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Outline

@ Patterns in lattice paths via automata
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Combinatorial structures where patterns are commonly

studied:

"B L ks

7\,
SN\
VAVAVAN
SN\
VAVAVAVAVAN

(links with sorting algorithms, logic, number theory, bioinformatics, . .

Typical questions:

0010 11[A0[00
po10EAII0101
001011110110
00101 110M L]

)

@ What is number of structures of size n with j occurrences of the pattern?

@ Is there a nice formula for the generating function?
@ Asymptotic behaviour, limit laws?

@ Generation of these objects?
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Simple example: Dyck paths with pattern ~~~

D(z,v)=1+2>+ (v+1)z* + (v? +2v +2)2°
+ (V43 +6v+4)8+- -

# P | Dyck paths of length 8 with # P occurrences of /™
0 4u°
1 6ut
2 3u?
3 u®
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Ad hoc method (standard combinatorial decomposition)

D
D=c¢c+ ./ \D
D(z,v) =1+ vz?(D(z,v) — 1)+ 22 + z22(D(z,v) — 1)D(z, v)

- oA oA VNG
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Ad hoc method (standard combinatorial decomposition)

D
D= ¢+ N\D
D(z,v) =1+ vz?(D(z,v) — 1)+ 22 + z22(D(z,v) — 1)D(z, v)

- oA oA VNG

1+ 22— 22v— /(1 + 22 — vz?)(1 — 322 — v2?)

D =

(2.v) Z
D(z,1): standard generating function for Dyck paths.
D(z,0): generating function for Dyck paths with no

occurrence of the pattern.
2 D(z,v)| _.: generating function for the total number of
’ v=1
occurrences of a pattern.
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Ad hoc method (standard combinatorial decomposition)

D
D= ¢+ N\D
D(z,v) =1+ vz?(D(z,v) — 1)+ 22 + z22(D(z,v) — 1)D(z, v)

- oA oA VNG

1+ 22— 22v— /(1 + 22 — vz?)(1 — 322 — v2?)

D(z,v) =

222
D(z,1): standard generating function for Dyck paths.
D(z,0): generating function for Dyck paths with no

occurrence of the pattern.
2 D(z, v)|v=1: generating function for the total number of
occurrences of a pattern.
Doing this in general is unpleasant!
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General method: via automata/walks on graphs

First step: build an automaton encoding the structure of the pattern
(here UDU).

D U U
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General method: via automata/walks on graphs

First step: build an automaton encoding the structure of the pattern
(here UDU).

D u U
U A

The associated minimal automaton (De Bruijn) is:
D U

U . e
G Q Each time the red transition is
used indicates an occurrence
° D of the pattern UDU.
D
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Unconstrained Dyck paths with ~

Second step: set up the adjacency matrix A.

D U

- ‘
D
D

Sarah J. Selkirk

u vu 0

(u marks height, v pattern).
Generating function for all possible paths
(z marks length):

4 2A+ (AP + (AP 4+ = (1 24)



Unconstrained Dyck paths with ~

Second step: set up the adjacency matrix A.

D U vl wu 0

U (u marks height, v pattern).
_. Q Generating function for all possible paths
(z marks length):

D J4+zA4+(2A +(zAP +--- = (I —zA)*

G(z,u,v) =

D

G(z,u,v)=[1 0 0](/—zA)""

= =

(vz2 — 22 = 1)u

vuz2 —vz3 +ulz —uz2+ 23 —u+z
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U However, this automaton does not keep
—> a track of height. For this, we use a stack:
Read U: push U

D Read D: pop U
Cannot pop from an empty stack!
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D U

U However, this automaton does not keep
— a track of height. For this, we use a stack:
Read U: push U
D Read D: pop U
D Cannot pop from an empty stack!

[TTT]

Word: UUUDUDDUDU
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However, this automaton does not keep
track of height. For this, we use a stack:

Read U: push U
Read D: pop U
Cannot pop from an empty stack!

Ul [ 1]

Word: UUUDUDDUDU
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However, this automaton does not keep
track of height. For this, we use a stack:

Read U: push U
Read D: pop U
Cannot pop from an empty stack!

Word: UUUDUDDUDU
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However, this automaton does not keep
track of height. For this, we use a stack:

Read U: push U
Read D: pop U
Cannot pop from an empty stack!

[UJUJUJ--- |

Word: UUUDUDDUDU
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However, this automaton does not keep
track of height. For this, we use a stack:

Read U: push U
Read D: pop U
Cannot pop from an empty stack!

(UJUl [---]

Word: UUUDUDDUDU
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U
U However, this automaton does not keep
—> Q track of height. For this, we use a stack:
Read U: push U

Read D: pop U
Cannot pop from an empty stack!

(V[UJU]-

Word: UUUDUDDUDU
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However, this automaton does not keep
track of height. For this, we use a stack:

Read U: push U
Read D: pop U
Cannot pop from an empty stack!

(UJUl [---]

Word: UUUDUDDUDU
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However, this automaton does not keep
track of height. For this, we use a stack:

Read U: push U
Read D: pop U
Cannot pop from an empty stack!

Ul 1]

Word: UUUDUDDUDU
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However, this automaton does not keep
track of height. For this, we use a stack:

Read U: push U
Read D: pop U
Cannot pop from an empty stack!

Word: UUUDUDDUDU
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However, this automaton does not keep
track of height. For this, we use a stack:

Read U: push U
Read D: pop U
Cannot pop from an empty stack!

Ul 1]

Word: UUUDUDDUDU
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D u
U However, this automaton does not keep
—> Q track of height. For this, we use a stack:

Read U: push U
D Read D: pop U
D Cannot pop from an empty stack!

(UJUl [---]

Word: UUUDUDDUDU
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Positivity constraint: add a stack to the automaton!

Third step: positivity constraint at the level of the functional equation.

D U
° u a Adjacency matrix (v marks height):
vt u 0
D A=|0 wu ut
D v 0 0

Mi(z, u) is the generating function for meanders terminating in state /.
(I\/Il7 Mz, M3) = (1,0,0) + Z(Ml, Mz, M3)A - Z{u<0}((l\/,]_7 /\/727 M3)A)

(Mq, My, M3)(I — zA) = (1,0,0) — z((M1(z,0), Ma(z,0), M3(z,0))A).

~ vectorial kernel method [Asinowski, Bacher, Banderier, Gittenberger, 2019].
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Generating functions

Deterministic Finite Automaton

Rational Generating Function

(z

z

3]
—

G(z) =

|

Q
—~

Pushdown Automaton (subclass)

Algebraic Generating Function

bé

P(z,G(2)) =

e Unambiguous context-free grammar — algebraic

[Chomsky-Schiitzenberger, 1963]

o ‘Shuffles’ of context-free languages = D-finite

[Mishna, Zabrocki, 2008]

@ Two-way reversal bounded counter machines = D-finite
[Bostan, Carayol, Koechlin, Nicaud, 2020]
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Outline

© Patterns in the quarter plane

Sarah J. Selkirk
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Unravelling a formula!
A

Sarah J. Selkirk

S = {(17 1)7 (07 _1)7 (_1’ 0)}

Excursion: (0,0) to (0,0)
Meander: (0,0) to anywhere
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Unravelling a formula!
A

Excursion: (0,0) to (0,0)
Meander: (0,0) to anywhere

S = {(17 1)7 (07 _1)7 (_1’ 0)}

How many such excursions are there?

e (r)
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Unravelling a formula!
A

Excursion: (0,0) to (0,0)
Meander: (0,0) to anywhere

S = {(17 1)7 (0’ _1)7 (_1’ 0)}

How many such excursions are there?

4" 3n

[CES P E)) N\

S={(1,2),(1,-1)} Ternary trees
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Unravelling a formula!
A

S = {(17 1)7 (0’ _1)7 (_1’ 0)}

Excursion: (0,0) to (0,0)
Meander: (0,0) to anywhere

How many such excursions are there?

4-colouring

2-colouring

GrOE T ) FYAN

S={(1,2),(1,-1)} Ternary trees
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Unravelling a formula!
A

S = {(17 1)7 (0’ _1)7 (_1’ 0)}

Excursion: (0,0) to (0,0)
Meander: (0,0) to anywhere

How many such excursions are there?

5-colouri 4-colouring
an <3n> -colouring
(n+1)2n+1)\ n \/\
\\
Equivalence classes! S={(1,2),(1,-1)} Ternary trees
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A brief history of Kreweras walks

1986
Gessel
(lattice path interpretation, algebraicity)
1983 2007
Niederhausen Bernardi
(simpler proof) (bijectiont)
L |
| | 2055
1965 1981 )
PhD Thesis Kreweras and Bousquet-Mélou
Kreweras Niederhausen (multivariable kernel method)

Sarah J. Selkirk

(simplified proof)
|

1984
Flatto and Hahn

(gen. function of stationary distr. algebraic)
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Nature of Kreweras generating function?

Kreweras walks are algebraic — can they then be represented by a
pushdown automaton?

Sarah J. Selkirk
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Nature of Kreweras generating function?

Kreweras walks are algebraic — can they then be represented by a
pushdown automaton?

Lemma (Pumping lemma for context-free languages)

If a language L can be represented by some pushdown automaton, there
exists some integer p > 1 (called a “pumping length”) such that every
word w in L that has a length of p or more symbols (i.e. with |w| > p)
can be written as
W = uvzxy

with subwords u, v, z, x and y, such that

® |vx| >1,

e |vzx| < p, and

@ uv'zx"y € L for all n > 0.

Sarah J. Selkirk
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Nature of Kreweras generating function?

Kreweras walks are algebraic — can they then be represented by a
pushdown automaton?

Lemma (Pumping lemma for context-free languages)

If a language L can be represented by some pushdown automaton, there
exists some integer p > 1 (called a “pumping length”) such that every
word w in L that has a length of p or more symbols (i.e. with |w| > p)
can be written as
W = uvzxy

with subwords u, v, z, x and y, such that

® |vx| >1,

e |vzx| < p, and

@ uv'zx"y € L for all n > 0.

Applying the pumping lemma to aPbPcP shows that Kreweras walks
cannot be encoded in a pushdown automaton. ~+ Are there other ways
to approach studying patterns in walks in the quarter plane?
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Patterns in walks in the quarter plane: A humble start
Kreweras excursions of length 6

aVid
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Patterns in walks in the quarter plane: A humble start

Kreweras excursions of length 6 avoiding the pattern ~——,

X

1, 2, 11, 85, 782, 8004, ... OEIS A135404: “Gessel excursions”

Sarah J. Selkirk
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Patterns in walks in the quarter plane: A humble start

Kreweras excursions of length 6 avoiding the pattern ~——,

X

1, 2, 11, 85, 782, 8004, ... OEIS A135404: “Gessel excursions”

Gessel excursions of length 4.

R NV W AD

Sarah J. Selkirk
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Patterns in walks in the quarter plane: A humble start

‘Shortcut’ bijection (Asinowski, Banderier, S.):

et el e e s

AN
WA PN B
as 2
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What about other patterns?

Kreweras excursions of length 6

Sarah J. Selkirk
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What about other patterns?

Kreweras excursions of length 6 avoiding the pattern 4

1, 2, 11, 85, 782, 8004, ... OEIS A135404: “Gessel excursions”

Sarah J. Selkirk
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What about other patterns?

Kreweras excursions of length 6 avoiding the pattern 4

das

1,2, 11, 85, 782, 8004, ... OEIS A135404: “Gessel excursions” E%

Kreweras excursions of length 6 avoiding the pattern ~—=—.

X

X

Sarah J. Selkirk
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~+—and 0 " = "0 ~+and k "

@ Mark each + followed by a «~ (local indices a1, ..., ax).
@ Mark each ,” preceded by a + (local indices by, ..., by).

4
4
4
4
4

Sarah J. Selkirk



What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~+—and 0 " = "0 ~+and k "

@ Mark each + followed by a «~ (local indices a1, ..., ax).
@ Mark each ,” preceded by a + (local indices by, ..., by).
’I
vy (1.4,5)
2
(3.6)
y 1,3
6 5 4
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~+andl " ="l ~+ and k L.

1. For i =1...k, remove the <+ step with index a; and insert it
immediately before the  step with index a; + 1.

4
4
4
’

"I
4
7
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~+andl " ="l ~+ and k L.

1. For i =1...k, remove the <+ step with index a; and insert it
immediately before the  step with index a; + 1.

4 (1)

move (1) before 2
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~+andl " ="l ~+ and k L.

1. For i =1...k, remove the <+ step with index a; and insert it
immediately before the  step with index a; + 1.

’ ’
37 4 5 4
7 ’
4 (1) /
2 H
’ ’
1 6y ‘I ’ ‘I
’ 4

move (1) before 2
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~+andl " ="l ~+ and k L.

1. For i =1...k, remove the <+ step with index a; and insert it
immediately before the  step with index a; + 1.

’ ’
37 4 5 4 5
7 ’

4 (1) /
2 —
’
1 6y ‘I )/
’

(5) (%)
move (4) before 5
move (5) before 6

move (1) before 2
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~+andl " ="l ~+ and k L.

1. For i =1...k, remove the <+ step with index a; and insert it
immediately before the  step with index a; + 1.

4 4 4
il 4 5 ” 5 ’[
’, (1) 4 ’,
y — —
’
1 6y ‘I )/ /g
’ ’
‘I
(5) (4) -—

move (1) before 2 move (4) before 5

move (5) before 6
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~+andl " ="l ~+ and k L.

1. For i =1...k, remove the <+ step with index a; and insert it
immediately before the  step with index a; + 1.

4 4 4
il 4 5 ” 5 ’[
’, (1) 4 ’,
y — —
’
1 6y ‘I )/ /g
’ ’
'I
(5) (4) -—

move (1) before 2 move (4) before 5

move (5) before 6
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~<and 0 2" ="l ~~and k 2"

2. For j=¢...1, remove the « step before the ,” step with index b;
and insert it immediately before the < step with index b;.

Sarah J. Selkirk
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~<and 0 2" ="l ~~and k 2"

2. For j=¢...1, remove the « step before the ,” step with index b;
and insert it immediately before the < step with index b;.

3,
‘ /|
’

3

/)|
4 L
’6
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~<and 0 2" ="l ~~and k 2"

2. For j=¢...1, remove the « step before the ,” step with index b;
and insert it immediately before the < step with index b;.

3,
‘ /|
’

/)|
4 L
’6
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What about other patterns?

Proposition (Asinowski, Banderier, S.)

The number of Kreweras excursions of length 3n with

“k ~+—and? " =" ~+and k [

Mark each < followed by a <+ (local indices ay, ..., ax).

Mark each ,” preceded by a + (local indices by, ..., by).

For i = 1...k, remove the < step with index a; and insert it
immediately before the  step with index a; + 1.

e For j=/{...1, remove the + step before the ~ step with index b;
and insert it immediately before the < step with index b;.

i i
’ ’ ,’]
2
— — |
’
’ ] ’4 A
L
—
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Kreweras excursions avoiding patterns of length 2

edlllid

+] X

Kreweras | Gessel

Polya Diagonal

K i . .
Pattern p # {Kreweras exS:u.rsmns OEIS In bijection with
of length 3n avoiding p}

— 1, 2, 11, 85, 782, 8004, ... A135404 | Gessel excursions
4 1, 2, 11, 85, 782, 8004, ... A135404 | Gessel excursions
Vi 1,1, 5, 37, 332, 3343, ... None | Cessel excursions

ending with |
/

/ 1, 2, 10, 70, 588, 5544, ... A005568 | Pélya excursions

J 1,1, 4, 25, 196, 1764, ... A001246 | Diagonal excursions

Coincidence?

Sarah J. Selkirk
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Nature of generating functions in specific cases

K i N f

Pattern p # {Kreweras exs:u.rsmns OEIS ature o

of length 3n avoiding p} gen. func.

—— 1, 2, 11, 85, 782, 8004, ... A135404 Algebraic
4 1, 2, 11, 85, 782, 8004, ... A135404 Algebraic
7 1,1,5, 37,332, 3343, ... None Algebraic
/ 1, 2, 10, 70, 588, 5544, . .. A005568 D-finite
11,425 196, 1764, ... | A001246 |  D-finite

First three models: Algebraic
(using [Kauers—Koutschan—Zeilberger 2009] and [Bostan—Kauers 2009])
but not context-free [Banderier-Drmota 2015]: 4"n~2/3 asymptotics.
Last two models: D-finite, but not algebraic.

Pélya walks: C,C,11 ~ 4%. Such asymptotics involving a n=3 factor
are not compatible with the rather constrained asymptotics of algebraic

function coefficients.
Sarah J. Selkirk 23
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Generating functions: walks avoiding a pattern

For walks in Z? avoiding a
pattern, generating function
is rational.

! of regular exp

For walks in N x Z avoiding
a pattern, generating function
is algebraic.

one counter automaton

For directed walks in N?
avoiding a pattern, generating
function is algebraic.

—_—

vectorial kernel method [Asinowski, Bacher,
Banderier, Gittenberger, Roitner]

For non-directed walks in N?
avoiding a pattern, gen. func-
tion is not necessarily algebraic.

Classification needed!

Sarah J. Selkirk
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Generating functions: walks avoiding a pattern

For non-directed walks in N? avoiding a pattern, the gener-
ating function is not necessarily algebraic (or D-finite!).

1 2 1
Kauers—Yatchak's model, 2015 e VA )
(steps are with multiplicity) I\
11
Mishna—Rechnitzer's model, 2009 iﬁ

Forbidding some steps in the top (algebraic) model leads to the bottom
(differentially transcendental) model.

Sarah J. Selkirk 25



What about other models?

Polya
Avoiding SS, conjecturally:
—6(x +5)G(x) +3(3x® — 43x* — 73x + 5)G'(x)
+ (11x* — 141x* — 171x% 4 13x) G"(x)
+ (2x% — 26x* — 26x° +2x2)GB®)(x) =0
Avoiding NS, conjecturally:
(—6x2 — 24x — 6)G(x) + (—12x* + 54x3 — 30x*> — 90x + 6)G'(x)
+ (3x° — 48x° + 84x* + 42x3 — 87x* 4 6x)G" ()
4 (xT — 15x° + 14x° + 14x* — 15x° + xz)G(3)(x) =0.

Sarah J. Selkirk
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What about other models?

Diagonal
Avoiding NE SE, conjecturally:
(1470x> — 936x + 216)G’(x) + (3570x> — 3309x> + 900x — 36)G"(x)
+ (1701x* — 1975x3 + 552x% — 28x)G®)(x)
+ (189x5 — 257x* + 72x% — 4x2) 6™ (x) = 0

Avoiding NW SE, conjecturally:

(4x — 4)G(x) + (2x* — 26x3 — 70x% — 54x + 4)G'(x)
+ (4x° — 47x* — 1173 — 61x% 4 5x)G”(x)
+ (8 — 1255 — 26x* — 1253 + x) GO (x) = 0

Sarah J. Selkirk



Outline

© Lattice paths with dynamic boundary

Sarah J. Selkirk
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Dynamic boundary problem

Currently, studying a pattern in lattice paths is a static procedure.
Experiment: What happens if the occurrence of a pattern changes the
“future” of the path?

e S={U,L,D} with U= (1,1),L=(1,0), D=(1,-1).

e Pattern UDD shifts the boundary upwards by 1 unit.

@ Pattern DU shifts the boundary downwards by 2 units.

@ A path must end on the boundary line in its current position.

Sarah J. Selkirk
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Dynamic boundary problem

Dynamic boundary walks (in one-dimension) are:
o Algebraic
@ Able to be modelled with pattern-avoidance problems

Interesting relationships exist between dynamic boundary lattice paths
and other combinatorial objects.

Motzkin paths, S = {U, D, L}

DL shifts the boundary by —2

UL shifts the boundary by 2.

Set of excursions of length n: M(n)

Sarah J. Selkirk
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Shifted Young tableau: i-th row begins in position i

Entries: numbers from 1 to n, increasing along rows and columns
Height < 3

Set shifted Young tableaux of size n: sYT(n)

1

w
|O‘lU‘I-h

Sarah J. Selkirk
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Shifted Young tableau: i-th row begins in position i

Entries: numbers from 1 to n, increasing along rows and columns
Height < 3

Set shifted Young tableaux of size n: sYT(n)

1

w
’O\U'I-h

M(n) ~sYT(n+ 1) (Asinowski, Brosch, S.):

| 1

12
|cnu-|-l>

Sarah J. Selkirk
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M(n) ~sYT(n+1)

AREEB] OREEE 2R
BHEOOOEEEE 5] HE

AepE aeEse LR e
56 4] > 315]

[
el [EeEse GeEsE 2R
4(5 \i‘ 3|6 i

Sarah J. Selkirk




Where the pattern UL occurs, transform it into DL.

Sarah J. Selkirk
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Where the pattern DL occurs, mark the L step. If it is followed by a
contiguous sequence of L, remove the marking and mark the final L in
this contiguous sequence.

Sarah J. Selkirk
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From right to left in the path, map a marked L to 1 and the next (left to
right) two D steps to 2 and 3 (in order).

Sarah J. Selkirk
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From right to left in the path, map a marked L to 1 and the next (left to
right) two D steps to 2 and 3 (in order).

Sarah J. Selkirk
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From right to left in the path, map a marked L to 1 and the next (left to
right) two D steps to 2 and 3 (in order).

121 233

Sarah J. Selkirk
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From right to left in the path, map a marked L to 1 and the next (left to
right) two D steps to 2 and 3 (in order).

1 23121 233

Sarah J. Selkirk
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Recursively [Eu, 2010]: First step L, mark with 1. First step U (mark
with 1), if the next non-U is D (mark with 2) or L (find next D and mark
with 2 and 3 respectively). Repeat on unnumbered steps.

111122211231211123313323222

Sarah J. Selkirk
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If the i-th element is numbered j, add the number i to the j-th row of
the tableau.

111122211231211123313323222

1(2|13(4]8]|9/(12({14|15|16(20
6|7 |10|13|17|23|25(26|27
11118|19(21|22|24

Sarah J. Selkirk



Steps:
© Where the pattern DL occurs, mark the L step.
© Where the pattern UL occurs, transform it into DL.
© From right to left in the path, for every marked L:

@ If it is followed by a contiguous sequence of L, remove the marking
and mark the rightmost L in this contiguous sequence.

© Then, map the marked L to 1 and the next (left to right) two D
steps to 2 and 3 (in order).

@ Recursively [Eu, 2010]: First step L, mark with 1. First step U (mark
with 1), if the next non-U is D (mark with 2) or L (find next D and
mark with 2 and 3 respectively). Repeat on unnumbered steps.

@ If the i-th element is numbered j, add the number i to the j-th row
of the tableau.
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How do we reverse the procedure?

111122211231211123313323222
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What about dynamic boundaries in the quarter plane?

Exhaustive searches carried out on

Kreweras | Gessel Pélya Diagonal

Some interesting relationships exist, e.g.:
Kreweras walks

e Start at (0,0), boundary is y = 0, x =0, end on the current
boundary.

e NE W shifts boundary by (1,2).
e W W shifts boundary by (-2, —1).
@ Boundary shifts just before final step of a pattern.

20 3n
2n+1\n )’

@ Enumerated by

Sarah J. Selkirk

39



Future directions

o Find a "Proof from The Book™ for the Kreweras enumeration!
Perhaps by following some patterns. ..

@ Given a stepset and a pattern, determine the nature of the
generating function of the resulting pattern-avoiding walk.
Even some small but reasonably general results in this
direction. . . (small steps?)

@ Develop automata-based methods for studying patterns in walks
with two-way reversal bounded counter machines (D-finite).
Assisting in classifying which pattern-avoiding walks remain D-finite?

e Find an example of a walk in N? and a pattern for which some

adapted kernel method would work.
A highly symmetric walk?

@ Pumping lemma-type results for D-finite languages?
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Future directions

@ Find a “Proof from The Book™ for the Kreweras enumeration!
Perhaps by following some patterns. ..

@ Given a stepset and a pattern, determine the nature of the
generating function of the resulting pattern-avoiding walk.

Even some small but reasonably general results in this
direction. . . (small steps?)

@ Develop automata-based methods for studying patterns in walks
with two-way reversal bounded counter machines (D-finite).
Assisting in classifying which pattern-avoiding walks remain D-finite?

e Find an example of a walk in N? and a pattern for which some
adapted kernel method would work.

A highly symmetric walk?

@ Pumping lemma-type results for D-finite languages?

Thank you!
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