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Combinatorial structures where patterns are commonly
studied:

(links with sorting algorithms, logic, number theory, bioinformatics, . . . )

Typical questions:

What is number of structures of size n with j occurrences of the pattern?

Is there a nice formula for the generating function?

Asymptotic behaviour, limit laws?

Generation of these objects?
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Simple example: Dyck paths with pattern

D(z , v) = 1+ z2 + (v + 1)z4 + (v2 + 2v + 2)z6

+ (v3 + 3v2 + 6v + 4)z8 + · · ·

# P Dyck paths of length 8 with # P occurrences of

0 4u0

1 6u1

2 3u2

3 u3
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Ad hoc method (standard combinatorial decomposition)

D = ε +
D
D

D(z , v) = 1+ vz2(D(z , v)− 1) + z2 + z2(D(z , v)− 1)D(z , v)

ε D \ {ε}
D \ {ε}

D

D(z , v) =
1+ z2 − z2v −

√
(1+ z2 − vz2)(1− 3z2 − vz2)

2z2

D(z , 1): standard generating function for Dyck paths.
D(z , 0): generating function for Dyck paths with no

occurrence of the pattern.
∂
∂vD(z , v)

∣∣
v=1

: generating function for the total number of
occurrences of a pattern.

Doing this in general is unpleasant!
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General method: via automata/walks on graphs
First step: build an automaton encoding the structure of the pattern
(here UDU).

ε U UD UDU

D
U

U

D U

D

U

D

The associated minimal automaton (De Bruijn) is:

ε U

UD

D

U

U

DU
D

Each time the red transition is
used indicates an occurrence
of the pattern UDU.
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Unconstrained Dyck paths with

Second step: set up the adjacency matrix A.

ε U

UD

D

U

U

DU
D

A =

u−1 u 0
0 u u−1

u−1 vu 0


(u marks height, v pattern).
Generating function for all possible paths
(z marks length):

I +zA+(zA)2+(zA)3+ · · · = (I −zA)−1

G (z , u, v) =
[
1 0 0

]
(I − zA)−1

11
1


G (z , u, v) =

(vz2 − z2 − 1)u

vuz2 − vz3 + u2z − uz2 + z3 − u + z
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1 2

3

D

U

U

DU
D

However, this automaton does not keep
track of height. For this, we use a stack:

Read U: push U
Read D: pop U
Cannot pop from an empty stack!

· · ·

Word: UUUDUDDUDU
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Positivity constraint: add a stack to the automaton!

Third step: positivity constraint at the level of the functional equation.

1 2

3

D

U

U

DU
D

Adjacency matrix (u marks height):

A =

u−1 u 0
0 u u−1

u−1 0 0



Mi (z , u) is the generating function for meanders terminating in state i .

(M1,M2,M3) = (1, 0, 0) + z(M1,M2,M3)A− z{u<0}((M1,M2,M3)A).

(M1,M2,M3)(I − zA) = (1, 0, 0)− z((M1(z , 0),M2(z , 0),M3(z , 0))A).

⇝ vectorial kernel method [Asinowski, Bacher, Banderier, Gittenberger, 2019].
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Generating functions

Deterministic Finite Automaton Rational Generating Function
0

1

1

0 1

0

0, 1

G (z) = p(z)
q(z)

Pushdown Automaton (subclass) Algebraic Generating Function
0

1

1

0 1

0

0, 1

P(z ,G (z)) = 0

· · ·

Unambiguous context-free grammar =⇒ algebraic
[Chomsky-Schützenberger, 1963]

`Shu�es' of context-free languages =⇒ D-�nite
[Mishna, Zabrocki, 2008]

Two-way reversal bounded counter machines =⇒ D-�nite
[Bostan, Carayol, Koechlin, Nicaud, 2020]
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Unravelling a formula!

S = {(1, 1), (0,−1), (−1, 0)}.

Excursion: (0, 0) to (0, 0)
Meander: (0, 0) to anywhere

How many such excursions are there?

4n

(n + 1)(2n + 1)

(
3n

n

)

Equivalence classes!

2-colouring

S = {(1, 2), (1,−1)} Ternary trees

4-colouring
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A brief history of Kreweras walks
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Nature of Kreweras generating function?
Kreweras walks are algebraic � can they then be represented by a
pushdown automaton?

Lemma (Pumping lemma for context-free languages)

If a language L can be represented by some pushdown automaton, there
exists some integer p ≥ 1 (called a �pumping length�) such that every
word w in L that has a length of p or more symbols (i.e. with |w | ≥ p)
can be written as

w = uvzxy

with subwords u, v , z , x and y , such that

|vx | ≥ 1,

|vzx | ≤ p, and

uvnzxny ∈ L for all n ≥ 0.

Applying the pumping lemma to apbpcp shows that Kreweras walks
cannot be encoded in a pushdown automaton. ⇝ Are there other ways
to approach studying patterns in walks in the quarter plane?
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Patterns in walks in the quarter plane: A humble start
Kreweras excursions of length 6

avoiding the pattern .

1, 2, 11, 85, 782, 8004, . . . OEIS A135404: �Gessel excursions�

Gessel excursions of length 4.
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Patterns in walks in the quarter plane: A humble start

`Shortcut' bijection (Asinowski, Banderier, S.):

←→ ←→ ←→ ←→
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What about other patterns?

Kreweras excursions of length 6
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

�k and ℓ � = �ℓ and k �.

Mark each followed by a (local indices a1, . . . , ak).

Mark each preceded by a (local indices b1, . . . , bℓ).

1

2

3 4 5

6

12

3

456

(1, 4, 5)

(3, 6)
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

�k and ℓ � = �ℓ and k �.

1. For i = 1 . . . k , remove the step with index ai and insert it
immediately before the step with index ai + 1.

1

2

3 4 5

6

(1)

move (1) before 2

7→

5

6

(4)(5)

move (4) before 5

move (5) before 6

7→
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

�k and ℓ � = �ℓ and k �.

2. For j = ℓ . . . 1, remove the step before the step with index bj
and insert it immediately before the step with index bj .

3

6

3

6

7→

3

6
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

�k and ℓ � = �ℓ and k �.

Mark each followed by a (local indices a1, . . . , ak).

Mark each preceded by a (local indices b1, . . . , bℓ).

For i = 1 . . . k , remove the step with index ai and insert it
immediately before the step with index ai + 1.

For j = ℓ . . . 1, remove the step before the step with index bj
and insert it immediately before the step with index bj .

7→ 7→
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Kreweras excursions avoiding patterns of length 2

Kreweras Gessel Pólya Diagonal

Pattern p
# {Kreweras excursions

of length 3n avoiding p}
OEIS In bijection with

1, 2, 11, 85, 782, 8004, . . . A135404 Gessel excursions

1, 2, 11, 85, 782, 8004, . . . A135404 Gessel excursions

1, 1, 5, 37, 332, 3343, . . . None
Gessel excursions

ending with ↓

1, 2, 10, 70, 588, 5544, . . . A005568 Pólya excursions

1, 1, 4, 25, 196, 1764, . . . A001246 Diagonal excursions

Coincidence?

Sarah J. Selkirk 22



Nature of generating functions in speci�c cases

Pattern p
# {Kreweras excursions

of length 3n avoiding p}
OEIS

Nature of

gen. func.

1, 2, 11, 85, 782, 8004, . . . A135404 Algebraic

1, 2, 11, 85, 782, 8004, . . . A135404 Algebraic

1, 1, 5, 37, 332, 3343, . . . None Algebraic

1, 2, 10, 70, 588, 5544, . . . A005568 D-�nite

1, 1, 4, 25, 196, 1764, . . . A001246 D-�nite

First three models: Algebraic
(using [Kauers�Koutschan�Zeilberger 2009] and [Bostan�Kauers 2009])
but not context-free [Banderier�Drmota 2015]: 4nn−2/3 asymptotics.

Last two models: D-�nite, but not algebraic.

Pólya walks: CnCn+1 ∼ 4 16n

πn3 . Such asymptotics involving a n−3 factor
are not compatible with the rather constrained asymptotics of algebraic
function coe�cients.

Sarah J. Selkirk 23
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Generating functions: walks avoiding a pattern

For walks in Z2 avoiding a
pattern, generating function
is rational.

complement of regular expression

For walks in N × Z avoiding
a pattern, generating function
is algebraic.

one counter automaton

For directed walks in N2

avoiding a pattern, generating
function is algebraic.

vectorial kernel method [Asinowski, Bacher,
Banderier, Gittenberger, Roitner]

For non-directed walks in N2

avoiding a pattern, gen. func-
tion is not necessarily algebraic.

Classi�cation needed!

Sarah J. Selkirk 24



Generating functions: walks avoiding a pattern

For non-directed walks in N2 avoiding a pattern, the gener-
ating function is not necessarily algebraic (or D-�nite!).

Kauers�Yatchak's model, 2015
(steps are with multiplicity)

1

1 2 1

2

11

Mishna�Rechnitzer's model, 2009

Forbidding some steps in the top (algebraic) model leads to the bottom
(di�erentially transcendental) model.
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What about other models?

Polya

Avoiding SS, conjecturally:

− 6(x + 5)G (x) + 3(3x3 − 43x2 − 73x + 5)G ′(x)

+ (11x4 − 141x3 − 171x2 + 13x)G ′′(x)

+ (2x5 − 26x4 − 26x3 + 2x2)G (3)(x) = 0

Avoiding NS, conjecturally:

(−6x2 − 24x − 6)G (x) + (−12x4 + 54x3 − 30x2 − 90x + 6)G ′(x)

+ (3x6 − 48x5 + 84x4 + 42x3 − 87x2 + 6x)G ′′(x)

+ (x7 − 15x6 + 14x5 + 14x4 − 15x3 + x2)G (3)(x) = 0.
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What about other models?

Diagonal

Avoiding NESE, conjecturally:

(1470x2 − 936x + 216)G ′(x) + (3570x3 − 3309x2 + 900x − 36)G ′′(x)

+ (1701x4 − 1975x3 + 552x2 − 28x)G (3)(x)

+ (189x5 − 257x4 + 72x3 − 4x2)G (4)(x) = 0

Avoiding NWSE, conjecturally:

(4x − 4)G (x) + (2x4 − 26x3 − 70x2 − 54x + 4)G ′(x)

+ (4x5 − 47x4 − 117x3 − 61x2 + 5x)G ′′(x)

+ (x6 − 12x5 − 26x4 − 12x3 + x2)G (3)(x) = 0
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Outline

1 Patterns in lattice paths via automata

2 Patterns in the quarter plane

3 Lattice paths with dynamic boundary
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Dynamic boundary problem

Currently, studying a pattern in lattice paths is a static procedure.
Experiment: What happens if the occurrence of a pattern changes the
�future� of the path?

S = {U, L,D} with U = (1, 1), L = (1, 0), D = (1,−1).
Pattern UDD shifts the boundary upwards by 1 unit.

Pattern DU shifts the boundary downwards by 2 units.

A path must end on the boundary line in its current position.
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Dynamic boundary problem

Dynamic boundary walks (in one-dimension) are:

Algebraic

Able to be modelled with pattern-avoidance problems

Interesting relationships exist between dynamic boundary lattice paths
and other combinatorial objects.

Motzkin paths, S = {U,D, L}
DL shifts the boundary by −2
UL shifts the boundary by 2.
Set of excursions of length n: M(n)
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Shifted Young tableau: i-th row begins in position i
Entries: numbers from 1 to n, increasing along rows and columns
Height ≤ 3
Set shifted Young tableaux of size n: sYT(n)

1 2 4

3 5

6

M(n) ≃ sYT(n + 1) (Asinowski, Brosch, S.):

≃
1 2 4

3 5

6
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M(n) ≃ sYT(n + 1)

1 2 3 4 5 6
1 2 3 4 5

6

1 2 3 4 6

5

1 2 3 5

4 6

1 2 3 4

5 6

1 2 3 5 6

4

1 2 4

3 5

6

1 2 4 6

3 5

1 2 3 6

4 5

1 2 4 5 6

3

1 2 4 5

3 6

1 2 3

4 5

6
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Where the pattern UL occurs, transform it into DL.
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Where the pattern DL occurs, mark the L step. If it is followed by a
contiguous sequence of L, remove the marking and mark the �nal L in
this contiguous sequence.
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From right to left in the path, map a marked L to 1 and the next (left to
right) two D steps to 2 and 3 (in order).
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From right to left in the path, map a marked L to 1 and the next (left to
right) two D steps to 2 and 3 (in order).

1 2 3
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From right to left in the path, map a marked L to 1 and the next (left to
right) two D steps to 2 and 3 (in order).

1 2 31 2 3
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From right to left in the path, map a marked L to 1 and the next (left to
right) two D steps to 2 and 3 (in order).

1 2 31 2 31 2 3
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Recursively [Eu, 2010]: First step L, mark with 1. First step U (mark
with 1), if the next non-U is D (mark with 2) or L (�nd next D and mark
with 2 and 3 respectively). Repeat on unnumbered steps.

1 1 1 1 2 2 2 1 1 2 3 1 2 1 1 1 2 3 3 1 3 3 2 3 2 2 2
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If the i-th element is numbered j , add the number i to the j-th row of
the tableau.

1 1 1 1 2 2 2 1 1 2 3 1 2 1 1 1 2 3 3 1 3 3 2 3 2 2 2

1 2 3 4 8 9 12 14 15 16 20

5 6 7 10 13 17 23 25 26 27

11 18 19 21 22 24
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Steps:

1 Where the pattern DL occurs, mark the L step.

2 Where the pattern UL occurs, transform it into DL.
3 From right to left in the path, for every marked L:

1 If it is followed by a contiguous sequence of L, remove the marking
and mark the rightmost L in this contiguous sequence.

2 Then, map the marked L to 1 and the next (left to right) two D
steps to 2 and 3 (in order).

4 Recursively [Eu, 2010]: First step L, mark with 1. First step U (mark
with 1), if the next non-U is D (mark with 2) or L (�nd next D and
mark with 2 and 3 respectively). Repeat on unnumbered steps.

5 If the i-th element is numbered j , add the number i to the j-th row
of the tableau.
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How do we reverse the procedure?

1 1 1 1 2 2 2 1 1 2 3 1 2 1 1 1 2 3 3 1 3 3 2 3 2 2 2

1 1 1 1 2 2 2 1 1 2 3 1 2 1 1 1 2 3 3 1 3 3 2 3 2 2 2
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How do we reverse the procedure?
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What about dynamic boundaries in the quarter plane?

Exhaustive searches carried out on

Kreweras Gessel Pólya Diagonal

Some interesting relationships exist, e.g.:
Kreweras walks

Start at (0, 0), boundary is y = 0, x = 0, end on the current
boundary.

NE W shifts boundary by (1, 2).

W W shifts boundary by (−2,−1).
Boundary shifts just before �nal step of a pattern.

Enumerated by
2n

2n + 1

(
3n

n

)
.
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Future directions

Find a �Proof from The Book� for the Kreweras enumeration!
Perhaps by following some patterns. . .

Given a stepset and a pattern, determine the nature of the
generating function of the resulting pattern-avoiding walk.
Even some small but reasonably general results in this
direction. . . (small steps?)

Develop automata-based methods for studying patterns in walks
with two-way reversal bounded counter machines (D-�nite).
Assisting in classifying which pattern-avoiding walks remain D-�nite?

Find an example of a walk in N2 and a pattern for which some
adapted kernel method would work.
A highly symmetric walk?

Pumping lemma-type results for D-�nite languages?

Thank you!
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