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Lecture 1:
Birational invariants and specialization
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J. Nicaise, J.C. Ottem. Tropical degenerations and stable rationality.

The paper gives a quite general method for the (stable) rationality problem for
hypersurfaces and complete intersections in toric varieties.
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Goal: Understand the proof of the following

Theorem (Nicaise-O.)

(i) A very general degree 4 hypersurface

X ⊂ Pn

is not stably rational for n ≤ 6.

(ii) A very general degree 5 hypersurface

X ⊂ Pn

is not stably rational for n ≤ 13.

(iii) A very general complete intersection of a quadric and a cubic

X = Q ∩ C ⊂ P6

is not stably rational.

A property holds for b ∈ B very general if it is holds outside a countable union of
closed subsets in B.
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(1) Look for obstructions to rationality (birational invariants)

• Topological invariants, e.g., π1(X), ..

• H0(X,Ωp
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• Brauer group

• Decomposition of the diagonal

(2) Show that the obstruction is non-trivial.

Theme in these lectures: Verify (2) by specialization to a highly singular variety.
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The obstruction is non-trivial: There are special hypersurfaces X ⊂ Pn so that their
reduction modulo p satisfies:
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L ⊂ Ωn−1
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// Y is not ruled.

// Xp is not ruled.

// X is not ruled (Ruledness specializes in families).
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H3(X,Z)tors

This is 0 for X = Pn.

If π : X̃ → X is a blow-up in a smooth center Z ⊂ X, then

H3(X̃,Z) = H3(X,Z)⊕H1(Z,Z)[E]
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H1(Z,Z)tors = H0(Z,Z)tors = 0.
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The invariant H3(X,Z)tors is non-trivial for rather special varieties:

Proposition (Artin–Mumford)

There exist (resolutions of) double quartic solids X → P3 defined by

y2 = f(x0, x1, x2, x3)

for which H3(X,Z)tors ̸= 0.

• The threefolds X are unirational : ∃ dominant P3 99K X.

• The invariant H3(X,Z)tors is closely related to the Brauer group.
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We say that X admits a decomposition of the diagonal if there is an equality

∆ = [X × x] + Z in CHn(X ×X) (1)

where Z ⊂ X ×X is a subvariety which does not dominate X via the first projection.
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Important point: ∆ acts as a correspondence in a special way (the identity map)
whereas [X × x] + Z acts in a ‘trivial way’.

Example

Let X be a smooth projective curve of genus ≥ 1.

Claim: X does not have a decomposition of ∆.

Let ω ∈ H0(X,Ω1
X) denote a nonzero global holomorphic 1-form. Then

[X × x]∗ω = pr2∗(pr
∗
2[x] · pr∗1ω) = 0

and
Z∗ω = pr2∗(Z · pr∗1ω) = pr2∗(0) = 0

// ∆ ̸= [X × x] + Z, because ∆∗ω = ω.
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• H0(X,Ωp
X) = 0 for p > 0

• H3(X,Z)tors = 0.
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Families of varieties and specializations



Given a family of projective varieties

X → B

Question: How does the following vary in the fibers?

(i) The (stable) rationality of Xb

(ii) The Chow groups CHp(Xb)

(iii) The cohomology groups H i(Xb,Z).

Example (k = C)
If X → B is smooth, then all the fibers Xb are diffeomorphic, hence H i(Xb,Z) are all
isomorphic.

In general, (i) and (ii) can vary drastically in a family.
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Specialization of Rationality

Example (Rational specializing to irrational)

Consider the family

X =
{
x30 + x31 + x32 + b x33 = 0

}
⊂ P3 × A1

For b ̸= 0, the fiber Xb is a cubic surface, hence rational.

The fiber over b = 0 is a cone C(V ) over the elliptic curve

V = {x30 + x31 + x32 = 0},

which is not rational.
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x30 + x21x2 + b x32 = 0
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For b ̸= 0, the fiber Xb is a smooth cubic curve, hence irrational.

But the fiber over b = 0 is a nodal cubic, which is rational. (linear equation in x2.)
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Classical question: What can happen in families of smooth varieties?

Example (Surfaces)

If X → B is a family of smooth projective surfaces, then

X0 rational for some 0 ∈ B =⇒ Xb rational for every b ∈ B.

This is because of Castelnuouvo’s criterion, because the groups

H1(Xb,OXb
), H0(Xb,O(2KXb

))

are constant in the family.
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Example (Irrational specializing to rational II)

Consider a smooth (2, 2)-divisor
X ⊂ P2 × P3.

If X is very general, it is known to be stably irrational [Hassett-Pirutka-Tschinkel].

However, if the equation of X is of the form

y0F0 + y1F1 + y2F2 = 0 (2)

where Fi are generic (2, 1)-forms, then X is smooth and rational.

If (2) holds, then the equation is linear in the y3-variable, so X is rational.
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The last example is in fact rather wild:

• “Most” (2, 2)-divisors in P2 × P3 are stably irrational.

• There are also infinitely many divisors in the parameter space of (2, 2)-forms
parametrizing rational hypersurfaces.

Exercise involving Hilbert schemes

For a family f : X → B, the Rational locus

Rat(f) = {b ∈ B | Xb is rational} .

is a countable union of locally closed subsets of B.
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Specialization

Let R be a DVR, and let X be an integral R-scheme.

We will often be in the situation where we have a diagram of the form

XK X Xk

SpecK SpecR Spec k

K = Frac(R) is the fraction field;
k = R/m is the residue field.

Definition

X = XK is called the generic fiber, whereas Y = Xk is the special fiber.
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above, with XK ≃ X and Xk ≃ Y .
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Specialization of cycles
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Obstructing decomposition of ∆ via specialization

Having a decomposition of ∆ is a cycle-theoretic condition.
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Strategy: Specialize a variety X = XK to a singular variety X0 so that X0 (or some
resolution) has nontrivial cohomology groups (!).
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// X has no decomposition of ∆.

// X is not rational.

X0 must have “controlled singularities” for this to work.
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Quartic threefolds (sketch)

Construct a specialization X → B so that Xb is a quartic threefold for b ̸= 0.

(i) X0 is birational to the Artin-Mumford example

(ii) X0 has ‘mild singularities’

(iii) X0 admits a resolution X̃0 → X0 such that

H3(X̃0,Z)tors ̸= 0.

// Xb does not admit a decomposition of ∆, for b ∈ B very general

// the very general Xb is not stably rational.
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Proposition

For b ∈ B very general, the fiber Xb is isomorphic (as a scheme) to the geometric
generic fiber XK , where K = k(B).

More precisely, there is a field isomorphism K → k(b), and isomorphisms Xb → XK

making the following diagram commute:

Xb XK

Spec k(b) SpecK

Therefore, if we only care about the very general member of some family of varieties
(e.g., the very general hypersurface), this is the same thing as the geometric generic
fiber.



Lecture 2:
The motivic volume formula of Nicaise–Shinder



Two varieties X and Y are stably birational if

X × Pm Y × Pl∼

for some m, l ≥ 0.

X is stably rational if it is stably birational to Pn.



Goal: Understand the proof of the following

Theorem (Nicaise-O.)

(i) A very general degree 4 hypersurface

X ⊂ Pn

is not stably rational for n ≤ 6.

(ii) A very general degree 5 hypersurface

X ⊂ Pn

is not stably rational for n ≤ 13.

(iii) A very general complete intersection of a quadric and a cubic

X = Q ∩ C ⊂ P6

is not stably rational.
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The ring of stable birational types

SBF = set of stable birational equivalence classes of integral F -varieties

[X]sb = equivalence class of X.

Z[SBF ] = free abelian group on the set SBF

=

{
a1[X1]sb + . . .+ ar[Xr]sb

∣∣∣ ai ∈ Z.
}

For any F -scheme X of finite type, we set

[X]sb = [X1]sb + . . .+ [Xr]sb in Z[SBF ]

where X1, . . . , Xr are the irreducible components.

Ring product: [X]sb · [Y ]sb = [X ×F Y ]sb.
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Relation to K(Var)

Theorem (Larsen–Lunts)

Let F be a field of characteristic zero. Then there exists a surjective ring map

sb:K(VarF ) −−→ Z[SBF ]

that maps [X] to [X]sb for every smooth and proper F -scheme X.

The kernel is the ideal in K(VarF ) generated by L:

K(VarF )/(L) ≃ Z[SBF ]

Corollary

Let X and Y be smooth and proper F -schemes. Then

X and Y are stably birational ⇐⇒ [X] ≡ [Y ] modulo L in K(VarF ).

This is not true without the assumption that X and Y are smooth and proper.
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Note: sb([X]) is usually different from [X]sb when X is not smooth and proper.

Example

In K(V arF ), we have [A1] = [P1]− [SpecF ],so

sb(A1) = sb(P1)− sb[SpecF ] = 0

So sb(A1) = 0 ̸=
[
A1

]
sb
.
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The Motivic volume



Some notation

Field of Puiseux series:

K = C{{t}} =
⋃

m>0C((t1/m))

Valuation ring:

R =
⋃

m>0C[[t1/m]]
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An R-scheme is strictly semi-stable if, Zariski locally, it admits an étale morphism to a
scheme of the form

SpecR[z1, . . . , zs]/(z1 · · · zr − tq)

where s ≥ r ≥ 0 and q is a positive rational number.



An R-scheme is strictly semi-stable if, Zariski locally, it admits an étale morphism to a
scheme of the form

SpecR[z1, . . . , zs]/(z1 · · · zr − tq)

where s ≥ r ≥ 0 and q is a positive rational number.



An R-scheme is strictly semi-stable if, Zariski locally, it admits an étale morphism to a
scheme of the form

SpecR[z1, . . . , zs]/(z1 · · · zr − tq)

where s ≥ r ≥ 0 and q is a positive rational number.



Consider
X → SpecR

We want to compare the rationality properties of the generic fiber XK , to those of the
special fiber, XC.

XC may have several components // makes sense to do this comparison in Z[SBC].
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The theorem of Nicaise–Shinder

Let X/R be strictly semi-stable.A stratum of the special fiber Xk is a connected
component E of an intersection of irreducible components of Xk.

S(X ) := the set of strata of Xk.

Theorem (Nicaise–Shinder)

There exists a ring map
Vol:Z[SBK ] −−→ Z[SBk]

such that, for every strictly semistable proper R-scheme X with smooth generic fiber
X = XK , we have

Vol([X]sb) =
∑

E∈S(X )

(−1)codim(E)[E]sb. (3)
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Observations:

(a) Vol sends [SpecK]sb to [SpecC]sb.

(b) If X → SpecR is smooth and proper, then Vol([XK ]sb) = [Xk]sb.

Consequence: if X → SpecR is smooth and proper, then

XK stably rational =⇒ XC stably rational.

Theorem (Nicaise-Shinder)

Stable rationality specializes in smooth and proper families.

This was a long-standing open question!

The method of Nicaise and Shinder was extended Kontsevich–Tschinkel with ‘stable
rationality’ replaced by ‘rationality’.
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More generally:

Corollary

Let S be a Noetherian Q-scheme, and let X → S and Y → S be smooth and proper
morphisms. Then

{s ∈ S |X ×S s is stably birational to Y ×S s for any geometric point s based at s}

is a countable union of closed subsets of S.

Moreover, for a family f :X → B the rational locus

Rat(f) = {b ∈ B | Xb rational }

is a countable union of closed subsets of B.
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Example (Rational specializing to irrational)

Recall the family

X =
{
x30 + x31 + x32 + t3x33 = 0

}
⊂ P3 × A1.

The fiber over t = 0 is a cone C(V ) over the elliptic curve V := {x30 + x31 + x32 = 0},

which is irrational.

What goes wrong in this example?



Example (Rational specializing to irrational)

Recall the family
X =

{
x30 + x31 + x32 + t3x33 = 0

}
⊂ P3 × A1.

The fiber over t = 0 is a cone C(V ) over the elliptic curve V := {x30 + x31 + x32 = 0},

which is irrational.

What goes wrong in this example?



Example (Rational specializing to irrational)

Recall the family
X =

{
x30 + x31 + x32 + t3x33 = 0

}
⊂ P3 × A1.

The fiber over t = 0 is a cone C(V ) over the elliptic curve V := {x30 + x31 + x32 = 0},

which is irrational.

What goes wrong in this example?



Example (Rational specializing to irrational)

Recall the family
X =

{
x30 + x31 + x32 + t3x33 = 0

}
⊂ P3 × A1.

The fiber over t = 0 is a cone C(V ) over the elliptic curve V := {x30 + x31 + x32 = 0},

which is irrational.

What goes wrong in this example?



Example (Rational specializing to irrational)

Recall the family
X =

{
x30 + x31 + x32 + t3x33 = 0

}
⊂ P3 × A1.

The fiber over t = 0 is a cone C(V ) over the elliptic curve V := {x30 + x31 + x32 = 0},

which is irrational.

What goes wrong in this example?



Example (Rational specializing to irrational)

Issue: The family X is not strictly semi-stable.

The blowup Y → X of the vertex of the cone X0 = C(V ) is semistable.

XK

X0

E

The fiber Ỹ0 has two components: X̃0 and the exceptional divisor E.
We have E ≃(cubic surface),so

Vol(XK) = Vol(YK) =
[
X̃0

]
sb

+ [E]sb −
[
E ∩ X̃0

]
sb

=
[
P1 × V

]
sb

+
[
P2

]
sb

− [V ]sb
= [SpecC]sb
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Toroidal models

For our main applications, we need a more flexible notion than semi-stability:

Definition

X = a flat separated R-scheme of finite presentation.
X is strictly toroidal if, Zariski-locally on X , we can find a smooth morphism

X → SpecR[M ]/(xm − tq)

for some toric monoid M , some positive rational number q, and some element m in M
such that k[M ]/(xm) is reduced.

A monoid M is called toric if it is isomorphic to the monoid of lattice points in a
strictly convex rational polyhedral cone.
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Example

The scheme
X = SpecR[x, y, z, w]/(t− xy, t− zw),

is strictly toroidal.

The special fiber has four irreducible components of dimension 2 intersecting at the
origin, which never happens for strictly semi-stable schemes.
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More generally:

Example

Let a = (a1, . . . , ar) ∈ Nr. Then the following R-scheme is strictly toroidal

X = SpecR[xi,j | i = 1, . . . , r; j = 1, . . . , ai]/(t−
a1∏
j=1

x1,j , . . . , t−
ar∏
j=1

xr,j).

These examples will be important when degenerating complete intersections.
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Advantages of toroidal singularities

• The condition of strict semi-stability is quite restrictive.

• Producing a semi-stable model often leads to many blow-ups.

The toroidal condition is much more flexible, and reduces the computations
substantially.

• The product of two strictly toroidal R-schemes is again strictly toroidal.

This is not true for strictly semistable.

• Strictly toroidal degenerations arise naturally when we break up projective
hypersurfaces into pieces of smaller degrees.
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Example

Let f0, . . . , fr ∈ k[z0, . . . , zn+1] be general homogeneous polynomials of degrees
d0, . . . , dr such that d0 = d1 + . . .+ dr.

Then
X = ProjR[z0, . . . , zn+1]/(tf0 − f1 · · · fr)

is strictly toroidal.

X is not strictly semi-stable at the points of Xk where f0 and at least two among
f1, . . . , fr vanish.
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The theorem of Nicaise-Shinder (toroidal version)

Theorem (Nicaise-Shinder)

There is a ring map
Vol:Z[SBK ] −−→ Z[SBk]

such that, for every strictly toroidal proper R-scheme X with smooth generic fiber
X = XK , we have

Vol([X]sb) =
∑

E∈S(X )

(−1)codim(E)[E]sb. (4)

S(X ) = the set of strata of the special fiber Xk.
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Sketch of the proof of the motivic volume formula

Weak factorization theorem // reduce to showing that

Vol(XC) =
∑

Z∈S(XC)

(−1)codim(Z)[Z]sb ∈ Z[SBC]
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Case (a)
For β:X = BlY (X ) → X :

• E → Y is a projective bundle.
• There are many cancellations in the alternating sum.

D1

Y

D2

E

D̃2

D̃1

Vol(X̃) = [D̃1]sb + [D̃2] + [E]sb − [D̃1 ∩ E]− [D̃2 ∩ E]

= [D1]sb + [D2]sb + [Y ]sb − [Y ]sb − [Y ]sb

= Vol(X ).
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Case (a)

Let D1, . . . , Dn be the components of X0, ordered so that

Y ⊂ D1 ∩ . . . ∩Da

and Y ̸⊆ Di for i > a.
By Weak Factorization, we may assume that Y intersects the divisors Da+1, . . . , Db

transversally, and for i ≥ a+ 1, the divisors

Zi = Di ∩ Z

are all distinct and form a normal crossing divisor on Z.



Case (a)
After blowing up Y , the new special fiber has the following divisors:

• The strict transforms D̃i for i = 1, . . . , n
• The exceptional divisor E which is a projective bundle over Y .

The special fiber is still a simple normal crossing divisor. As D̃1 ∩ . . . ∩ D̃a = ∅, the
motivic volume is a sum of terms of the form

D̃A∪B with sign (−1)|A|+|B|−1

and
D̃A∪B ∩ E with sign (−1)|A|+|B|

over all subsets A ⊂ {1, . . . , a} with |A|< a and B ⊂ {a+ 1, . . . , n}.
Note that D̃A∪B ∩E is stably birational to D[a]∪B in X . This, together with the identity∑

A⊂[a],|A|<a

(−1)|A| = (−1)a−1

shows that the volume is equal to∑
A,B

(−1)|A|+|B|−1DA∪B +
∑
B

(−1)|B|(−1)a−1D[a]∪B =
∑
C⊂[b]

(−1)|C|−1DC

which is exactly the volume.



Case (b)

D1

D2

Y

D̃1

D̃2

EA B
PA

PB

Vol(X̃ ) = [D̃1] + [D̃2] + [E]− [D̃1 ∩ E]− [D̃2 ∩ E]− [D̃1 ∩ D̃2] + [D̃1 ∩ D̃2 ∩ E]

= [D1] + [D2] + [Y ]− [PA]− [PB]− [Y ]− [D1 ∩D2] + [A] + [B]

= [D1] + [D2]− [D1 ∩D2]

= Vol(X ).
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Case (b)

Assume that Y ⊂ D[a] is not a component of D[a].

On the blow-up X̃, there are the divisors

• The strict transforms D̃i for i = 1, . . . , b

• The exceptional divisor E which is a projective bundle over Y .

We have two types of intersections:

D̃A∪B

and
D̃A∪B ∩ E

over all subsets A ⊂ {1, . . . , a} and and B ⊂ {a+ 1, . . . , b}.



For the intersection D̃A∪B, the map D̃A∪B → DA∪B is birational on each component, so
every term in the volume of X̃ matches a unique term in the volume of X with the
same sign.
To conclude, we claim that the other terms cancel out.
To see this, note that the components of

D̃A∪B ∩ E

are in bijection with the components of

DA∪B ∩ Y

As each component of D̃A∪B ∩E maps as a generic projective bundle over DB ∩ Y , they
are stably birational.
For a fixed connected component of DB ∩ Y , the alternating sum of components of
D̃A∪B ∩ E that map to it is zero. Thus the extra terms cancel out.



Applications



Important observation: Vol maps SpecK to SpecC.

A key idea in [NO20], is to use this an obstruction to stable rationality of XK :

Corollary

Let X be a strictly toroidal proper R-scheme with smooth generic fiber XK . If∑
E∈S(X )

(−1)codim(E)[E]sb ̸= [SpecC]sb

in Z[SBC], then XK is not stably rational.
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Example (Voisin)

A very general double quartic threefold X → P3 is not rational.

Sketch of proof.

Let f, g ∈ C[x, y, z, w] denote quartics, so that f appears in the Artin-Mumford example

w2 = f(x, y, z, w) ⊂ P(1, 1, 1, 1, 2).

Consider the family

X = {w2 = f(x, y, z, w) + tg(x, y, z, w)} ⊂ P(1, 1, 1, 1, 2)× A1

X0 is the Artin-Mumford threefold.
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Sketch of proof.

X̃ = blow up of X along the 10 nodes in the special fiber X0.

Then X̃ is strictly semistable.

The blow-ups only introduce rational varieties in the special fiber, so

Vol(XK) = Vol(X̃K)

= [X̃0]sb + a[SpecC]sb for some a ∈ Z
̸= [SpecC]sb in Z[SBC]

because [X̃0] is not stably rational.

// XK is not stably rational.

// the very general double quartic solid is not stably rational.
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Main strategy

We often get better results using degenerations with several components.

Look for suitable degenerations
X → SpecR

with XK ⊂ Pn+1
K smooth hypersurface, with the property that

stably irrational strata of low dimension do not cancel out in the alternating sum

Vol([X]sb) =
∑

E∈S(X)

(−1)codim(E)[E]sb.

∴ We deduce irrationality of XK from that of varieties of lower dimension.
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Example (Two components in the special fiber)

Suppose the special fiber XC = X0 ∪X1, intersecting along X01.

Vol(XK) = [X0]sb + [X1]sb − [X01]sb

Either of the following conditions imply that XK is not stably rational:

i) Exactly one of X0, X1, X01 is stably irrational.

ii) X0 and X1 are both stably irrational.

iii) X0 and X01 are stably irrational, but they are not stably birational to each other.

iv) X0, X1, X01 are all stably irrational.
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A funny argument

Suppose that the very general quartic 3-fold is stably irrational.

Then at least one of the following must hold:

(i) The very general quartic 4-fold is stably irrational

(ii) The very general quintic 4-fold is stably irrational.

Let f, g ∈ k[x0, . . . , x5] be very general polynomials of degree 4 and 5.

X = ProjC[t][x0, . . . , x5]/(x5f − tg).

Special fiber: XC = X0 ∪X1, where

X0 = ProjC[x0, . . . , x5]/(x5) X1 = ProjC[x0, . . . , x5]/(f).
X01 = ProjC[x0, . . . , x5]/(f, x5).

Then
Vol = [P4]sb + [X1]sb − [X01]sb

∴ Vol = [SpecC]sb if and only if [X1] = [X01]. The latter implies (i).
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Quartic fivefolds

Let F ∈ C[x0, . . . , x6] be a very general homogeneous polynomial of degree 4.

Consider the following R-scheme

X = ProjR[x0, . . . , x6, y]/(x5x6 − ty, y2 − F ) (6)

where the variable y has weight 2.

Note that the generic fiber XK is isomorphic to a smooth quartic hypersurface in P6
K

(inverting t allows us to eliminate y using the first equation).

Moreover, X is strictly toroidal.
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The special fiber has two components:

X0 = ProjC[x0, . . . , x6, y]/(x5, y2 − F )

X1 = ProjC[x0, . . . , x6, y]/(x6, y2 − F ).

Note that these are both very general quartic double fivefolds.

We do not know whether these are stably rational or not.

However, their intersection,

X01 = ProjC[x0, . . . , x4, y]/(y2 − F )

is a very general quartic double fourfold, and thus stably irrational
[Hassett–Pirutka–Tschinkel].

In either case, we get

Vol([XK ]sb) = [X0]sb + [X1]sb − [X01]sb
̸= [SpecC]sb
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On (2,3)-complete intersections

Theorem

Very general complete intersections of a quadric and a cubic in Pn are stably irrational
for n ≤ 6.

Our main contribution is stable irrationality for n = 6.

History related to the Lüroth problem:

• Fano (1908): (Incorrect) proof of irrationality for n = 5

• Enriques (1912): Proof of unirationality for n = 5

• Hassett–Tschinkel (2018): Stable irrationality for n = 5.

• Morin (1955), Conte–Murre (1998): Unirationality for n = 6.

The above result settles the rationality problem for all complete intersections of
dimension ≤ 4 - except cubic fourfolds.
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• Fano (1908): (Incorrect) proof of irrationality for n = 5

• Enriques (1912): Proof of unirationality for n = 5

• Hassett–Tschinkel (2018): Stable irrationality for n = 5.

• Morin (1955), Conte–Murre (1998): Unirationality for n = 6.

The above result settles the rationality problem for all complete intersections of
dimension ≤ 4 - except cubic fourfolds.



On (2,3)-complete intersections

Theorem

Very general complete intersections of a quadric and a cubic in Pn are stably irrational
for n ≤ 6.

Our main contribution is stable irrationality for n = 6.

History related to the Lüroth problem:

• Fano (1908): (Incorrect) proof of irrationality for n = 5

• Enriques (1912): Proof of unirationality for n = 5

• Hassett–Tschinkel (2018): Stable irrationality for n = 5.

• Morin (1955), Conte–Murre (1998): Unirationality for n = 6.

The above result settles the rationality problem for all complete intersections of
dimension ≤ 4 - except cubic fourfolds.



On (2,3)-complete intersections

Theorem

Very general complete intersections of a quadric and a cubic in Pn are stably irrational
for n ≤ 6.

Our main contribution is stable irrationality for n = 6.

History related to the Lüroth problem:
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The proof for (2, 3)-complete intersections

Let P6 = Proj k[x0, . . . , x6] and let P = {x0 = . . . = x3 = 0} ≃ P2.

Y = {q = c = 0} ⊂ P6

for q and c very general of degree 2 and 3.

We assume Y contains P and is very general with respect to this property.

Blow up the plane P :

X ⊂ BlPP6 P6

P3

π

p

X = Q ∩ C where Q ∈ |2H − E| and C ∈ |3H − E|.
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Enough to show that generic intersections

X = Q ∩ C ⊂ BlPP6

where Q ∈ |2H − E| and C ∈ |3H − E| are stably irrational.

Now degenerate Q to Q0 + E where Q0 ∈ |2H − 2E|= |2p∗h|.

This induces a degeneration of X → A1 with special fiber X0 = X1 ∪X2:

There are three strata:

• X1 = Q0 ∩ C

• X2 = E ∩ C

• X12 = Q0 ∩ E ∩ C
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The stratum X1 = Q0 ∩ C:

Q0 = PP1×P1(O3 ⊕O(1, 1)) P(O3 ⊕O(1)) P6

P1 × P1 P3

π

p

C|Q0 is a very general divisor in |O(2)⊗ p∗O(1, 1)| in PP1×P1(O3 ⊕O(1, 1)).

In affine coordinates,

a0U
2 + a1UV + a2UW + a3V

2 + a4VW + a5W
2 + a6U + a7V + a8W + a9 = 0

where a0, . . . , a9 ∈ k[x, y] are degree 2 in x, y.

// X1 is stably irrational by [Schreieder 2017].
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The strata X2 = E ∩ C and X12 = E ∩Q0 ∩ C

C restricts to a (1, 2)-divisor on E ≃ P2 × P3

Q0 restricts to a (0, 2)-divisor on E ≃ P2 × P3.

// X2 and X12 are both rational.

By the motivic volume formula:

Vol([X ]sb) = [X1]sb + [X2]sb − [X12]sb

= [X1]sb + [SpecC]sb − [SpecC]sb
= [X1]sb

̸= [SpecC]sb

This implies that a very general X is stably irrational. □
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Lecture 3:
Toric degenerations and applications



Recap

The ring of stable birational types: Z[SBF ].

K = C{{t}} =
⋃

m>0C((t1/m)), R =
⋃

m>0C[[t1/m]].

The motivic volume of Nicaise–Shinder:

Vol:Z[SBK ] −−→ Z[SBC]

such that: ∀ strictly toroidal proper R-scheme X with smooth generic fiber X = XK ,

Vol([X]sb) =
∑

E∈ strata of XC

(−1)codim(E)[E]sb. (7)

• Vol maps [SpecK]sb to [SpecC]sb.

• Obstruction: If one can write down a family X so that the alternating sum (7)
does not cancel out to [SpecC] in Z[SBC], then XK not stably rational.
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Proposition

A very general intersection of a quadric and a quartic in P8 is not stably rational.

Let q, f ∈ k[x0, . . . , x8] be very general of degrees 2, 4.

X := ProjR[x0, . . . , x8]/(f, tq − x7x8)

Then Xk = E1 ∪ E2 and

• E1 = {f = x7 = 0} (?)

• E2 = {f = x8 = 0} (?)

• E12 = {f = x7 = x8 = 0} (stably irrational)

In any event,

Vol(XK) = [E1]sb + [E2]sb − [E12]sb
̸= [SpecC]sb.
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Proposition

Let n and r be integers such that

n ≥ 3, r ≥ 3, r ≥ n− 1.

Then a very general complete intersection of r quadrics in Pn+r
k is stably irrational.

Base cases: r = 3, n ≤ 4, known to be stably irrational.

Xn,r = {q1 = . . . = qr = 0} ⊂ Pn+r,

Degenerating qr // xn+rxn+r−1 gives a family X with

Vol = [Xn,r−1]sb + [Xn,r−1]sb − [Xn−1,r−1]sb

By induction, this is ̸= [SpecC].
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Projective toric varieties

{
projective toric varieties (X,L),

L basepoint free ample line bundle

}
⇐⇒

{
lattice polytopes ∆ ⊂ Rn

∆ defined up to translation

}

1-1 inclusion preserving correspondence between faces of ∆ and toric strata of X:

∆ X(∆)
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We use the standard notations M , N for the lattices.

Let ∆ ⊂ MR be a lattice polytope (very ample).

∆ ∩M = {m0, . . . ,mr}.

f : (C∗)n −−→ Pr

x 7→ (xm0 : · · · : xmr).

X(∆) = Zariski closure of the image of f

= ProjC[C(∆) ∩ Zn+1]

where C(∆) is the cone over ∆.
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Facts

• There is a 1-1 inclusion preserving correspondence between faces of ∆ and toric
strata of X(∆).

• Since X(∆) is defined as a Proj, there is a natural line bundle L = O(1).

H0(Σ∆,O(1)) has a basis corresponding to the lattice points of ∆.
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Example (Projective space)

(Pn,O(1)) is given by the n-dimensional simplex

∆ =
{∑

xi ≤ 1, xi ≥ 0
}

More generally, (Pn,O(d)) is given by the dialated simplex

d∆ =
{∑

xi ≤ d, xi ≥ 0
}

This is the d-th Veronese embedding of Pn.
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Example (Product polytopes)

If (X,L) and (Y,M) correspond to polytopes PX ⊂ Rn and PY ⊂ Rm, then the product

(X × Y,L⊠M)

is given by the product polytope PX × PY ⊂ Rn+m.

For instance (P1 × P1,O(a, b)) is given by the rectangle

Pa,b = {(x, y) | 0 ≤ x ≤ a, 0 ≤ y ≤ b}
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Example (Blow-up)

Ta,b = {(x, y) | 0 ≤ x, 0 ≤ y ≤ b, x+ y ≤ a}

The corresponding toric variety is X = BlpP2 together with L = aH − (a− b)E.
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Regular subdivisions

A subdivision P of ∆ is called regular if there is a piecewise linear function

λ : ∆ → R≥0

such that

(i) The polytopes in P are the orthogonal projections on the hyperplane z = 0 of
Rn+1 of the faces of the upper convex hull

∆̃ := {(x, z) ∈ ∆× R | 0 ≤ z ≤ λ(x)}

which are neither vertical nor equal to ∆.

(ii) The function ϕ is strictly convex.
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Toric degeneration

Given a regular subdivision P, we can construct a (flat) degeneration

X → A1,

satisfying:
• X − X0 ≃ X(∆)× C∗.
• The special fiber X0 is a union of toric varieties

X0 =
⋃

P∈P

X(P )

• The components intersect according to the combinatorics of the subdivision:
If P,Q ∈ P share a common face R, then X(P ) ∩X(Q) can be identified with the
toric variety X(R) (which is a subvariety of both).
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Construction

Given a regular subdivision P of ∆, define the morphism

Φ : (C∗)n × C∗ −−→ Pr × C,

(x, t) 7→
(
(tλ(m0)xm0 : · · · : tλ(mr)xmr), t

)
,

where m0, . . . ,mr are the lattice points of ∆.

//

X(∆)× C∗ −−→ Pr × C,

X = Zariski closure of the image.

X → C is a degeneration of X (∆).

For t ̸= 0, we have Xt ≃ X(∆).
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The special fiber

The restriction λ|Q of λ to Q is linear:

λ|Q(x) = a1y1 + · · ·+ anyn + b, a1, . . . , an, b ∈ R.

Reparametrizing the torus action

(x1, . . . , xn, t) 7→ (t−a1x1, . . . , t
−anxn, t),

the morphism Φ becomes:

(x, t) 7→
(
[· · · : tλ(mi)−λQ(mi)xmi : · · ·], t

)
.

As t → 0, the flat limit X0 contains XQ as an irreducible component.

• The special fiber X0 has components XQ corresponding to the polytopes Q ∈ P.

• If P and Q share a common face P ∩Q, then XP and XQ intersect along XP∩Q.
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Example

(
P1 × P1,O(1, 1)

) (
P2,O(1)

)
∪
(
P2,O(1)

)
(
P1,O(1)

)
intersection =

Φ: (C∗)2 × C∗ −−→ P3

(x, y, t) 7→ (1, tx, xy, ty).

This gives
X = ProjC[t][x0, x1, x2, x3]/(x1x2 − t2x0)
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Newton subdivisions

Let
f =

∑
m

cmxm ∈ K[M ]

be a Laurent polynomial with Newton polytope ∆ ⊂ Rn+1.

ϕ : ∆ → R given by the lower convex envelope of the function

m 7→ ordt(cm).

// regular subdivision P + corresponding degeneration of X(∆).

Example

f = 1 + tx+ ty + xy gives the degeneration
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Example

(
P2, 3H

) (
P2, 2H
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BlpP2, 2H − E
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1 + x+ x2 + xy + y2 + tx3 + tx2y + txy2 + ty3



For every δ ∈ P, set

fδ =
∑

Zn+1∩δ

cmxm

Non-degeneracy condition: We assume that Z(fδ) is smooth for all δ.

Let X = X(∆)×C[t] R.

// XK = XK(∆) and XC =
⋃

P∈P X(P ).

Taking the Zariski closure of Z(f) in XK , we also get a degeneration

Y → A1
C

with YK = Z(f).

Proposition

Assuming that f is non-degenerate in the above sense, the corresponding degeneration
is toroidal. Hence we can apply the motivic volume formula.
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A lattice polytope ∆ is

• stably irrational if for every very general polynomial g ∈ F [M ] with Newton
polytope ∆, the hypersurface Z(g) is stably irational.

• Otherwise ∆ is stably rational.

Example

The dilated (n+ 1)-simplex d∆ ⊂ Rn+1 is stably irrational if and only if the very
general degree d hypersurface in Pn+1 is not stably rational.



A lattice polytope ∆ is

• stably irrational if for every very general polynomial g ∈ F [M ] with Newton
polytope ∆, the hypersurface Z(g) is stably irational.

• Otherwise ∆ is stably rational.

Example

The dilated (n+ 1)-simplex d∆ ⊂ Rn+1 is stably irrational if and only if the very
general degree d hypersurface in Pn+1 is not stably rational.



A lattice polytope ∆ is

• stably irrational if for every very general polynomial g ∈ F [M ] with Newton
polytope ∆, the hypersurface Z(g) is stably irational.

• Otherwise ∆ is stably rational.

Example

The dilated (n+ 1)-simplex d∆ ⊂ Rn+1 is stably irrational if and only if the very
general degree d hypersurface in Pn+1 is not stably rational.



A lattice polytope ∆ is

• stably irrational if for every very general polynomial g ∈ F [M ] with Newton
polytope ∆, the hypersurface Z(g) is stably irational.

• Otherwise ∆ is stably rational.

Example

The dilated (n+ 1)-simplex d∆ ⊂ Rn+1 is stably irrational if and only if the very
general degree d hypersurface in Pn+1 is not stably rational.



A lattice polytope ∆ is

• stably irrational if for every very general polynomial g ∈ F [M ] with Newton
polytope ∆, the hypersurface Z(g) is stably irational.

• Otherwise ∆ is stably rational.

Example

The dilated (n+ 1)-simplex d∆ ⊂ Rn+1 is stably irrational if and only if the very
general degree d hypersurface in Pn+1 is not stably rational.



Example (Hassett–Pirutka–Tschinkel)

The product polytope 2∆2 × 2∆3 ⊂ R5 is stably irrational.

The following (2,2)-divisor in P2 × P3 is stably irrational.

xyU2 + xzV 2 + yzW 2 + (x2 + y2 + z2 − 2(xy + xz + yz))T 2 = 0



Rational polytopes

Lemma (Lattice width 1)

If ∆ is a polytope with lattice width 1, then ∆ is stably rational.

Proof.

After a change of coordinates, a polynomial f with this Newton polytope becomes
linear in one variable.

For instance,
F = 1 + 2x+ x3 + xy + x2y

has Newton polytope

This is a nodal cubic.
The projection (x, y) → y induces a birational map Z(F ) 99K A1.
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General strategy for hypersurfaces in toric varieties

Construct a subdivision P of ∆, so that all but one lower-dimensional polytope is
stably rational (or make sure that the various intersections do not cancel out in the
alternating formula for Vol).
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Theorem (Increasing degree / decreasing dimension)

Suppose that a very general hypersurface of degree d in Pn+1 is stably irrational.

Then:

(i) A very general hypersurface of degree d+ 1 in Pn+1 is stably rational.

(ii) A very general hypersurface of degree d in Pn is stably rational.

Example

The result for quartic 5-folds implies that we also get stable irrationality for

• Quintic 6-folds

• Sextic 7-folds

• . . .
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Proof of (i)

The red polytope corresponds to a degree d hypersurface Y ⊂ Pn.

All other polytopes have lattice width 1 (hence they are rational).

We get a degeneration X → SpecR of degree (d+ 1)-hypersurfaces in Pn+1 with

Vol(XK) = [Y ]sb + a[SpecC]sb
̸= [SpecC]sb

□
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The Quartic fivefold again

Newton polytope: ∆ =
{
(x1, . . . , x6) ∈ R6

≥0|
∑

i xi ≤ 4
}

Subdivision below // degeneration with special fiber X1 ∪X2 ∪X3 ∪X4.

Red polytope = (2, 2)-divisor Y ⊂ P2 × P3

// stably irrational by [Hassett–Pirutka–Tschinkel 2016].

All other polytopes have lattice width 1, hence rational.

Thus
Vol(XK) = [Y ]sb + a[SpecC]sb ̸= [SpecC]sb

□
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Here is the previous degeneration:

Red polytope = double quartic 4-fold.
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Products of projective spaces

Theorem

A very general (2, 3)-divisor X ⊂ P1 × P4 is not stably rational.

Subdivisions of the polytope a∆1 × b∆n allows us to raise degree/dimension:

(a, b) in Pm × Pn stably irrational =⇒ (a, b+ 1) and (a+ 1, b) also stably irra-
tional in Pm × Pn and Pm × Pn+1.

∴ we get all bidegrees corresponding to rational/irrational hypersurfaces.
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The Hassett–Pirutka–Tschinkel quartic

Consider Y ⊂ P2 × P3, bidegree (2, 2), defined by

xyU2 + xzV 2 + yzW 2 + (x2 + y2 + z2 − 2(xy + xz + yz))T 2 = 0

Hassett–Pirutka–Tschinkel/Schreieder:
Anything that specializes to Y does not admit a decomposition of ∆ (hence is stably
irrational).
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(2, 3)-divisors in P1 × P4

P = the Newton polytope of the HPT quartic
xyU2 + xV 2 + yW 2 + x2 + y2 + 1− 2(xy + x+ y) = 0

= convex hull of column vectors of


0 2 0 1 0 1
0 0 2 1 1 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


We can embed P into the Newton polytope of a general (2, 3)-divisor:

2∆1 × 3∆4 = {(u, v) ∈ R1+4
≥0 |u ≤ 2, v1 + . . .+ v4 ≤ 3}.

Concretely, the following bidegree (2, 3) polynomial

x20y
3
0 − 2x0x1y

3
0 + x21y

3
0 − 2x20y

2
0y1 − 2x0x1y

2
0y1

+ x20y0y
2
1 + x0x1y1y

2
2 + x20y1y

2
3 + x0x1y0y

2
4

dehomogenizes to the HPT quartic.
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Let P denote the regular subdivision of the polytope 2∆1 × 3∆4 induced by the convex
function

f :R5 → R, x 7→ minz∈P ∥x− z∥2

The cells in P:

dim δ 0 1 2 3 4 5

number 43 192 353 323 146 26

// degeneration of P1 × P4 into a union of 26 toric varieties.
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Going through the cells of dimension 2 and 4 reveals that any face δ of even dimension
either

• has lattice width one (rational, as the equation is linear with respect to a variable)

• corresponds to a quadric bundle over P1
k (rational).

• defines a conic bundle over A3 with a section (rational)

In Z[SBC] we have

Vol([X ]sb) = [HPT ] +
∑

#I odd

[XI ] + a[SpecC] for some a ∈ Z

As this is ̸= [SpecC], a very general X is stably irrational. □
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• defines a conic bundle over A3 with a section (rational)

In Z[SBC] we have

Vol([X ]sb) = [HPT ] +
∑

#I odd

[XI ] + a[SpecC] for some a ∈ Z

As this is ̸= [SpecC], a very general X is stably irrational. □



Subvarieties of Grassmannian

We also get results for non-toric ambient spaces:

Theorem

The following very general intersections in Gr(2, 5) ⊂ P9 are not stably rational:

(i) X = V (F ) ∩Gr(2, 5) if
degF ≥ 3.

(ii) X = V (F ) ∩ V (G) ∩Gr(2, 5) unless

degF,degG ∈ {1, 2}.

(iii) X = V (F ) ∩ V (G) ∩ V (H), unless

degF = degG = degH = 1.

The case degF = 1,degG = 2 correspond to Gushel–Mukai varieties.
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We work in the standard Plucker embedding

Gr(2, 5) ⊂ P9.

We choose homogeneous coordinates x0, . . . , x9 on P9 and consider the C∗-action given
by scaling the x0 and the x9 coordinate.

(x5x7 − x4x8 + x2x9, x5x6 − x3x8 + x1x9, x4x6 − x3x7 + x0x9, . . .)

// a family G → A1 = SpecC[t] with generic fiber isomorphic to Gr(2, 5) over C(t).

The special fiber G0 is defined by the ideal

(x6x7 − x5x8, x3x7 − x2x8, x3x5 − x2x6, x3x4 − x1x6, x2x4 − x1x5)

This is an irreducible toric variety.
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The polytope P ⊂ R6 of G0 = convex hull of the colums of the matrix



0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1


// a general hypersurface of degree 3 in P9 pulls back to a polynomial with Newton

polytope 3P .
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To find a stably irrational subpolytope, we use the Hassett–Pirutka–Tschinkel quartic

F = xyu2 + xv2 + yw2 + (x2 + y2 + 1− 2(xy + x+ y))

with Newton polytope given by the columns of
1 1 0 2 0 0
1 0 1 0 2 0
2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0


This polytope is stably irrational.

Define
ι : R5 → R6 (t1, t2, t3, t4, t5) 7→ (t5, t4, t1, t5, t2, t3).

Then ∆HPT := ι(∆F ) is contained in 3P and it is not contained in the boundary of 3P .
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Take the subdivision of 3P associated to the convex function

λ(z) = maxv∈∆HPT
∥z − v∥2.

Using a computer, one checks that the resulting subdivision P contains 14 maximal
polytopes, and all polytopes in except ∆HPT have lattice width 1,

and hence are
rational.
This means that the degeneration satisfies

Vol([XK ]sb) = [HPT ]sb + a[SpecC] ̸= [SpecC]sb

□
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