Resolution of Foliated varieties by torus actions

Jarosław Włodarczyk

Purdue University

Jarosław Włodarczyk

Resolution of Foliated varieties by torus action

Purdue University 1/30

• Weights are naturally associated with singularities and their resolution

$$Ex: x^2 + y^3 + z^4$$
, $w(x) = \frac{1}{2}$ $w(y) = \frac{1}{3}$ $w(z) = \frac{1}{4}$

Weights eliminate many difficulties associated with smooth centers:

- Smooth centers are not compatible with weights.
- They do not usually improve singularities,
- Extra logarithmic structure is needed when resolving by smooth centers

Resolution of singularites and foliations by weighted centers:

[McQ19] M. McQuillan, Very fast, very functorial, and very easy resolution of singularities, 2019
[ATW 19] -D. Abramovich, M. Temkin. J. Włodarczyk Functorial embedded resolution via weighted blowings up, 2019
[W22] J. Włodarczyk Functorial resolution by torus actions, March 2022, arXiv:2007.13846.
[ABTW 25] -D. Abramovich, A.Belotto, M. Temkin. J. Włodarczyk

Principalization on logarithmically foliated orbifolds

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Foliation:

- A foliation is an *involutive distribution*, closed under the Lie bracket.
- Represented by a coherent subsheaf *F* ⊂ *D*^{log}_X, the sheaf of logarithmic derivations on a smooth variety *X*.

Principalization Over Foliated Manifolds

jointly with D.Abramovich, A.Belotto, M.Temkin

Theorem ((ABTW)Principalization in the presence of foliations)

Let (X, \mathcal{F}, E) be a smooth foliated logarithmic variety, and \mathcal{I} a coherent ideal sheaf. Then, there exists a sequence of weighted (or cobordant) blow-ups:

$$(X_0,\mathcal{F}_0,E_0) \leftarrow (X_1,\mathcal{F}_1,E_1) \leftarrow \cdots \leftarrow (X_k,\mathcal{F}_k,E_k) = (X',\mathcal{F}',E'),$$

where each \mathcal{F}_{i+1} is the controlled (or strict) transform of \mathcal{F}_i , satisfying:

- **1** \mathcal{I}' becomes locally principal and monomial.
- **2** Blow-up centers are \mathcal{F}_i -aligned and \mathcal{I}_i -admissible.
- **③** If \mathcal{F} is nonsingular, \mathcal{F}_{i+1} remains nonsingular under strict transform.
- Functorial for field extensions, group actions, and smooth morphisms and derivations

Theorem ((ABTW) Embedded Desingularization in the presence of foliations)

Let (X, \mathcal{F}, E) be a smooth foliated logarithmic variety, and let $Y \subset X$ be a subvariety. There exists a sequence of weighted (or cobordant) blow-ups:

$$(X_0, \mathcal{F}_0, E_0) \leftarrow (X_1, \mathcal{F}_1, E_1) \leftarrow \cdots \leftarrow (X_k, \mathcal{F}_k, E_k) = (X', \mathcal{F}', E'),$$

such that:

- The strict transform Y' of Y is smooth, has normal crossings with E' is \mathcal{F}' -aligned and thus decomposes into \mathcal{F}' -transverse and \mathcal{F}' -transpertial parts.
- Blow-up centers are \mathcal{F}_i -aligned and admissible for the strict transform of Y.
- If \mathcal{I}^{Y} is \mathcal{F} -invariant, then all centers are also \mathcal{F}_{i} -invariant.
- Additional properties from the principalization theorem apply (functoriality, compatibility with smooth morphisms, etc.).

Definition (Transverse Section)

A subvariety $Y \subset X$ is said to be *transverse* to a foliation \mathcal{F} at a point $p \in Y$ if:

- There exists a partial system of parameters (x_1, \ldots, x_p) centered at p.
- There are derivations $\partial_{x_1}, \ldots, \partial_{x_p} \in \mathcal{F} \cdot \mathcal{O}_{X,p}$
- The ideal \mathcal{I}^{Y} of Y is locally equal to (x_1, \ldots, x_p) .

Transverse Section: If the rank of \mathcal{F} is equal to p, thus

$$\mathcal{F}_{p} = \operatorname{span}_{\mathcal{O}_{X,p}}(\partial_{x_{1}}, \ldots, \partial_{x_{p}})$$

then $Y \subset X$ is called the *transverse section* of \mathcal{F} at p.

< 同 > < 三 > < 三 >

Resolution Preserving Transverse Locus

Theorem

(ABTW)[Resolution Preserving Transverse Locus] Let (X, \mathcal{F}, E) be a smooth foliated logarithmic variety. Let $Y \subset X$ be a closed subvariety generically transverse to \mathcal{F} .

There exists an embedded desingularization

 $(X_0, \mathcal{F}_0, E_0) \leftarrow (X_1, \mathcal{F}_1, E_1) \leftarrow \cdots \leftarrow (X_k, \mathcal{F}_k, E_k) = (X', \mathcal{F}', E'),$

such that the strict transform Y' of Y is transverse to \mathcal{F}' .

- If dim(Y) = rank(\mathcal{F}), then Y' is a transverse section to \mathcal{F}' .
- The sequence defines an isomorphism over the points of X where Y is *F*-transverse.

・ロト ・ 同ト ・ ヨト ・ ヨト

Rationally Totally Integrable Foliations

Definition (Totally Integrable Foliations)

Let (X, \mathcal{F}, E) be a smooth foliated logarithmic variety. We say that \mathcal{F} is globally rationally (or meromorphically) totally integrable if there exists a rational (or meromorphic) morphism $\varphi : X \rightarrow B$ such that:

$$\mathcal{F} = \mathcal{D}_{X/B}^{\log}, \quad \mathcal{F} \cdot \mathcal{O}_{X,p} = \operatorname{span}_{\mathcal{O}_{X,p}} \left\{ \partial \in \mathcal{D}_X^{\log}; \ \partial(f \circ \varphi) \equiv 0, \ \forall f \in \mathcal{O}_{B,\varphi(p)} \right\}$$

$\mathcal{K} ext{-Monomial Foliations}$

Definition (Belotto)

Let (X, \mathcal{F}, E) be a foliated logarithmic variety over \mathbb{K} , and let $\mathcal{K} \subset \mathbb{K}$ be a field.

A foliation \mathcal{F} is said to be \mathcal{K} -monomial at a point \mathfrak{a} if there exists a regular coordinate system (w, v) in a neighborhood U of \mathfrak{a} such that \mathcal{F} can be locally generated on U by:

$$\partial_{v_i}$$
 and $\nabla_j = \sum_{k=1}^n a_{jk} w_k \, \partial_{w_k},$

where j = 1, ..., n, i = 1, ..., r, and $a_{jk} \in \mathcal{K}$. Alternatively, in terms of regular forms, \mathcal{F} can also be expressed as:

$$\prod_{j=1}^n w_j \cdot \sum_{j=1}^n \beta_{ij} \frac{dw_j}{w_j}(\partial) \equiv 0, \quad i = 1, \dots, r,$$

Globally \mathcal{K} -Darboux Totally Integrable Foliations

Definition (Globally \mathcal{K} -Darboux Totally Integrable Foliations)

Let (X, \mathcal{F}, E) be a foliated logarithmic variety over \mathbb{K} and $\mathcal{K} \subset \mathbb{K}$ be a field.

We say that the foliation \mathcal{F} is globally \mathcal{K} -Darboux totally integrable if:

- There exists a rational (or meromorphic) morphism φ : X → B whose graph projects properly over X.
- There exists a \mathcal{K} -monomial foliation \mathcal{G} over a smooth variety B.
- The foliation \mathcal{F} is the inverse transform of \mathcal{G} by φ .

・ロト ・ 同ト ・ ヨト ・ ヨト

Canonical Nonsingular Cobordant Resolution

Lemma (Resolution of \mathcal{K} -Monomial Foliations)

A canonical nonsingular cobordant resolution exists for a \mathcal{K} -monomial (or, in particular, \mathcal{K} -log-smooth) foliation. This resolution is compatible with smooth morphisms, group actions, and field extensions.

Resolution of Rationally Totally and $\mathcal{K}\mbox{-}\mathsf{Darboux}$ Integrable Foliations

Theorem

(ABTW)[Resolution of Totally Integrable Foliations] There exists a nonsingular cobordant resolution:

 $(X, \mathcal{F}, E) \rightarrow (X', \mathcal{F}', E')$

of a Totally (resp. K-Darboux) Integrable Foliation (X, F, E)

- X' admits a torus action by T, with a geometric quotient X'/T and a T-invariant projective birational morphism $\pi : X'/T \to X$.
- The strict transform $\mathcal{F}' := \pi^{s}(\mathcal{F})$ is a nonsingular T-invariant foliation on X'.
- Over the open subset U = X \ Sing(𝔅), the foliation 𝔅 descends to a nonsingular foliation 𝔅_{|U}.

< 円→ < 三

Orbifold Resolution

 The process induces a Q-monomial (resp. *K*)-monomial orbifold resolution of aTotally (resp. *K*-Darboux) Integrable Foliation(*X*, *F*, *E*):

$$\sigma: (X'', \mathcal{F}'', E'') \to (X, \mathcal{F}, E),$$

where:

- X'' = [X'/T] is the stack-theoretic quotient of X' by T.
- \mathcal{F}'' is the strict transform of \mathcal{F} .
- E'' is a simple normal crossing (SNC) divisor descending from E'.
- \mathcal{F}'' on X'' becomes a \mathcal{K} -monomial foliation.

ヘロト 不得下 イヨト イヨト 二日

Functoriality

- The resolution process is functorial for:
 - Field extensions.
 - Smooth morphisms with respect to the pair (\mathcal{F}, φ) .

э

< □ > < □ > < □ > < □ > < □ > < □ >

Cobordant resolution and rational Rees algebras (W)

Definition: The *order* of an ideal \mathcal{I} at a point $p \in X$ is given by:

$$\operatorname{ord}_p(\mathcal{I}) = \max\{a \in \mathbb{Z}_{>0} \mid \mathcal{I} \subset m_p^a\},\$$

where $m_p \subset \mathcal{O}_{X,p}$ is the maximal ideal of p in the local ring $\mathcal{O}_{X,p}$.

Introducing Rees algebra with dummy variable t write:

$$\operatorname{ord}_p(\mathcal{I}) = \max\{a \in \mathbb{Q}_{>0} \mid \mathcal{I}t^a \subset \mathcal{O}_X[m_pt]\}.$$

By rescaling $t \mapsto t^{1/a}$ using rational Rees algebras:

$$\operatorname{ord}_{p}(\mathcal{I}) = \max\{a \in \mathbb{Q}_{>0} \mid \mathcal{I}t \subset \mathcal{O}_{X}[m_{p}t^{1/a}]\}.$$

A D M A B M A

Definition of the Invariant via Rees Algebras (W)

Generalizing the Order of an Ideal:

$$\operatorname{inv}_p(\mathcal{I}) := \max\{(a_1, \ldots, a_k) \mid \mathcal{I}t \subset \mathcal{O}_X[x_1t^{1/a_1}, \ldots, x_kt^{1/a_k}]^{\operatorname{int}}\},\$$

where $a_1 \leq \ldots \leq a_k$ are rational numbers ordered lexicographically.

Extension to Rational Rees Algebras: For a rational Rees algebra $R = \bigoplus R_a t^a$:

$$\mathsf{inv}_{
ho}(R) := \mathsf{max}\{(a_1,\ldots,a_k) \mid R \subset \mathcal{O}_X[x_1t^{1/a_1},\ldots,x_kt^{1/a_k}]^{\mathsf{int}}\}.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Extended Rees Algebra and Cobordant Blow-Up

Extended Rees Algebra:

$$\mathcal{A}^{\mathsf{ext}} = \mathcal{O}_X[t^{-1/w_A}, x_1 t^{1/a_1}, \dots, x_k t^{1/a_k}],$$

where $w_A := \text{lcm}(a_1, \ldots, a_k)$ is the least common multiple of the rational numbers a_1, \ldots, a_k .

Rescaled Algebra:

$$\mathcal{O}_B = \mathcal{O}_X[t^{-1}, x_1 t^{w_1}, \dots, x_k t^{w_k}],$$

with $w_i = w_A/a_i$.

Definition: Full Cobordant Blow-Up:

$$B = \operatorname{Spec}_{X} \left(\mathcal{O}_{X}[t^{-1}, x_{1}t^{w_{1}}, \ldots, x_{k}t^{w_{k}}] \right) \to X,$$

at the center defined by \mathcal{A}^{ext}

Cobordant Blow-Up and Exceptional Divisor

Vertex of B:

$$V = \operatorname{Vert}(B) := V(x_1 t^{w_1}, \ldots, x_k t^{w_k}).$$

This is called the **vertex** of B, analogous to the vertex of an affine cone over a projective scheme.

Cobordant Blow-Up:

The *T*-invariant morphism:

$$\sigma_+:B_+=B\setminus {\rm Vert}(B)\to X.$$

Trivial Cobordant Blow-Up:

$$B_- = B \setminus V(t^{-1}) = \operatorname{Spec}_X(\mathcal{O}_X[t, t^{-1}]) \to X,$$

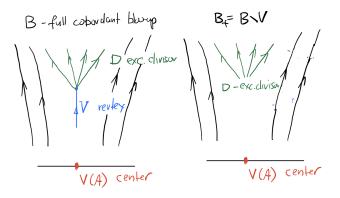
where:

$$D:=V_B(t^{-1})$$

is the exceptional divisor.

Jarosław Włodarczyk

19/30



Purdue University

→ ∃ →

э

Cobordant vs orbifold weighted blow-ups

The cobordant blow-ups is not a birational transformation. It introduces the action of torus T.

One can recover the standard definition of the weighted blow-up to be

 $B_+/T \rightarrow X$,

where B_+/T is a geometric quotient (space of orbits) and stack-theoretic weighted blow-up

 $[B_+/T] \rightarrow X,$

for the stack-theoretic quotient $[B_+/T]$.

Remark. Weighted stack-theoretic blow-ups were introduced in resolution context in by McQuilan Marzo and ATW. Cobordant blow-ups were considered first in W, and independently (as presentations of weighted blow-ups in Quek-Rydh.)

Jarosław Włodarczyk

Resolution of Foliated varieties by torus action

Purdue University 21 / 30

Admissibility and Controlled Transform

The admissibility condition:

$$\mathcal{I}t \subset \mathcal{A}^{\mathrm{ext}} = \mathcal{O}_X[t^{-1/w_A}, x_1t^{1/a_1}, \dots, x_kt^{1/a_k}],$$

translates into:

 $\mathcal{O}_B \cdot \mathcal{I}t^{w_A} \subset \mathcal{O}_B.$

This defines the **controlled transform** of \mathcal{I} under $\sigma : B \to X$:

$$\sigma^{\mathsf{c}}(\mathcal{I}) = \mathcal{O}_{\mathsf{B}} \cdot \mathcal{I}t^{\mathsf{w}_{\mathsf{A}}}.$$

Jarosław Włodarczyk

Resolution of Foliated varieties by torus action

22 / 30

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Resolution Principle

1. The invariant inv of the controlled transform:

$$\sigma^{c}(\mathcal{I}) := \mathcal{O}_{B} \cdot \mathcal{I}t^{w_{A}}$$

achieves its maximum at the vertex V in B, equal to its maximum along the center.

2. The invariant inv **drops** for the *cobordant blow-up* $B_+ := B \setminus V$ after removing V:

$$\max \operatorname{inv}_B(\sigma^c(\mathcal{I})) < \max \operatorname{inv}_X(\mathcal{I}),$$

leading to the resolution of singularities.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Example

Let
$$Y \subset X = \mathbb{A}^n$$
 be described as:
 $x_1^{b_1} + \ldots + x_n^{b_n}$
 $inv_0(Y) = max\{(a_1, \ldots, a_n) \mid (x_1^{b_1} + \ldots + x_n^{b_n})t \in \mathcal{O}_X[x_1t^{1/a_1}, \ldots, x_kt^{1/a_k}]^{int}\},$
 $= (b_1, \ldots, b_n)$ with the center
 $\mathcal{A} = \mathcal{O}_X[x_1t^{1/b_1}, \ldots, x_kt^{1/b_n}]^{int}.$
Rescaling gives $B = \operatorname{Spec}_X(\mathcal{O}_X[t^{-1}, x_1t^{w_1}, \ldots, x_kt^{w_n}])$
 $\mathcal{O}_B \cdot \mathcal{I}_Y = t^{-b_1w_1}\left((x_1t^{w_1})^{b_1} + \ldots + (x_nt^{w_n})^{b_n}\right)$
 $= t^{-b_1w_1}\underbrace{\left((x_1')^{b_1} + \ldots + (x_n')^{b_n}\right)}_{\sigma^s(\mathcal{I}_Y) - \text{ strict (controlled) transform}}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Resolution by Removing Singularities

Strict Transform:

$$\sigma^{\mathsf{s}}(\mathcal{I}_{\mathsf{Y}}) = \left(\left(x_1' \right)^{b_1} + \ldots + \left(x_n' \right)^{b_n} \right),$$

has exactly the same equation as \mathcal{I}_{Y} . After **Cobordant Blow-up**:

$$\sigma_+:B_+\to Y.$$

The strict transform:

$$\sigma^{s}_{+}(Y) = \sigma^{s}(Y) \setminus \underbrace{V(x'_{1}, \ldots, x'_{n})}_{V(x'_{1}, \ldots, x'_{n})}$$

vertex V

on:

$$B_+=B\setminus V,$$

becomes regular after removing the vertex V_{\odot} ,

Jarosław Włodarczyk

Resolution of Foliated varieties by torus action

Resolution Process Defined by the Invariant $inv_p(\mathcal{I})$

Process of Resolution:

- The maximum value of the invariant drops after each blow-up.
- The process continues until the invariant reaches the smooth point value:

$$\operatorname{inv}_p(\mathcal{I}_Y) = (1, \ldots, 1).$$

• At this stage, singularities on the strict transform of Y are resolved.

Foliated Varieties and the Invariant

Definition: Let (X, \mathcal{F}) be a smooth foliated variety, $p \in X$ be a point.

$$\widehat{\mathcal{F}} = \widehat{\mathcal{O}}_{X,(x)} \cdot \mathcal{F} = \operatorname{span}(\partial_{x_1}, \dots, \partial_{x_k}, \nabla_1(y), \dots, \nabla_r(y))$$

• with transversal part of the center $\widehat{\mathcal{O}}_{X,p}[x_1t^{1/a_1},\ldots,x_kt^{1/a_k}]$ • and invariant part: $\widehat{\mathcal{O}}_{X,p}[y_1t^{1/c_1},\ldots,y_rt^{1/c_r}]^{\text{int}}$ such that $\mathcal{F}\left(\widehat{\mathcal{O}}_{X,p}[y_1t^{1/c_1},\ldots,y_rt^{1/c_r}]^{\text{int}}\right) \subset \widehat{\mathcal{O}}_{X,p}[y_1t^{1/c_1},\ldots,y_rt^{1/c_r}]^{\text{int}}$

Embedded Resolution of foliated varieties

- The maximum value of the invariant drops after each blow-up.
- The process continues until the invariant reaches the smooth point value:

$$\operatorname{inv}_{p}(\mathcal{I}_{Y}) = (1, \ldots, 1).$$

 At this stage, the singularities on the strict transform of Y are resolved, and it is *F*-aligned. Thus locally in the coordinate system x₁,..., x_k, y₁,..., y_{n-k},

$$Y = V(x_1, \ldots, x_k, y_1, \ldots, y_m) \quad m \le n-k$$

and

$$\widehat{\mathcal{F}} = \widehat{\mathcal{O}}_{X,(x)} \cdot \mathcal{F} = \operatorname{span}(\partial_{x_1}, \ldots, \partial_{x_k}, \nabla_1(y), \ldots, \nabla_r(y))$$

where $V(x_1, \ldots, x_n)$ is \mathcal{F} - transverse and $V(y_1, \ldots, y_m)$ is \mathcal{F} -tangential so $\mathcal{F}(y_i) = 0$ for $i = 1, \ldots, m$.

Resolution of Darboux Integrable Foliations

Let $\phi: X \to B$ be a morphism, and $\mathcal{F} = \phi^{-1}(\mathcal{G})$ be the pull-back of the \mathcal{K} -monomial foliation \mathcal{G} on a smooth B,

- Consider the product $Y = X \times B$ with projection $p_B : Y \to B$.
- Let $X := \Gamma(\varphi) \subset Y$ denote the graph of φ .

Define \mathcal{H} on $Y = X \times B$ to be the inverse transform:

$$\mathcal{H}=p_B^{-1}(\mathcal{G})$$

Then \mathcal{H} is \mathcal{K} -monomial and admits a *nonsingular cobordant resolution*. Applying Embedded Desingularization

- The strict transform $X \subset Y$ becomes \mathcal{H} -aligned.
- The foliation $\mathcal H$ remains nonsingular.
- The restriction $\mathcal{F} = \mathcal{H}_{|Y}$ is nonsingular.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Example of cobordant resolution of singular foliation by a nonsingular one Example

$$\begin{split} \mathcal{F} &= \mathrm{x}\partial x \text{ singular at } 0 \text{ on } X = \mathbb{A}^1, \\ B &= \mathrm{Spec}(\mathcal{O}_X[xt, t^{-1}] = \mathrm{Spec}(\mathcal{O}_X[x', t^{-1}], x' = xt. \\ B_+ &= B \setminus V(x'). \end{split}$$

The strict transform of $x\partial x$ is nonsingular $x'\partial x'$, where $x' \neq 0$.

