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Let I" be a metric graph. Define a sheaf H of harmonic functions by
Hr(U) = {f:U > R| ordp(f) = 0 for all p e U}

for U c T open. Think of J{r as an analogue of O} in algebraic geometry.

Definition
A tropical line bundle on T"is an H-torsoron T

There is a natural bijection
Pic(T") = Div(T")/ PDiv(T") — HY(T", Hr) = {line bundles} /-

How to define a tropical analogue of vector bundles of higher rank?
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Tropicalization aims to capture the combinatorial shadow of an
algebro-geometric object in terms of polyhedral geometry.

Usually this process involves applying a valuation, e.g.
ordg:C(t%)) — Ru{eo}  or  vp:Qp — Ru{oo}

Three central properties of a valuation v:K - Ru {oo }:
v(a) = wifand onlyifa = 0.
v(a-b)=v(a)+v(b)foralla,bcK.
v(a+b) >min{v(a),v(b)} foralla,b ¢ K.

This motivates the definition of the tropical semifield

(T,®,0) = (Ru{oo}, min, +).

Tropical geometry is often described as (algebraic) geometry over T.
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Tropical matrices are elements of T"*" and their multiplication is
induced by @ and ©.

This leads to:

GLp(T)={AeT™"|3Be T™" suchthat A0 B=BoA=I,}

_ A nxn| ... exactly oncein every}
- {A - [a’/] €T ‘ aij # 00 row and column

§SnD<Rn.

One can use this observation to define tropical vector bundles as
principal GL, (T )-bundles.
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TROPICAL VECTOR BUNDLES [Gross-u.-zAKHAROV *22]

Definition (Allermann ’12, Gross-U.-Zakharov ’22)

Let I be a metric graph. A tropical vector bundle on T"is an Sy, J{F—torsor.

So we have a natural bijection

HY(T, Sy x H[) — {tropical vector bundles} /-

Observation

For every tropical vector bundles E on T there is a topological cover ¢:T — T
as well as a line bundle L on T such that

GL~E
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A SYMPLECTIC PERSPECTIVE ON TROPICALIZATION

Let X be a complex elliptic curve. Choose a Lagrangian fibration X — T,
whose base is a metric cycle I' = R/{Z.

Theorem (Gross-U.-Zakharov ’22)
Let M, 4(X) be the moduli space of semistable vector bundles on X of degree
d and rank r. There is a natural orbifold Lagrangian fibration

My g(X) » MG (T),

whose Lagrangian base is the main component of a moduli space M, 4(T") of
tropical semistable vector bundles on T of degree d and rank r.



A LOGARITHMIC PERSPECTIVE ON TROPICALIZATION

Let X be a complex elliptic curve and X — D a semistable logarithmically
smooth degeneration of X whose special fiber is a cycle of projective lines.
Denote by I' its metric dual graph.

Theorem (Gross-U.-Zakharov ’22)
Let M, 4(X) be the moduli space of semistable vector bundles on X of degree
dandrankr.

There is a logarithmically smooth degeneration of M, 4(X), for which the
dual complex of its central fiber is the main component of the moduli space
M, 4(T") of tropical semistable vector bundles on T of degree d and rankr.



A NON-ARCHIMEDEAN PERSPECTIVE ON TROPICALIZATION

Let X be an elliptic curve over a non-Archimedean field K = K, whose
reduction is maximally degenerate. Denote by X2" its Berkovich
analytification. Then X2" = Gy /g% and its minimial non-Archimedean
skeleton is a metric cycle ' = R/{Z.

Theorem (Gross-U.-Zakharov ’22)
Let M, 4(X) be the moduli space of semistable vector bundles on X of degree
dandrankr.

Then the essential non-Archimedean skeleton of Mf?j(X ) is naturally
isomorphic to the main component of the moduli space M, 4(T") of
semistable tropical vector bundles on T of degree d and rank r.

~ Think of the retraction from M2, (X) onto the essential skeleton as a
non-Archimedean SYZ-fibration in the sense of Kontsevich-Soibelman.
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HOW TO GENERALIZE THIS?

Principal bundles beyond the Aj, situation.
~ work in progress by Gross-Kuhrs-U.-Zakharov

Curves of genus g > 2
~ GLp(T) is too small X

Abelian varieties of higher dimension
~ semihomogeneous vector bundles v
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SEMIHOMOGENEOUS VECTOR BUNDLES ON ABELIAN VARIETIES

Let X be an abelian variety over an algebraically closed field k. A vector
bundle E on X is said to be semihomogeneous if, for every x € X, we have

HE~E®L

for a suitable line bundle L € Pic(X). The work of [Mukai 78] tell us that for
a semihomogeneous vector bundle E on X we have

EZ@E,'@U,',
i

where the U; are suitable unipotent bundles and the E; are simple
semihomogeneous bundles. We have E; ~ (¢;).L; for a cover ¢;: X; - X and
aline bundle L; € Pic(X;).



FOURIER-MUKAI FOR SEMIHOMOGENEOUS VECTOR BUNDLES

Observation (Gross-Kaur-U.-Werner ’23)

Denote by My, 1 (X) the moduli space of simple semihomogeneous vector

bundles E of fixed slope 6 (E) := ‘2?—55 =HeNS(X)q.



FOURIER-MUKAI FOR SEMIHOMOGENEOUS VECTOR BUNDLES

Observation (Gross-Kaur-U.-Werner ’23)
Denote by My, 1 (X) the moduli space of simple semihomogeneous vector
bundles E of fixed slope 6 (E) := ‘2?—55 =HeNS(X)q.

There is a Fourier-Mukai equivalence
DP(X) = DP(My1(X))

that induces an equivalence between semihomogeneous vector bundles of

slope H and coherent sheaves of finite length.



FOURIER-MUKAI FOR SEMIHOMOGENEOUS VECTOR BUNDLES

Observation (Gross-Kaur-U.-Werner ’23)
Denote by My, 1 (X) the moduli space of simple semihomogeneous vector

bundles E of fixed slope 6 (E) := ‘2?—55 =HeNS(X)q.

There is a Fourier-Mukai equivalence
DP(X) = DP(My1(X))

that induces an equivalence between semihomogeneous vector bundles of

slope H and coherent sheaves of finite length.

Denote by My, ,(X) the moduli space of semihomogeneous vector bundles
of slope Hand rank r = k- r(H). Then My 1 (X) is a torsor over a suitable
abelian variety and

My (X) = Sym¥ My 1 (X) .



A SYMPLECTIC PERSPECTIVE ON TROPICALIZATION

Let X be a complex abelian variety of dimension g. Choose a Lagrangian
fibration X — X'°P, whose base is a real torus X'™P = RI/A.

Theorem (Gross-Kaur-U.-Werner ’23)
Let My  (X) be the moduli space of semihomogeneous vector bundles of
slope Hand rankr = k- r(H).

Then there is a natural orbifold Lagrangian fibration
t
My i (X) = My (XTP),

whose Lagrangian base My, (X'T°P) js @ moduli space of tropical
semihomogeneous vector bundles on X'"P of slope H™P and rank
rtrop = k- r(Htrop).



A LOGARITHMIC PERSPECTIVE ON TROPICALIZATION

Let X be an abelian variety of dimension g and X' — D a logarithmically
smooth degeneration of X, for which the dual complex of its central fiber is
a (subdivision of) the real torus Xt"°P = R9/A.

Theorem (Gross-Kaur-U.-Werner ’23)
Let My, ,(X) be the moduli space of semihomogeneous vector bundles of
slope Hand rankr = k- r(H).

There is a logarithmically smooth degeneration of My, (X)), for which the
dual complex of its central fiber is (a subdivision of) a moduli space
MH,k(Xtmp) of tropical semihomogeneous vector bundles of slope H"P and
rank rt™P = k. r(Ht"oP),



A NON-ARCHIMEDEAN PERSPECTIVE ON TROPICALIZATION

Let X be an abelian variety of dimension g over a non-Archimedean field K,
whose reduction is maximally degenerate. Then we have X" = G7,/A and
its non-Archimedean skeleton is the real torus X'°P = R /A.

Theorem (Gross-Kaur-U.-Werner ’23)
Let My  (X) be the moduli space of semihomogeneous vector bundles of
slope Hand rankr = k- r(H).

Then the essential non-Archimedean skeleton of M}, (X) is naturally
isomorphic to a moduli space MH,k(X“Op) of semihomogeneous vector
bundles on X'°P of slope H"P and rank r'"P = k - r(HP),



WHAT WE KNOW ABOUT TROPICAL VECTOR BUNDLES SO FAR
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WHAT IS THE TROPICALIZATION OF A LINEAR MAP?

The affine Bruhat-Tits building #&1(Q>)
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Let K be a non-Archimedean field and V a K-vector space, dimy V = r < co.
Definition
A seminormon Visamap ||.||:V — R such that

|lv|| > 0forallv e Vand|0]| = 0;

IAV|| = |A| - ||v|| for all A € K and v € V; and

v+ w|| < max {||v||,||w]|} forall v, w e V.

Denote by N(V) the space of seminorms on VV*, endowed with the coarsest
topology making all
NW) 2 L — vl e R

forallv* € V* continuous. The quotient X(V) = N(V)/Rsg is called the
Goldman-lwahori space of V. If K is spherically complete, then X(V) is the
(compactified) affine Bruhat-Tits building of the group PGL(V).
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Theorem (Battistella-Kiihn-Kuhrs-U.-Vargas ’24)
There is a natural homeomorphism

xX(V) — — limTrop (P(V), 1),

LE/
where v runs through all linear embeddings ::P(V) — PN,

Now let E = V. Consider the universal realizable valuated matroid Mvniv

given by

E
vamv(S) =val ( det[vs]ses) for Se (r)
Theorem (Dress-Terhalle ’98 + ¢-BKKUV ’24)

The Goldman-Iwahori space X (V) is the tropical linear space associated to
the universal realizable valuated matroid.
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Observation (Heunen-Patta ’17, Dress?, Kontsevich?)
Alinear map f:V — W induces an (affine) morphism of (pointed)
valuated matroids fUNiV: Mv”i" — M‘lj/"i" which, in turn, induces the
continuous map X(V) — X(W) given by ||.|| = ||.|| o f*.

The association f — fY"V js functorial, i.e. we have

(fog)univ _ funiv oguniv

for K-linear maps g: U - Vand f:V — W.

~ X(V) seems to be the better "tropical linear space".



