A minicourse on Permutation Flows

Martha Yip University of Kentucky

joint work with González D'León and Hanusa

Overview.

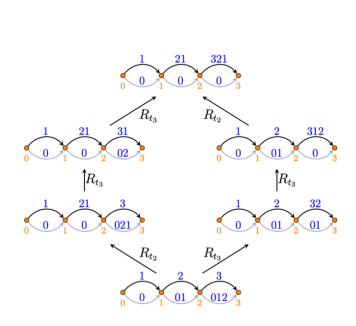
Part I. Flow polytopes (netflow \(\vec{a} = \vec{e}_o - \vec{e}_n \)

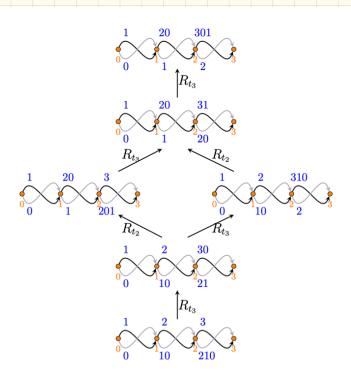
- · faces, volume, framed triangulations, dual lattice structure
 - · a new combinatorial model for computing: permutation flows
- obtain the h*-polynomial of the flow polytope \mathcal{F}_{G} $h_{\mathcal{F}_{G}}^{*} = A_{G} \quad \text{is the } G \text{Eulerian polynomial}.$

Part I. Flow polytopes (netflow
$$\vec{a} = (a_0, ..., a_{n-1}, -za_i)$$
)

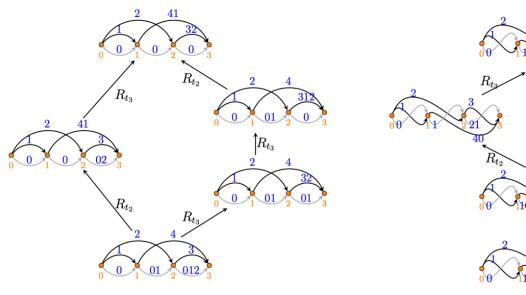
- · permutation flow shuffles, and groves and vines etc.
- · a new triangulation of 7g (a)

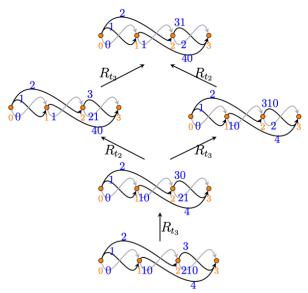
Permutahedra,



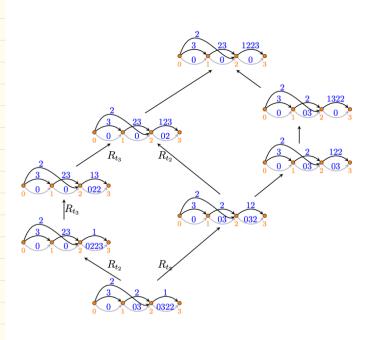


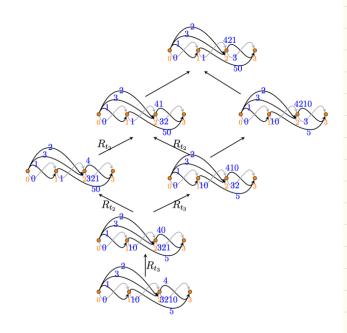
Associahedra,





Beyond,





Beyonder. and

Flow polytopes.

Defn. G is an acyclic directed graph, V = 30, ..., n3, m edges. $\vec{a} = (a_0, ..., a_{n-1}, -\Sigma a_i) \in \mathbb{Z}^{n+1}, \quad a_v \ge 0 \quad \text{for} \quad v = 0, ..., n-1.$

$$\vec{a} = (1,0,0,0,0,0,-1)$$

The flow polytope 3g is the set of all flows on G.

$$3_{G} = \{ \vec{x} \in \mathbb{R}^{E}_{\geq 0} \mid N_{G} \vec{x} = \vec{a} \}.$$
Signed incidence

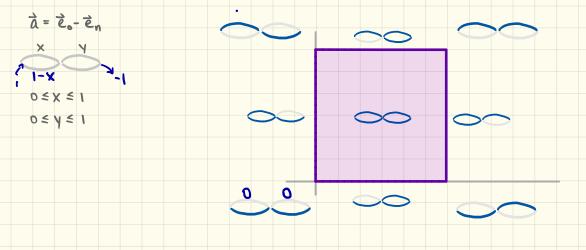
d = dim 3 = m - n.

Faces.

Theorem [Hille]. Faces of $\mathcal{F}_{G}(\vec{a})$ are of the form $\mathcal{F}_{H}(\vec{a})$ where H is a subgraph of G.

Corollary. Vertices of $F_G(\vec{a})$ are $F_T(\vec{a})$, T is a subtree.

Corollary. Vertices of $\frac{1}{3}$ are routes (directed paths from 0 to n). When $\vec{a} = \vec{e}_0 - \vec{e}_n$

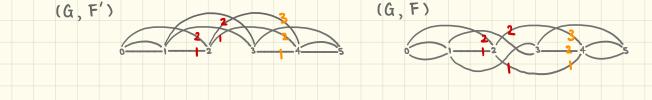


Framed Triangulations. [Danilov, Karzanov, Koshevoy].

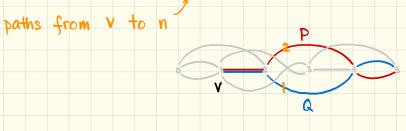
Defn. A framing at v is an ordering of the incoming and of the outgoing edges at v.

A framing F of G is the set of framings at every vertex (we include framings at 0 and n).

or P<Q?



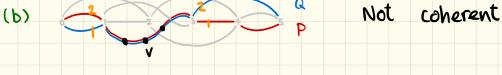
The framing at v induces total orderings on Prefixes (v) and on Suffixes (v).



Defn. Two routes P and Q are in conflict at v if prefixes Pv, Qv have the opposite ordering from suffixes vP, vQ.

P and Q are coherent if they are not in conflict at any v.

Question. Are P and Q coherent?



(c) P Yes.

Defn. A clique is a set of pairwise coherent routes.

The set Cliques (G, F) is partially ordered by containment.

Given a clique \mathcal{E} , its rank or dimension is rank $\mathcal{E} = |\mathcal{E}| - 1$.

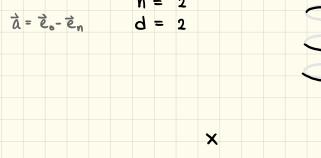
Theorem [Danilov, Karzanov, Koshevoy].

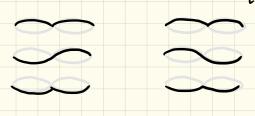
Let (G,F) be a framed graph. Then

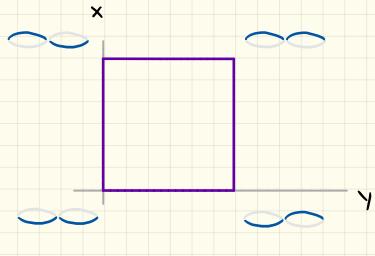
DKK(G, F) := $\{\Delta_{\mathcal{E}} \mid \mathcal{E} \text{ is a maximal clique of } (G, F) \}$ is the set of top-dimensional simplices in a regular unimodular triangulation of \mathcal{F}_{G} . Moreover, $\Delta_{\mathcal{E}}$ and $\Delta_{\mathcal{E}'}$ share a facet if \mathcal{E} and \mathcal{E}' differ in exactly one route.

(G, F)

There are two maximal cliques.



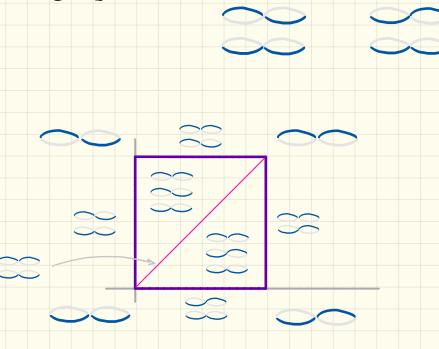




(G, F)

à = è = è n

There are two maximal cliques.



Question. (G, F) has m = 12 n = 5 d = 7

(a) Can you compute a maximal clique? (b) Can you then compute another maximal clique (by hand?!) so that these simplices share a facet?

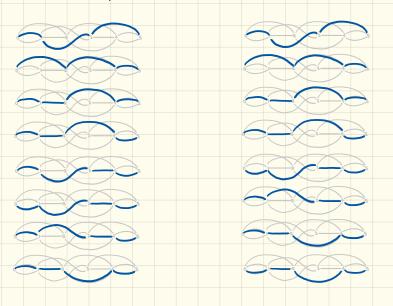
e Ree

Question. (G, F)

has m = 12 n = 5 d = 7

(a) Can you compute a maximal clique?

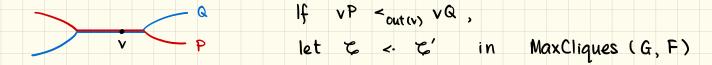
(b) Can you then compute another maximal clique (by hand?!) so that these simplices share a facet?



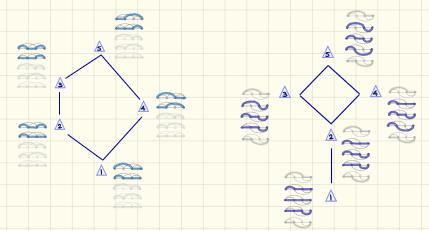
Dual graph has a lattice structure.

The set MaxCliques (G, F) has a poset structure.

Suppose $\Delta_e \sim \Delta_{e'}$ in the dual graph, so $C' = C \setminus P \cup Q$. with P and Q in conflict at some V.



The transitive closure of these < defines a partial order.



Dual graph has a lattice structure.

car(y)

Theorem. [Bell, González, Mayorga, Y. 23]

Let
$$v = (v_1, ..., v_a) \in \mathbb{Z}_{>0}$$
.

The dual graph is the Hasse diagram of I(>).

The dual graph is the Hasse diagram of Tam(v).

3,
$$\text{Vol } \mathcal{J}_{\text{car}(\nu)} = \text{Cat } (\nu) = \text{det } \left[\begin{pmatrix} 1 + \sum_{k=1}^{a-j} \nu_k \\ 1+j-i \end{pmatrix} \right]_{1 \leq i \leq j \leq a-i}$$

v-Tamari lattice, principal order ideals I(v) in Young's lattice.

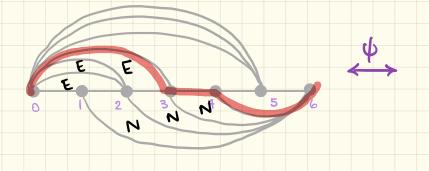
Theorem. [Bell, González, Mayorga, Y. 23]

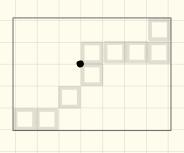
1 planar-framed triangulation of Fcar(x):

The dual graph is the Hasse diagram of I(>).

3 routes in car (x)
$$\stackrel{\varphi}{\longrightarrow}$$
 3 lattice points above x $\stackrel{\xi}{\longrightarrow}$.

$$\nu = N \stackrel{2}{E} N E N N E^3 N E$$





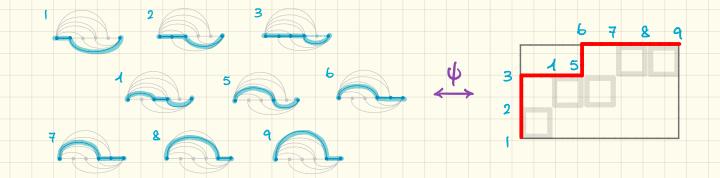
v-Tamari lattice, principal order ideals I(v) in Young's lattice.

Theorem. [Bell, González, Mayorga, Y. 23]

1 planar-framed triangulation of Fcar(x):

The dual graph is the Hasse diagram of I(>).

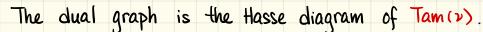
 \S routes in $G(y)\S \stackrel{\psi}{\longleftrightarrow} \S$ lattice points above $y\S$. \S maximal cliques in $Car(y)\S \stackrel{\varphi}{\longleftrightarrow} \S y$ - Dyck paths \S

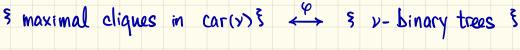


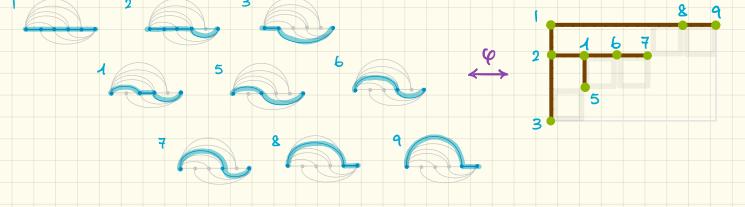
v-Tamari lattice, principal order ideals I(v) in Young's lattice.

Theorem. [Bell, González, Mayorga, Y. 23]

2, length-framed triangulation of Fcar(x):

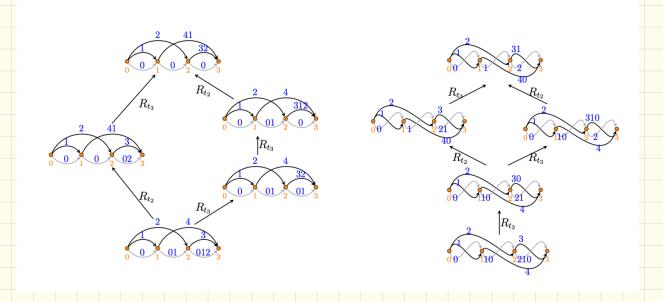






I(y), y = (1,2,1).

DKK triangulations unify the study of the Tamari lattice and the poset of order ideals of the Type A root lattice.



But these are lattices!

Conjecture. All dual graphs of DKK(G, F) have a lattice structure.

More evidence: 5- weak order.

Introduced by Ceballos and Pons, it is a lattice defined on s-decreasing trees.

They conjectured that the s-weak order can be realized as the 1-skeleton of a polyhedral subdivision of a polytope.

Theorem. [González, Morales, Phillipe, Tamayo, Y. 25]

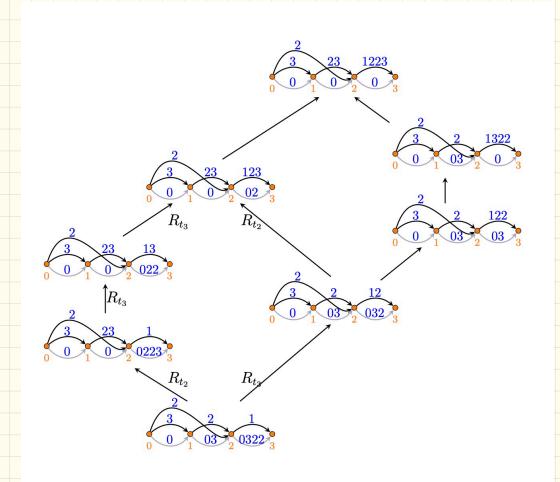
Let
$$\vec{s} = (s_1, ..., s_{n-1}) \in \mathbb{Z}_{\geqslant 1}^{n-1}$$
 or $u(\vec{s}) :$

- The dual graph of DKK (Forus, F)
 - is the Hasse diagram of the 5-weak order.
- 2. The 5- weak order can be realized as the dual graph of a fine mixed subdivision of a sum of hypercubes.
- 3. The 5-weak order can be realized as the 1-steleton of a polyhedral complex.

Oru (1,2,1)

These maximal cliques are in bijection with:

- ·š-decreasing trees
- ·ŝ-Stirling permutations



Dual	graph has a lattice	structure.
Theore	em. [Bell, Ceballos],	[Berggren, Serhiyenko]
	The poset on Max	Cliques (G, F) is a lattice!
Other	notable examples of	framing lattices include:
	· Boolean lattice	
	· c-Cambrian	[Reading]
	· alt v- Tamari	[Ceballos, Chenevière]
	· cross Tamari	[Bell, Ceballos]
	· Grassmann Tamari	[Santos, Stump, Welker]
	· grid Tamari	[McConville]
	· (ɛ, I, J) - Cambrian	[Pilaud]

Overview.

Part I. Flow polytopes (netflow a = eo-en)

taces, volume, tramed triangulations, qualitative structure

- · a new combinatorial model for computing: permutation flows
 · obtain the ht-polynomial of the flow polytope 7g
- $h_{\mathcal{F}_{G}}^{*} = A_{\mathcal{G}}$ is the G-Eulerian polynomial.

Cliques are difficult to work with.

We'll encode its information in a more compact manner.

Defn.

It will be helpful to add an inflow half edge x to G. Note # split edges = d.

The set of partial permutations of a set A is $\mathcal{P}_{A} = \bigsqcup_{B \in A} \mathcal{E}_{B}.$

Given $\pi: E \cup \{x\} \longrightarrow \mathcal{P}_{\{0,1,\dots,d\}}$, its support is

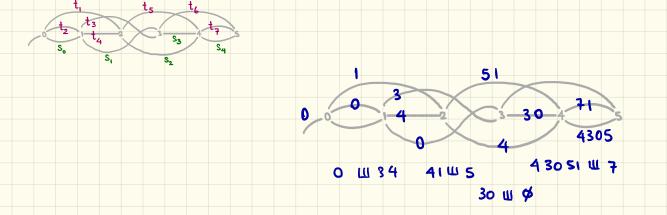
Defn. Given $\pi: E \cup \{x\} \rightarrow \mathcal{P}_{\{0,1,\dots,d\}}$, its support is $\hat{E} \qquad \text{Supp}(\pi) = \{e \in \hat{E} \mid \pi(e) \neq \emptyset \}.$ At a vertex v with $\text{in}(v) = \{e_0,\dots,e_i\}$ e_0 $\pi(e_0)$ e_0 e_0 e_0 the v^{th} -incoming summary and v^{th} -outgoing summary are $\text{InPerm}(v) = \pi(e_0) \cdots \pi(e_i)$, OutPerm $(v) = \pi(e_0') \cdots \pi(e_i')$.

- if π is nonempty, then π(x) = 0.
 at v with in(v) = ? e₀,..., e_i ?, out(v) = ? e₀,..., e_j ?
- OutPerm (v) is an unshuffle of InPerm (v) and a (possibly empty) subword of e:...e;
- if $e'_h \in \text{OutPerm (v)}$, then e'_h is the first letter of $\pi(e'_h)$.

- · if π is nonempty, then $\pi(x) = 0$.
- · at v with in(v) = ? e,..., e; ?, out(v) = ? e',..., e'; ?

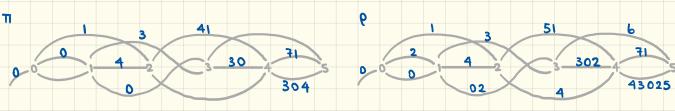
 OutPerm (v) is an unshuffle of InPerm(v) and a

 (possibly empty) subword of e'...e';.
- · if e'n & OutPerm (v), then e'n is the first letter of $\pi(e'_h)$.



- if π is nonempty, then $\pi(0) = 0$.
- oat v with in(v) = \(\frac{1}{2} \) e_0,..., e_i \(\frac{1}{2} \), out(v) = \(\frac{1}{2} \) e'_0,..., e'_j \(\frac{1}{2} \)

 OutPerm (v) is an unshuffle of InPerm(v) and a (possibly empty) subword of e'_0e'_1...e'_j \(...\)
- if $e'_h \in OutPerm (v)$, then e'_h is the first letter of $\pi(e'_h)$, and e'_h is a split edge of supp (π) .



- if π is nonempty, then $\pi(0) = 0$. • at ν with $\pi(\nu) = \{e_0, ..., e_i\}$, out $(\nu) = \{e'_0, ..., e'_j\}$
 - OutPerm (v) is an unshuffle of InPerm (v) and a
 - (possibly empty) subword of e',e',...e';.

 · if e'n ε OutPerm (v), then e'n is the first letter of π(e'n),

 and e'n is a split edge of supp (π).

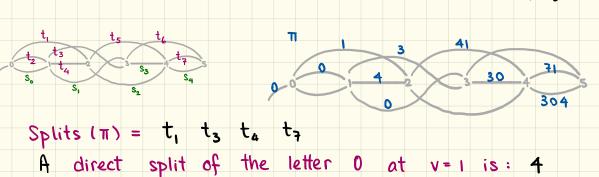
Permutation Flow splits.

Define a partial order on the set PermuFlows (G, F) via split reductions.

Defn. An edge e ∈ E is a split in π if it is the first letter in π(e).

An edge t ∈ E is a direct split of e at v if

e' ...e. e* e* is largest in out (v) satisfying this



The letter 3 is a direct split of 0 at v=1.

Permutation Flow poset.

· keeping a letter e,

Defn. Let π , ρ be permuflows of (G, F).

 π is a split reduction of ρ if π can be obtained from ρ via:

T = P

- · if \$1 t which is a direct split of e, then deleting all e, or
- · if I t which is a direct split of e at v (with t a min.), then deleting all e, after v, and replace all t by e.

Proposition. [González, Hanusa, V. 25t]

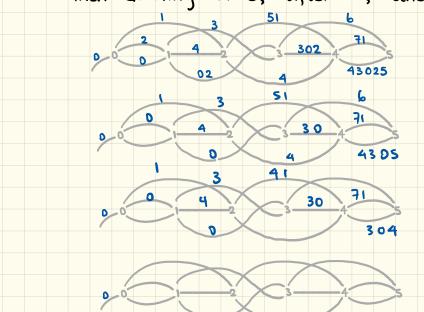
Split reduction defines a partial order on PermuFlows (G, F)We write $\pi \subseteq p$ if π is a split reduction of p.

Permutation Flow poset.

Defn. π is a split reduction of ρ if π can be obtained from ρ via:

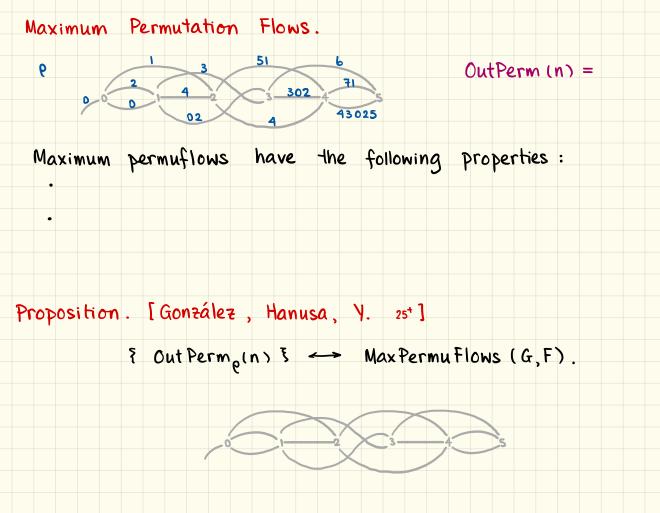
• keeping a letter e,

if \$\notate \tau\$ t which is a direct split of e at v (with t a min.),
 then deleting all e, after v, and replace all t by e.



Target:

Face poset of the triangulated square.



Permutation Flows encode DKK cliques. Theorem. [González, Hanusa, Y. 25t] Cliques (G, F) Permu Flows (G, F) Routes (T) is an order-preserving bijection. Recovering routes from π . T 30471 Out Perm(1) = 6 51062 · 4 · 3

Permutation	Flows	encode	DKK	cliq	ues.
Theorem. [González	, Hanusa	, У.	25 [†]]	
	PermuF	lows (G, F) –	->	Cliq
		π	-	+	Rout

ues (G, F) tes (T) is an order-preserving bijection.

Proof idea: Construct inverse map.

Do this tomorrow. Need some other objects.