algebra epimorphism

φ : Q[x] ↠ Q[t]/(ω0)

xi 7→ ωi(t)/ω
′
0(t) mod ω0 for 1 ≤ i ≤ n

where ω0, ω1, . . . , ωn ∈ Z[t] with ω0 squarefree satisfy

deg(ω0) = D,deg(ωi) < D for 1 ≤ i ≤ n

and

h(ωi) ≤ dn−1hs + (n− 1)dn−2dsh+ 2n log(n+ 1)dn−1ds + 4D log
(
(n+ 1)D

)
.

Moreover, the kernel of φ satisfies ker(φ) = I, and therefore φ induces an algebra iso-
morphism

φ : Q[x]/I
≃−→ Q[t]/(ω0).

Proof. Let L(U ,x) = U1x1+ · · ·+Unxn ∈ Q[U ,x] be a generic linear form, and consider
the polynomial

ChV (t,−U) := ChV (t,−U1, . . . ,−Un) = c
∏
ζ∈V

(
t− L(U , ζ)

)
∈ Z[t,U ],

where ChV is the (primitive) Chow form of V introduced in Section 4.
Given ζ ∈ V , ChV

(
L(U , ζ),−U

)
= 0 as a polynomial in U implies by the chain rule

that for all i we have

0 = ∂Ui

(
ChV

(
L(U , ζ),−U

))
(U)

= ∂t
(
ChV (t,U)

)(
L(U , ζ),−U)ζi − ∂Ui

(
ChV (t,U)

)
(L(U , ζ),−U)

as a polynomial in U too.
Therefore, by choosing u = (u1, . . . , un) ∈ Zn such that ℓ(x) := L(u,x) satisfies ℓ(ζ) ̸=
ℓ(ξ) for all ζ ̸= ξ ∈ V , i.e. ℓ is a separating linear form for V , we have that for all ζ ∈ V ,(
∂tChV (t,−u)ζi − ∂UiChV (t,−u)

)(
ℓ(ζ)

)
= ∂tChV (ℓ(ζ),−u)ζi − ∂UiChV (ℓ(ζ),−u) = 0.

We can then define the univariate integer polynomials

ω0(t) := ChV (t,−u) and ωi(t) := ∂UiChV (t,−u), 1 ≤ i ≤ n.

Since the degree D polynomial ω0 has D distinct roots ℓ(ζ), ζ ∈ V , it is squarefree and
its derivative ω′

0 = ∂tChV (t,−u) is invertible modulo ω0. Moreover, for all ζ ∈ V and
1 ≤ i ≤ n,

(6) ζi =
∂UiChV (ℓ(ζ),−u)

∂tChV (ℓ(ζ),−u)
=

ωi(ℓ(ζ))

ω′
0(ℓ(ζ))

.

This induces a morphism of algebras φ : Q[x] → Q[t]/(ω0), xi 7→ ωi(t)/ω
′
0(t) modω0,

which is well-defined since ω′
0 is invertible modulo ω0.

Moreover φ is an epimorphism because by definition

φ(ℓ(x)) = u1φ(x1) + · · ·+ unφ(xn) ≡ u1
ω1(t)

ω′
0(t)

+ · · ·+ un
ωn(t)

ω′
0(t)

≡ t modω0
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since by Identity (6), the two polynomials coincide in all the roots ℓ(ζ) of the squarefree
degree D polynomial ω0 ∈ Q[t]:

u1
ω1(ℓ(ζ))

ω′
0(ℓ(ζ))

+ · · ·+ un
ωn(ℓ(ζ))

ω′
0(ℓ(ζ))

= u1ζ1 + · · ·+ unζn = ℓ(ζ).

Furthermore, we show that ker(φ) = I:

g ∈ ker(φ) ⇐⇒ φ(g) = 0 ⇐⇒ g
(ω1(t)

ω′
0(t)

, . . . ,
ωn(t)

ω′
0(t)

)
≡ 0 modω0

⇐⇒ g
(ω1(ℓ(ζ))

ω′
0(ℓ(ζ))

, . . . ,
ωn(ℓ(ζ))

ω′
0(ℓ(ζ))

)
= 0 for all ζ ∈ V since ω0 is squarefree

⇐⇒ g(ζ) = 0 for all ζ ∈ V by Identity (6)

⇐⇒ g ∈ I by the NSS since I is radical.

Therefore φ induces an isomorphism

φ : Q[x]/I
≃−→Q[t]/(ω0).

We now deal with the estimates:
In order to choose ℓ(x) = u1x1 + · · · + unxn ∈ Z[x] that separates the points in V , we
can observe that the non-zero polynomial∏

(ζ,ξ)∈V×V,ζ ̸=ξ

(L(U , ζ)− L(U , ξ)) ∈ C[U ]

has degree D′ := D(D − 1)/2 < D2 and therefore, there exists an element u in the grid

{(k1, . . . , kn) ∈ Zn : 0 ≤ ki < D2}

where it does not vanish.
By Inequality (4) and Theorem 4.1,

h(ChV ) ≤ h(V ) + 3 log(n+ 1) deg(V )

≤ dn−1hs + (n− 1)dn−2dsh+ 2n log(n+ 1)dn−1ds + 3D log(n+ 1).

We conclude by observing that the polynomial

ChV (t,−U) =
∑

α,i:|α|+i=D

aα,it
iUα =

D∑
i=0

( ∑
|α|=D−i

aα,iU
α
)
ti ∈ Z[t,U ]

and therefore

h(ω0) = h(ChV (t,−u))

≤ h(ChV ) +D log(n+ 1) +D log(D2)

≤ dn−1hs + (n− 1)dn−2dsh+ 2n log(n+ 1)dn−1ds + 4D log
(
(n+ 1)D

)
,

since the number of terms is bounded by (n+1)D. Similarly, for 1 ≤ i ≤ n, ∂UiChV (t,−U) ∈
Z[t,U ] is homogeneous of degree D − 1, with height bounded by h(ChV ) + log(D), and
therefore

h(ωi) ≤ h(ChV ) + log(D) + (D − 1) log(n+ 1) + (D − 1) log(D2)

≤ dn−1hs + (n− 1)dn−2dsh+ 2n log(n+ 1)dn−1ds + 4D log
(
(n+ 1)D

)
as well. □
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The previous result allows us for instance to get estimates for the heights of the coef-
ficients of a representative p ∈ Q[x]/I of a polynomial p ∈ Q[x], that we can call the
remainder of p modulo I. These estimates are better than those that one would obtain
by näıve methods, even in the case that the generators f1, . . . , fs ∈ Z[x] of the ideal I
are a degree-preserving Gröbner basis of I. The following follows the developments of
[BKM2024, Sec.4.2].

When I ⊂ Q[x] is a zero-dimensional radical ideal, then dim(Q[x]/I) coincides with
D := deg(V ) ≤ dn, where d = maxi{deg(fi)}, and Q[x]/I admits a monomial basis B
with δ := deg(B) = max{deg(b) : b ∈ B} ≤ D: such a basis starts with b1 := 1 and
then continues for j > 1 in an inductive process with bj := xkbi, where i < j and xk is
a variable such that {b1, . . . , bj} are still linearly independents modulo I. Since B has D

elements, δ < D (the worst case would be for instance taking 1, x1, . . . , x
D−1
1 ). Moreover,

since b = xα for some |α| ≤ δ, we have that h(b) = 0 for every b ∈ B.

Therefore, for any p ∈ Q[x], we will get p =
∑

b∈B cb · b with cb ∈ Q as the representative
in Q[x]/I of p ∈ Q[x]. We observe that there exist of course g1, . . . , gs ∈ Q[x] such that

(7) p = g1f1 + · · ·+ gsfs + p.

In order to bound the heights of the numerators and a common denominator for the
coefficients of p we define the following crucial epimorphism U of Q-vector spaces, which
allows us to compute the coefficients in an univariate setting:

U : Q[x] ↠ Q[t]/(ω0)
≃→ ⟨1, t, . . . , tD−1⟩Q

p 7→ ω′
0 φ(p) modω0 7→ (c0, . . . , cD−1)

,

where φ is defined in Theorem 6.1 and ω′
0 φ(p) ≡

∑D−1
i=0 cit

i modω0. Observe that since
ω′
0 is invertible modulo ω0, U is a Q-epimorphism with ker(U) = ker(φ) = I.

Lemma 6.2. ([BKM2024, Lem.4.4])
Let f1, . . . , fs ∈ Z[x] define a radical zero-dimensional ideal I with V = VC(I), and let
xα be a monomial.
Set d := max{deg(fj) : 1 ≤ j ≤ s} and h := max{h(fj) : 1 ≤ j ≤ s}. Then

h(U(xα)) ≤ ndn−1|α|h+ 4n log((n+ 2)d)dn|α|.

Proof. Let J :=
(
f1, . . . , fs, xn+1 −xα

)
⊂ Z[x, xn+1], which is a radical zero-dimensional

ideal of degree deg(V ) ≤ dn, since VC(J) = {(ζ, ζα) : ζ ∈ V } as already seen before.
Note that if ℓ(x) = u1x1 + · · ·+ unxn ∈ Z[x] is a separating linear form for V , it is still
a separating linear form for VC(J). Therefore in the construction of φJ : Q[x, xn+1] →
Q[t]/(ωJ

0 ) for the ideal J in Theorem 6.1, we can choose this linear form ℓ(x), which also
applies for φI : Q[x] → Q[t]/(ωI

0). We observe that since un+1 = 0 in the choice of the
linear form, we have that ωJ

i = ωI
i for 0 ≤ i ≤ n, which implies that φJ(xi) = φI(xi) for

1 ≤ i ≤ n. Let ωn+1 := ωJ
n+1(t) ∈ Z[t] be such that φJ(xn+1) = (ω′

0)
−1ωn+1. Then, since

xn+1 ≡ xα mod J , we have

U(xα) = ω′
0φI(x

α) = ω′
0φJ(x

α) = ω′
0φJ(xn+1) = ωn+1.

Therefore, applying Theorem 6.1 to J ⊂ Q[x, xn+1] with deg(J) = deg(I) ≤ dn and
fs+1 = xn+1 − xα) of degree |α| and height 0, we get

h(U(xα)) = h(ωn+1) ≤ ndn−1|α|h+ 2(n+ 1) log(n+ 2)dn|α|+ 4ndn log((n+ 1)d)

≤ ndn−1|α|h+ 4n log((n+ 2)d)dn|α|.
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□

Corollary 6.3. ([BKM2024, Cor.4.5])
Let f1, . . . , fs ∈ Z[x] define a radical zero-dimensional ideal I and let p ∈ Z[x].
Set d := max{deg(fj) : 1 ≤ j ≤ s}, dp := deg(p), and h := max{h(fj) : 1 ≤ j ≤ s},
hp := h(p). Then

h(U(p)) ≤ hp + ndn−1dph+ 5n log((n+ 2)d)dndp.

Proof. This is as the proof of Corollary 4.2: Write p =
∑

α pαx
α with pα ∈ Z. Then

U(p) =
∑
α

pαU(xα) with h(U(xα)) ≤ ndn−1dph+ 4n log((n+ 2)d)dndp.

Since p has at most (dp + 1)n monomials, we have

h(U(p)) ≤ hp + ndn−1dph+ 4n log((n+ 2)d)dndp + n log(dp + 1)

≤ hp + ndn−1dph+ 5n log((n+ 2)d)dndp.

□

We are now ready to prove a height bound as presented in [BKM2024, Prop.4.6] for
the numerator and a common denominator of the remainder p of an integer polynomial
p ∈ Z[x] modulo I (except that here we do not need to assume that δ = deg(B) ≤ d and
deg(p) ≥ d).

Proposition 6.4. (Height of the remainder modulo I)
Let f1, . . . , fs ∈ Z[x] define a radical zero-dimensional ideal I and let p ∈ Z[x].
Set d := max{deg(fj) : 1 ≤ j ≤ s}, dp := deg(p), and h := max{h(fj) : 1 ≤ j ≤ s},
hp := h(p). Then there exists a ∈ N \ {0} and N(p) ∈ Z[x] such that p = N(p)/a with

h(a) ≤ nd2n−1δh+ 5n log((n+ 2)d)d2nδ,

h(N(p)) ≤ hp + ndn−1(dp + dnδ)h+ 5n log((n+ 2)d)dn(dp + dnδ).

Proof. If p =
∑

b∈B cb b with cb ∈ Q, we have that

U(p) = U(p) =
∑
b∈B

cb U(b)

since p ≡ p mod I. Therefore (cb : b ∈ B) is the (unique) solution y of a square linear
system of equations

Ay = c

of size D, where the matrix A ∈ ZD×D to invert is composed by the coefficients of U(b),
b ∈ B, and the constant vector c is composed by the integer coefficients of U(p) in the
basis (1, t, . . . , tD−1). Solving this system of equations by Cramer’s rule gives the common
denominator a = det(A) and the coordinates of the numerator N(p) ∈ Z[x] where each
column of A is replaced by the constant vector.
By Hadamard’s bound, the determinant of a matrix with columns v1, . . . , vD ∈ ZD where
all but one column has height bounded by hA and one column has height bounded by hc
satisfies

h(det(v1, . . . , vD)) ≤ hc + (D − 1)hA +
D log(D)

2
.

Since

hA ≤ ndn−1δh+ 4n log((n+ 2)d)dnδ and hc ≤ hp + ndn−1dph+ 5n log((n+ 2)d)dndp
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we conclude that

h(a) ≤ D
(
ndn−1δh+ 4n log((n+ 2)d)dnδ

)
+

D log(D)

2

≤ nd2n−1δh+ 5n log((n+ 2)d)d2nδ

and

h(N(p)) ≤ hp + ndn−1dph+ 5n log((n+ 2)d)dndp

+ (D − 1)
(
ndn−1δh+ 4n log((n+ 2)d)dnδ

)
+

D log(D)

2

≤ hp + ndn−1(dp + dnδ)h+ 5n log((n+ 2)d)dn(dp + dnδ).

□

We close this section by observing the the same bound for h(p) holds for the maximum
of the absolute values of the logarithm of all non-zero coefficients of the polynomial p
when p ∈ C[x]. This is because the common denominator a satisfies |a| ≥ 1.

Corollary 6.5. Let p ∈ C[x] be a polynomial of degree dp and set hp for the maximum
of the absolute value of the logarithm of all non-zero coefficients of p.
Set p =

∑
b∈B cb b ∈ C[x]. Then

max{log(|cb|) : b ∈ B} ≤ hp + ndn−1(dp + dnδ)h+ 5n log((n+ 2)d)dn(dp + dnδ).

7. An Arithmetic Perron’s Theorem

In [Jel2005] the proof of the effective Nullstellensatz relies on bounding the degrees of
a coefficient in a given algebraic equation for polynomials related to the polynomials
f1, . . . , fs, which define the empty variety. I present here a sketch of an algebraic version
of his proof for the case s = n+1, which is the typical case (the same holds for s < n+1
and for s > n+ 1 one usually performs some linear combinations of f1, . . . , fs to restrict
to n+ 1 polynomials).
Assume that f1, . . . , fn+1 ∈ C[x] satisfy that VC(f1, . . . , fs) = ∅, so that by the NSS there
exist (unknown) g1, . . . , gn+1 with

1 = g1f1 + · · ·+ gn+1fn+1,

and consider the following algebra morphism

Φ : C[x, z1, . . . , zn+1] → C[x, z], xi 7→ xi, zj 7→ zfj(x) for 1 ≤ i ≤ n, 1 ≤ j ≤ n+1.

The map Φ turns out to be an epimorphism because Φ(g1(x)z1+ · · ·+gn+1(x)zn+1) = z.
Therefore, Φ induces an algebra isomorphism

Φ : A := C[x, z1, . . . , zn+1]/ ker(Φ) ≃ C[x, z],

between the finitely generated algebra A over C and the polynomial ring C[x, z], and in
particular the (Krull) dimension of A equals n+ 1.

By Noether’s normalization lemma (see for instance [AtMa1969, Ch.5, Ex.16]) there
exist n + 1 linear combinations of the variables x, z1, . . . , zn+1 in A, that can moreover
be taken of the form z1 + ℓ1(x), . . . , zn+1 + ℓn+1(x) (where ℓ1, . . . , ℓn+1 are linear forms
in the variables x) that are algebraically independent over C and such that A is integral
over C[z1 + ℓ1(x), . . . , zn+1 + ℓn+1(x)].
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In particular, g1(x)z1+· · ·+gn+1(x)zn+1 is integral over C[z1+ℓ1(x), . . . , zn+1+ℓn+1(x)]:
Setting y := (y1, . . . , yn+1), there exists a polynomial of some degree D (nothing to do
with the previous D),

P (y, t) = tD +
D∑
j=1

∑
α

aα,jy
αtD−j ∈ C[y, t] \ {0},

monic in t, such that

P
(
z1 + ℓ1(x), . . . , zn+1 + ℓn+1(x), g1(x)z1 + · · ·+ gn+1(x)zn+1

)
≡ 0 mod ker(Φ).

Therefore

0 = Φ
(
P
(
z1 + ℓ1(x), . . . , zn+1 + ℓn+1(x), g1(x)z1 + · · ·+ gn+1(x)zn+1

))
= P

(
Φ
(
z1 + ℓ1(x)

)
, . . . ,Φ

(
zn+1 + ℓn+1(x)

)
,Φ

(
g1(x)z1 + · · ·+ gn+1(x)zn+1

))
= P

(
zf1(x) + ℓ1(x), . . . , zfn+1(x) + ℓn+1(x), z

)
= zD +

D∑
j=1

∑
α

aα,j
(
zf1(x) + ℓ1(x)

)α1 · · ·
(
zfn+1(x) + ℓn+1(x)

)αn+1 zD−j .

By inspection, the coefficient of zD when expanding this expression gives an effective
Bézout identity for f1, . . . , fs.

Finding the degrees in this integral dependence equation for z is strongly related to
the problem of finding an algebraic dependence equation for polynomials that are not
algebraically independent. This is what is sometimes called Perron’s theorem, since the
very popular book by Perron [Per1927] gives in Satz 57 a combinatorial proof that if
f1, . . . , fn+1 ∈ C[x] are n + 1 polynomials in n variables of degrees dj := deg(fj), then
there are algebraically dependent, i.e. there exists a polynomial

P =
∑
α

cαy
α1
1 · · · yαn

n+1 ∈ C[y1, . . . , yn+1] \ {0}

which satisfies that

• P (f1, . . . , fn+1) = 0,
• α1d1 + · · ·+ αn+1dn+1 ≤ d1 · · · dn+1 for all α.

In [DKS2013, Cor.3.23] we got the following arithmetic version of Perron’s theorem as a
consequence of a more general version over a variety. A parameterized version of it is a
crucial tool to obtain the bounds of Theorem 5.2.

Theorem 7.1. (An arithmetic Perron’s theorem)
Let f1, . . . , fn+1 ∈ Z[x], and set dj := deg(fj) and hj := h(fj) for 1 ≤ j ≤ n + 1. Then
there exists a polynomial

P =
∑
α

cαy
α1
1 . . . y

αn+1

n+1 ∈ Z[y1, . . . , yn+1] \ {0}

which satisfies that

• P (f1, . . . , fn+1) = 0,
• α1d1 + · · ·+ αn+1dn+1 ≤ d1 · · · dn+1 for all α,

• h(cα)+

n+1∑
i=1

αihi ≤
( n+1∑

i=1

hi
di

+(n+2) log(2n+8)
)
d1 · · · dn+1 for all α s.t. cα ̸= 0.
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