Orders and shuffles on nestohedra

Bérénice Delcroix-Oger avec Jovana Obradović (Serbian Academy of Science) et Pierre-Louis Curien (CNRS-IRIF, Université Paris Cité)

based on "Tridendriform algebras on hypergraph polytopes" published in Algebraic combinatorics (2025)

Research School "Beyond Permutahedra and Associahedra" CIRM, 1-5 December 2025

Outline

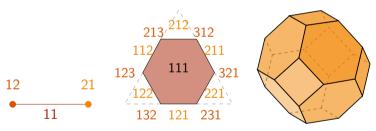
- Shuffles of packed words and planar trees
- 2 Hypergraph polytopes (a.k.a. nestoedra)
- Algebraic structures on faces of nestohedra

Shuffles of packed words and planar trees

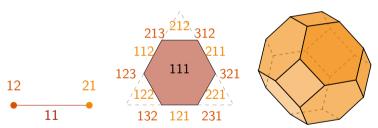
Outline

- Shuffles of packed words and planar trees
- Hypergraph polytopes (a.k.a. nestoedra)
- Algebraic structures on faces of nestohedra

Permutohedra [Schoute 1911]



Permutohedra [Schoute 1911]



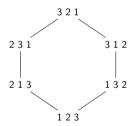
In this talk

A permutation $\pi \in \mathfrak{S}_n$ is identified with the word $\pi(1) \dots \pi(n)$.

1234

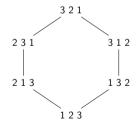
Covering relations :

$$...ab... \lhd ...ba...$$
 with $a < b$



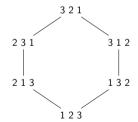
Weak Bruhat order [Verma 1968]

$Covering\ relations:$

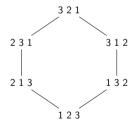


1 0

$Covering\ relations:$

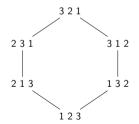


Covering relations:



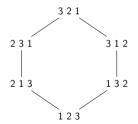
Weak Bruhat order [Verma 1968]

Covering relations:



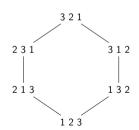
Weak Bruhat order [Verma 1968]

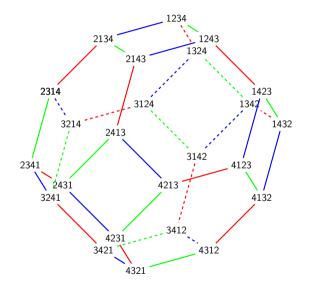
Covering relations:



Covering relations:

 $...ab... \lhd ...ba...$ with a < b





Shuffles of permutations

Let A be a finite alphabet and A^* its set of (possibly empty) words.

For any $a, b \in A$ and $m, n \in A^*$ the shuffle product is:

$$a.m \sqcup b.n = a.(m \sqcup b.n) + b.(a.m \sqcup n),$$

with $\varepsilon \coprod m = m \coprod \varepsilon = m$, where ε is the empty word.

For $\sigma \in \mathfrak{S}_q$, we denote by $\sigma + p$ the permutation of $\mathfrak{S}_{p+1,\dots,p+q}$ satisfying $(\sigma + p)(i) = \sigma(i-p) + p$

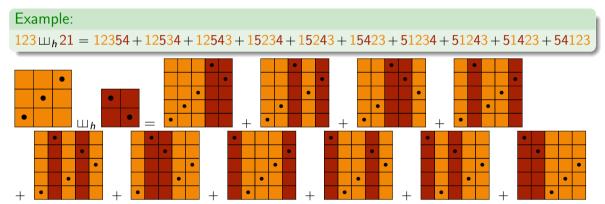
Given two permutations $\pi \in \mathfrak{S}_p$ and $\sigma \in \mathfrak{S}_q$, Malvenuto-Reutenauer define the (horizontal) shuffle of permutations as:

$$\pi \coprod_h \sigma = \pi \coprod (\sigma + p)$$

Example:

 $123 \, \sqcup_h \, 21 \, = \, 12354 + 12534 + 12543 + 15234 + 15243 + 15423 + 51234 + 51243 + 51423 + 54123$

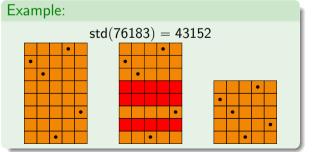
Horizontal shuffle



Malvenuto-Reutenauer Hopf algebra [$\mathfrak{S}Sym$: Malvenuto-Reutenauer 1995, "FQSym": Duchamp-Hivert-Thibon, 2002]

$$\Delta(\sigma) = \sum_{n=0}^{n} \operatorname{std}(\sigma(1) \dots \sigma(p)) \otimes \operatorname{std}(\sigma(p+1) \dots \sigma(n)),$$

where std is the standardisation, i.e. $\operatorname{std}(t) = \phi \circ t$ with ϕ the unique increasing bijection from $\Im(t)$ to $[\![|\Im(t)|]\!]$.



Example:

$$\Delta(132) = \varepsilon \otimes 132 + 1 \otimes 21 + 12 \otimes 1 + 132 \otimes \varepsilon.$$

Proposition

 $\bigotimes_{n\geqslant 0}\mathbb{C}\mathfrak{S}_n$ endowed with the product \sqcup_h and the coproduct Δ is a Hopf algebra, i.e. Δ is an algebra morphism.

Link between the shuffle of permutations and weak Bruhat order

Proposition (Loday-Ronco 02)

There exists two (duplicial) products on permutations \triangleleft and \triangleright s.t. for any permutations $\sigma \in \mathfrak{S}_p$ and $\tau \in \mathfrak{S}_q$:

$$\sigma \sqcup_h \tau = \sum_{\sigma \lhd \tau \leqslant p \leqslant \sigma \rhd \tau} p,$$

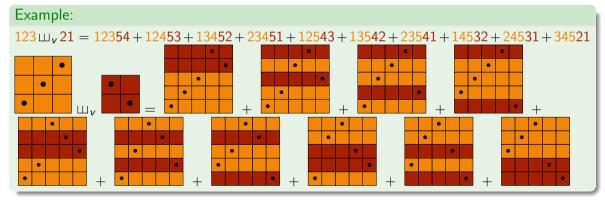
where \leq is the weak Bruhat order and $\sigma \lhd \tau = \sigma.(\tau + p)$ and $\sigma \rhd \tau = (\tau + p).\sigma$.

Example:

$$21 \coprod 12 = \sum_{2134 \leqslant p \leqslant 3421} p$$
$$= 2134 + 2314 + 2341 + 3214 + 3241 + 3421$$

Vertical shuffle

$$\sigma \sqcup_{\mathbf{v}} \tau = \sum_{\substack{\mathsf{std}(s) = \sigma \\ \mathsf{std}(t) = \tau}} \mathsf{s.t},$$



Shuffles of packed words/surjections [Perm : Chapoton 2000, WQSym: Hivert-Novelli-Thibon ≡2000, NQSym* : Bergeron-Zabrocki, 2005]

Definition

A packed word is a word w on \mathbb{N} such that the set of letters in w is an interval [1; k]. Equivalently, it is a surjection.

$$u \sqcup v = \sum_{\substack{\mathsf{pack}(\alpha) = u \\ \mathsf{pack}(\beta) = v}} \alpha \beta$$

Example:

$$11 \sqcup 221 = 22221 + 33221 + 22331 + 11221 + 11332$$

Shuffles of packed words/surjections [Perm : Chapoton 2000, WQSym: Hivert-Novelli-Thibon ≡2000, NQSym* : Bergeron-Zabrocki, 2005]

Definition

A packed word is a word w on \mathbb{N} such that the set of letters in w is an interval [1; k]. Equivalently, it is a surjection.

$$u \sqcup v = \sum_{\substack{\mathsf{pack}(\alpha) = u \\ \mathsf{pack}(\beta) = v}} \alpha \beta,$$

Example:

$$11 \coprod 221 = 22221 + 33221 + 22331 + 11221 + 11332$$

In fact, more than a shuffle product: tridendriform products (WQSym free tridendriform algebra on infinitely many generators [Vong, Burgunder-Curien-Ronco, 2015])

Hopf algebra of packed words/surjections [WQSym: Hivert-Novelli-Thibon ≡2000, NQSym*: Bergeron-Zabrocki, 2005, Perm: Chapoton 2000]

Given a packed word u, define:

$$\Delta(u) = \sum_{k=0}^{n} u_{|\llbracket 1;k \rrbracket} \otimes u_{|\llbracket k+1;l \rrbracket}$$

Example:

$$\Delta(11332) = \varepsilon \otimes 11332 + 11 \otimes 221 + 112 \otimes 11 + 11332 \otimes \varepsilon$$

Link between the shuffle of packed words and an order on them [Palacios-Ronco 2006]

Palacios and Ronco introduced the following order for $A_i < A_{i+1}$ (i.e. for all $x \in A_i$ and $y \in A_{i+1}$, x < y):

$$(A_{1}, \ldots, A_{i-1}, A_{i}, A_{i+1}, \ldots, A_{n}) \leq (A_{1}, \ldots, A_{i-1}, A_{i} \cup A_{i+1}, \ldots, A_{n})$$

$$\dots i \dots i \dots (i+1) \dots (i+1) \dots \leq \dots i \dots i \dots i \dots$$

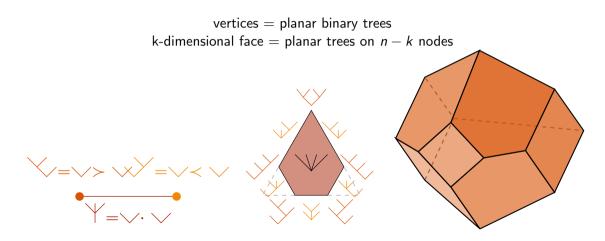
$$(A_{1}, \ldots, A_{i-1}, A_{i} \cup A_{i+1}, \ldots, A_{n}) \leq (A_{1}, \ldots, A_{i-1}, A_{i+1}, A_{i}, \ldots, A_{n})$$

$$\dots i \dots i \dots i \dots i \dots \leq \dots (i+1) \dots (i+1) \dots i \dots i \dots$$

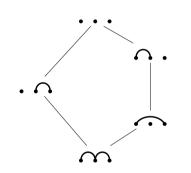
Proposition (Palacios-Ronco 02)

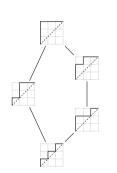
The shuffle product of packed words is the sum of element in an interval of this order.

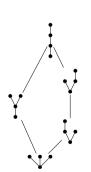
Another polytope in the title of the conference: Associahedra

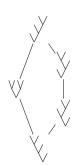


Tamari order









1

Shuffles of planar binary trees [Loday-Ronco 1998]

Denoted by $T = \bigvee_{r} T_r$ a planar binary tree, Loday-Ronco introduced the following product in 1998:

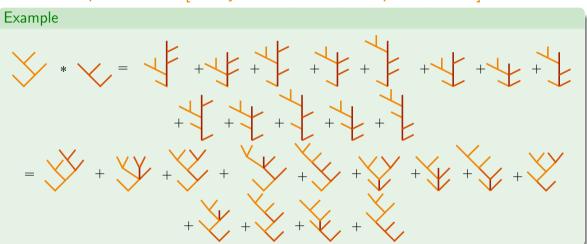
$$T*S = \begin{array}{c} T_I \quad T_r*S \\ \checkmark \\ \end{array} + \begin{array}{c} T*S_I \quad S_r \\ \checkmark \\ \end{array}.$$

Example

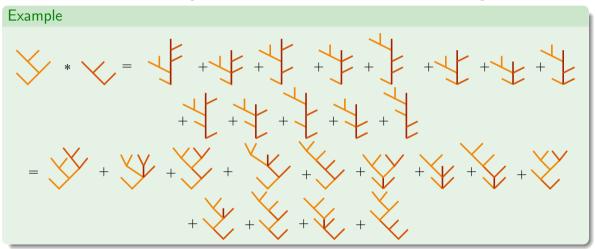
Proposition (Loday-Ronco 2002)

The shuffle product of two planar binary trees S and T can be expressed as a sum of elements in an interval whose bounds are given by some (duplicial) operations on S and T.

Shuffles of planar trees [Loday-Ronco, 2004; Chapoton, 2002]

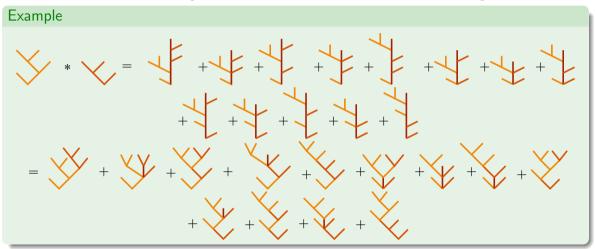


Shuffles of planar trees [Loday-Ronco, 2004; Chapoton, 2002]



Product * is associative, free associated algebra but generated by infinitely many generators [Loday-Ronco, 1998]

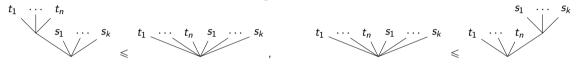
Shuffles of planar trees [Loday-Ronco, 2004; Chapoton, 2002]



Product * is associative, free associated algebra but generated by infinitely many generators [Loday-Ronco, 1998]

Link between the shuffle of planar trees and generalised Tamari order

Palacios and Ronco introduced the following order:

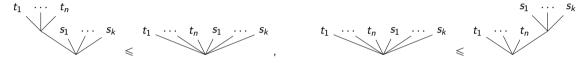


Proposition (Palacios-Ronco 02)

The shuffle product of planar trees is the sum of element in an interval of this order.

Link between the shuffle of planar trees and generalised Tamari order

Palacios and Ronco introduced the following order:



Proposition (Palacios-Ronco 02)

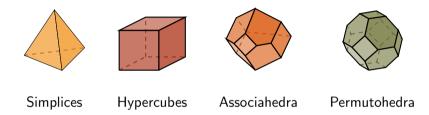
The shuffle product of planar trees is the sum of element in an interval of this order.

Goal of this talk

Explain to what extent these constructions (polytope \leftrightarrow algebra on faces whose product is given by an order on faces) can be generalised to other polytopes.

Outline

- Shuffles of packed words and planar trees
- 2 Hypergraph polytopes (a.k.a. nestoedra)
- Algebraic structures on faces of nestohedra



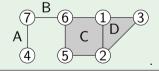
These four polytopes are instances of nestohedra / hypergraph polytopes

Could we define a shuffle product and an order on their faces ?

A hypergraph (on vertex set V) is a pair (V, E) where:

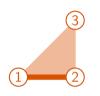
- V is a finite set, (the vertex set)
- E is a set of sets of size at least 2, $E \subset \mathcal{P}(V)$.

Example of an hypergraph on [1; 7]

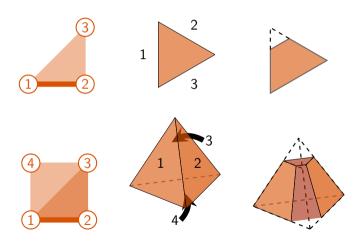


Warning:

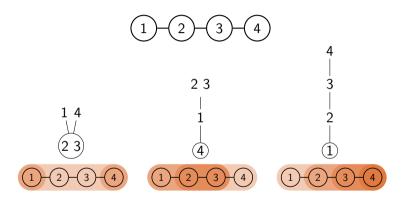
All the hypergraphs considered in this talk are connected!



Hypergraph polytope [Došen, Petrić] (=nestohedra [Postnikov])



Correspondence Tubings = Constructs = Spines



 $\ \, \mathsf{Upper} \,\, \mathsf{ideals} \,\, \mathsf{in} \,\, \mathsf{constructs} = \mathsf{tubes} \,\,$

Constructs [Postnikov; Curien-Ivanovic-Obradović]

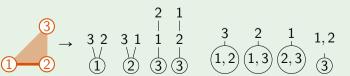
Constructs

A construct c of a hypergraph H is a rooted tree whose vertices form a partition of V(H) and defined inductively by:

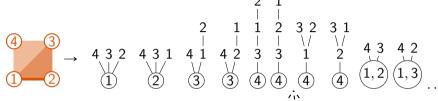
- c has only one node labelled by V(H).
- or the root of c is $E \subseteq V(H)$ and each of its children is a construct of a connected component of H-E.

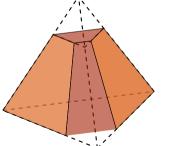
The set of constructs of a given hypergraph labels faces of the associated polytope.

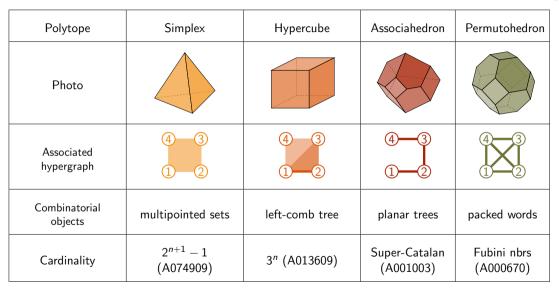
First example:



Second example geometrically







Algebraic structures on faces of nestohedra

Outline

- Shuffles of packed words and planar trees
- 2 Hypergraph polytopes (a.k.a. nestoedra)
- 3 Algebraic structures on faces of nestohedra

Heuristics for a shuffle product

Let $\mathbf{H}^{\mathcal{X}}$ be a family of hypergraph polytopes, indexed by some finite sets \mathcal{X} (sets of vertices of the associated hypergraphs).

For $S = A(S_1, ..., S_m)$ and $T = B(T_1, ..., T_n)$ two constructs of $\mathbf{H}^{\mathcal{X}}$ and $\mathbf{H}^{\mathcal{Y}}$ respectively $(\mathcal{X}, \mathcal{Y} \text{ disjoint})$, we would like to define the following operations

S * T as a linear combination of constructs of $\mathbf{H}^{\mathcal{X} \cup \mathcal{Y}}$ having root A, or root B, or root $A \cup B$.

Let $\mathbf{H}^{\mathcal{X}}$ be a family of hypergraph polytopes, indexed by some finite sets \mathcal{X} (sets of vertices of the associated hypergraphs).

For $S = A(S_1, ..., S_m)$ and $T = B(T_1, ..., T_n)$ two constructs of $\mathbf{H}^{\mathcal{X}}$ and $\mathbf{H}^{\mathcal{Y}}$ respectively $(\mathcal{X}, \mathcal{Y} \text{ disjoint})$, we would like to define the following operations

S * T as a linear combination of constructs of $\mathbf{H}^{\mathcal{X} \cup \mathcal{Y}}$ having root A, or root B, or root $A \cup B$.

First problem in hypercubes

$$1*(2*3) = 1* \left(\frac{3}{2} + \frac{2}{3} + \underbrace{3}{2} \right) = 3 \times \underbrace{1}^{3} + \dots \neq (1*2)*3$$

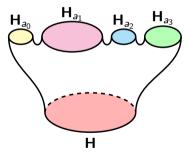
Universe and preteam

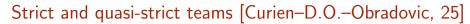
The considered hypergraphs belong to a set of hypergraphs \mathfrak{U} , called universe.

A preteam (=domain of definition) is a pair $\tau = (\{\mathbf{H}_a | a \in A\}, \mathbf{H})$ where

- $\{\mathbf{H}_a | a \in A, \mathbf{H}_a \in \mathfrak{U}\}\$ is a set of pairwise disjoint hypergraphs, called participating hypergraphs
- $\mathbf{H} \in \mathfrak{U}$ is a hypergraph such that $H = \bigcup_{a \in A} H_a$, called supporting hypergraph.

$$*:\prod_{a\in A}\mathcal{C}(\mathbf{H}_a)\to\mathcal{C}(\mathbf{H})$$



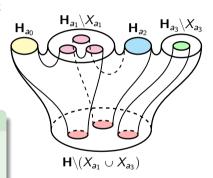


A preteam is a (resp. quasi-strict) strict team if the connected components obtained by deleting a subset X_a to every hypergraph \mathbf{H}_a are

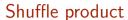
- in \$\mathcal{U}\$
- and included in the connected components of $\mathbf{H} \setminus (\bigcup_{a \in A} X_a)$ (resp. or totally disconnected).

Examples:

- Strict teams : Associahedra, Permutohedra, Restrictohedra, . . .
- Quasi-strict teams : Simplices, Hypercubes, Erosohedra, . . .



$$(X_{a_0}=X_{a_2}=\varnothing)$$

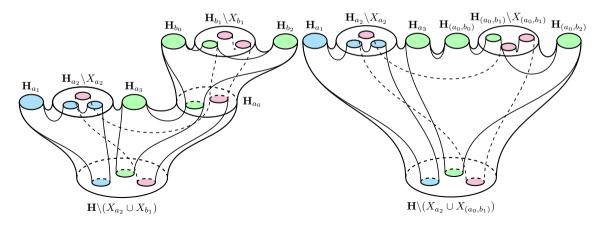


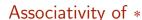
Considering a team E and denoting by δ a tuple of constructs of the team's participating hypergraphs, we inductively associate to δ a sum of constructs of the supporting hypergraph:

$$*(\delta) = \sum_{\varnothing \subset B \subseteq A} q^{|B|-1} \left(\bigcup_{b \in B} X_b \right) (*(\delta_1^B), \dots, *(\delta_{n_B}^B)),$$

Associative clan

A set of (resp. quasi-strict) strict team with "good" closure properties is called strict clan (each connected component obtained from the supporting hypergraph is itself a supporting hypergraph of a team).





Theorem (Curien-D.O.-Obradović, 25)

Consider an associative clan C. The product st is associative if

- C is strict,
- or C is quasi-strict and q = -1.
- Strict clans: Associahedra, Permutohedra, Restrictohedra, ...
- quasi-strict clans: Simplices, Hypercubes, ...

Order on faces of nestohedra: generalised flip order [Curien-Laplante-Anfossi, Curien-D.O.-Obradovic]

- ullet Hypergraphs on $\mathbb Z$
- For $X_1, X_2 \subseteq \mathbb{Z}$, we write $X_1 < X_2$ if $\max(X_1) < \min(X_2)$.
- Every considered set of hypergraphs (preteam, decomposition) is ordered

Definition

S and T two constructs of **H**. S < T if and only if there exists

- U parent of V in S such that min(U) > max(V) and T obtained from S by merging U and V, (contraction)
- or V parent of U in T such that $\min(U) > \max(V)$, and S obtained from T by merging U and V. (split)

Proposition (Ronco 2012; Curien–D.O.–Obradovic (new cases))

For any strict or quasi-strict ordered associative clan, the shuffle product is the sum of elements in an interval in the generalised flip order.

What about the coproduct ? [Work in progress]

Question: Would the following coproduct work?

$$\Delta(S) = \sum_{c \text{ cut}} R_c(S) \otimes *(F_c(S)) + 1 \otimes S$$

Answer: not on hypercubes...

Possible for:

- associahedra
- permutohedra
- ?

What about the coproduct ? [Work in progress]

Question: Would the following coproduct work?

$$\Delta(S) = \sum_{c \text{ cut}} R_c(S) \otimes *(F_c(S)) + 1 \otimes S$$

Answer: not on hypercubes...

Possible for:

- associahedra
- permutohedra
- ?