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Emergence of climate physics

J. Fourrier, 1824: Méemoire sur les températures du globe terrestre et des espaces
pl anétaires (https://www.academie-sciences.fr/pdf/dossiers/Fourier/Fourier_pdf/Mem1827_p569_604.pdf)

> He consider the Earth like any other planet

>The energy balance equation drives the .
temperature of all the planets Joseph Foufrier

> The major heat transfers are - (1768-1830)

1.Solar radiation _
2.Infra-red radiation
3.Diffusion with the interior of Earth

> The heat diffusion with the interior of
Earth has a negligible impact on the

surface temperature
> Contradicts the thermal death of Earth

[Dufresne, 2006]



Emergence of climate physics

J. Fourrier, 1824: Méemoire sur les températures du globe terrestre et des espaces
pl anétaires (https://www.academie-sciences.fr/pdf/dossiers/Fourier/Fourier_pdf/Mem1827_p569_604.pdf)

> He envisages the importance of any change of the sun
«The least variation in the distance of that body[ the sun] from
the earth would occasion very considerable changes of

temperature. » Joseph Fourrier
(1768-1830)

He refuted this possibility, which led him to assume the existence of a
"temperature of space”, which he took to be equal to that of the poles
in winter.

> He envisages that climate may change: « The establishment and
progress of human society, and the action of natural powers, may, in extensive
regions, produce remarkable changes in the state of the surface, the
distribution of waters, and the great movements of the air. Such effects, in the
course of some centuries, must produce variations in the mean temperature for

».
such places [Dufresne, 2006]



Spontaneous emission of radiation

i, Normalised spectrum
° ° u visi c =
Planck law (“Black body” emission) 1Vlolet . I menouge

—- | l’\\
| C'Tl AP /\ / II \\ |
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B, in W.m2.um?.sr?! ‘\\ =
T in K, C; et C; are constants \\\ ]
Semi-transparent media: o4 o038 > 4 6 10 ~ 30 50
Li(T) = & By(T) with €, spectral emissivity wavelength A (pm)

(0 < &,<1; black body: &\=1)
Kirchhoff law: emissivity €, = absorptivity o, at the spectral level

Stefan-Boltzmann law (integral of the Planck law over the whole spectrum and over one hemisphere).

Power F lost by emission of radiation by a body of temperature T: | F = O T

With 0 =5,67 108 : Stefan-Boltzmann constant, Fin W.m?, Tin K



Equilibrium temperature of planet Earth

Average incoming solar We assume the surface
radiation on a sphere: Is = lo/4 temperature is uniform

absorbed solar
(shortwave) radiation:
F, = (1-A) lo/4 = 240W.m-2

Steady state: the heat power gained by absorption is
equal to that lost by emission: Fa = Fe

oeT:=(1—A)1,/4 Te: Emission temperature
longwave radiation emitted by Te= 255K (-18°C)
the Earth toward space:
F. =240 W.m?
Greenhouse effect longwave radiation emitted Global mean surface
G=F_-F, by surface: temperature Ts = 15°C

F, = 390 W.m?



Radiative calculations are now accurate
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Greenhouse effect Is computed and observed

\ A
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Gas radiative properties Atmospheric
F characteristics
Greenhouse effect: G=F -F, Computation of the radiative fluxes F,and F,and the

greenhouse effect G

Current greenhouse effect and the various

contributions (Wm?) (%)
Total 150 clouds
Water vapour 75 50 ) N.O + CHy,
CO, 32 21 H20 O-
ozone 10 7
N,O+CH, 8 5 COZ

Clouds 25 17



To understand the greenhouse effect, one must
considered radiative fluxes at the top of atmosphere

[ ——

Presentation of the greenhouse effect as an atmosphere heating the surface by emitting
infrared radiation towards the surface:
* Is inconsistent (false) with the definition of its measure: G = Fs - Fe

* Logically leads to erroneous coclusion, e.g. to question the role of CO; in the
greenhouse effect (saturation effect, CO, masked by H.O, etc.)

» Doesn't allow for an answer to these legitimate questions.



Energy flows in the Earth atmosphere
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Energy flows in the Earth atmosphere
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Single column model (from the 60's)

Vertical temperature profile at

* radiative equilibrium with fixed relative humidity

* radiative equilibrium with fixed absolute humidity

* radiative-convective equilibrium at fixed relative humidity

This article was very influential as it showed:
* the fundamental role of convection
* the large difference whether absolute or relative humidity
is kept constant
* that for a given CO, variation:
* its effect on radiative fluxes had to be considered at
the top of the atmosphere, not at the surface
* the variation in surface temperature was twice as high
if relative humidity was kept constant and not absolute
humidity
 surface and tropospheric temperatures vary in the
opposite direction to that of the stratosphere
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Numerical climate models (from the 60's)
(numerical weather simulators)

W. Bjerknes L. F. Richardson J. von Neumann
(1862-1951) (1881-1953) (1903-1957)

J. Charney J. Smagorinsky S. Manabe
(1917-1981) (1924-2005) (1931-)



A variety of numerical models to handle the
wide range of time and space scales involved

Global CRMs
/ —~

Global circulation

Large eddy Cloud resolving models (GCMs)

D_irect r!umerical simulation (LES) models (CRMs) B -
simulation (DNS) - ~ AN

Turbulen 1 Qoudy Convection - Cyclones F‘Ianwaves

8

10° 10° 10* 10° 10° 10" 10

Length scale [m] LegL L-rmp [ Siebesmaa & Seifert, 2020] L Earth



General circulation models (GCMs)

Dynamical core : discretized version of the equations of

fluid mechanlcs
Mass Conservation

Do/Dt + pdivU = 0
" Energy Conservation
DO /Dt = Q/Cp (po/p)«
" Momentum Conservation
DU/Dt + (1/p)gradp - g +2 Q2 "U= F
" Conservation of Water (and other species)
Dq/Dt = Sq

In red, source terms : other than fluid mechanics and unresolved scales

General Circulation Models

— Developed in the 60s for the purpose of weather forecast

— Based on a discretized version of the « primitive equations of meteorology »
— On the Earth but also very rapidly on other planets

— A number of important process are subgrid scale and must be parameterized



Modeling of unresolved scales with sub-models (parameterization)

A typical vertical atmospheric column

-
——
-

. —-— deep i
convection il

typical
vertical
grid size:

500 m i
-1 km | :

km /=
"/1

30-100 m

- o= w o=

_/20

small scale
turbulence typlcal horizontal grld size: 30-300 km

' i - [Rio et al, GRL, 2009]
Typical time step : a few minutes to half an hour
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What drives climate variations and changes ?

Internal variability Natural forcings Anthropogenic forcings

El Nino Southern Oscillation
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Natural and
anthropogenic forcings

Sun and volcanos

Use of Earth System Models (ESMs)

e.q. the IPSL « Earth System Model »
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Performing a control run to obtain a stationary reference

simulation

IPSL-CM5A-LR model, preindustrial control run

NetI flux at the TPA
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[Dufresne et al., 2013]
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Human activities and recent global warming

°C

2.0 Mean surface temperature
anomalies observed and

15 considering

Mean surface temperature
anomalies observed and
computed considering only
the natural perturbations

-0.5

| 1
1850 1900 1250 2000 2020

[IPCC, 2021]
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First climate projections before global warming has been observed
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Global temperature change (°C)

Recent warming was predicted by models simulations
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Future scenarios

SSP and RCP concentrations

1100 (a) CO, SSP5-85
Emissions pathways = _ 1000-
Different social and economic developments can lead to substantially different future emissions of '§. E_ 900 |
\ carbon dioxide (CO.), other greenhouse gases and air pollutants for the rest of the century. g =
' = é 800 |
8 & 700
CO, peak = o
140 -\ & E 600 | ‘
< Very high Q500 © RO + CH., N2O, etc.
@ 1204 sy
e 400 . - + aerosol
& 1001 CO; doubled ‘ ' ‘ ' precursors
© CO, doubled ich o
g . 9 SSP and RCP emissions + land use
o
S 60 — 120
: =
2 4 = S 100,
S &)
5 80
“’N Medi w
g, & TS T~ o e
Low 240
204 Very low LIEJ 1
00 2020 040 | 200 | 2080 2100 o 20
[ O
0
-20

[IPCC 2021, AR6]



Natural and

anthropogenic forcings

mSolar and volcanoe

Use of Earth System Models (ESMs)
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Recent and future change of four key indicators of the climate system
Atmospheric temperature, ocean heat content, Arctic summer sea ice, and land precipitation

(a) Global surface air temperature
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In the IPCC's ARG report, changes by warming level are
studied, not only as a function of year.

The amplitude of most changes of the climate system depend on the
amplitude of global warming.

=> Questions (and answers) about future climate change can be more
specific

=> We have moved from "what climate change will be in the year YYYY" to
- what will be the climate changes for a global warming of X°C
- how much CO2 can be emitted to reach (or not exceed) a warming of X°C?

- when will this happen?



a) Annual mean temperature change (°C)
at 1 °C global warming

Warming at 1 °C affects all continents and
is generally larger over land than over the
oceans in both observations and models.
Across most regions, observed and
simulated patterns are consistent.

0O 05 1 15 2 25 3 35 4 45 5 55 6 65 7 ---»

b) Annual mean temperature change (°C) Across warming levels, land areas warm more than oceans, and the Arctic
relative to 1850-1900 and Antarctica warm more than the tropics.

Simulated change at 1.5 °C global warming Simulated change at 2 °C global warming Simulated change at 4 °C global warming

[IPCC 2021, AR6]



Mean summer temperature in France (Jun-August)
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https://www.lmd.jussieu.fr/~jldufres/Educ/2020/EvolTsFranceEte1_FH.mp4

Hot extremes over continents

50-year event

Frequency and increase in intensity of extreme temperature
event that occurred once in 50 years on average

FREQUENCY per 50 years

INTENSITY increase

in a climate without human influence

1850-1900 Present 1°C

[ ] '-:..
Once now likely
occurs
4.8 times
(2.3-6.4)
+6°C
+5°C
+4°C
+3°C
+2°C
+1°C
0ec N
+1.2°C
hotter

Future global warming levels

1.5°C

will likely

occur

8.6 times

(4.3-10.7)

+2.0°C
hotter

2°C

will likely
occur
13.9 times
(6.9 - 16.6)

+2.7 °C
hotter

4°C

will likely
occur

39.2 times

(27.0 - 41.4)

+5.3°C
hotter

[IPCC 2021, AR6]



Change In precipitations amount

Relative change of the mean Relative change of the extrems

. 2
-40% -20 0% 20 40%
Drier Wetter

For a global mean surface temperature increase of 4°C

[IPCC AR6-WG1, ch. 11]



Sea level change
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Global surface temperature increase since

1850-1900 (°C) as a function of cumulative CO, emissions.
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How much individual feedbacks contribute to global warming
Equilibrium temperature response to a CO, doubling

multi-model mean

Direct response to the forcing
Planck response

(Dufresne & Bony, 2008)



How much individual feedbacks contribute to global warming
Equilibrium temperature response to a CO, doubling

AT (K)

Climate feedbacks: Indirect
response to the forcing

clouds

snow and ice (surface albedo)

water vapor

Direct response to the forcing

multi-model mean

Planck response

(Dufresne & Bony, 2008)



How much individual feedbacks contribute to global warming

AT (K)

multi-model mean

Normalized intermodel difference
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Internal variability and variations due to forcings

Climate variations have different origines:

o1’ o1’
% %
variation Internal Response to Response to
variability natural forcings anthropogenic forcings

Natural variability

" The relative importance of these various termes depends on the
spatial and time average considered, and on the amplitude of the
forcings

" The differences between observations and models or between
model results can include part or all of these terms, depending on
the experimental setup



Simulation of Last Glacial Maximum (LGM)

Ice sheet

———  AtMOSpheric
composition

CO2: 185 ppm
CHA4: 350 &Bb

\ Insolatio sl
21ky BP i

Greenhouse gas forcing ~ future climate
Other main forcings: ice sheet

cf. http://omip3.Isce.ipsl.fr



Change In surface temperature
Difference between 2100 and 1990 IPSL-CM5A-LR
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GMST change (°C)

Observed global mean surface temperature change
Relative to 1850-1900 using four datasets
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[IPCC, 2021]



Climate change and climate variability

50 years trend of the winter surface temperature (°C/50 years)
for an “intermediate-high scenario”. Average response.
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[Deser et al., 2014]



Climate change and climate variability
50 years trend of the Wlnter surface temperature (°C/50 years).

[Deser et al., 2014]



Elements of perspective

From warning of the risks of major climate change to forecasting and
managing the effects of these changes:

* Attributing the role of human activities on extreme climate events
* Adaptation to these changes on a local scale

* Links with related issues (biodiversity, etc.)

A few avenues for scientific development:

* Improving GCMs / ESMs

* Taking mesoscale phenomena into account

* Analysis of observations of the changing climate

* Analysis using a range of models and/or configurations with
different level complexities (including theoretical models)

e and Al !!



Www.ipcc.ch

Technical summary
Interactive atlas

Thank you for your attention
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