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Liouville pseudo-randomness

Guiding heuristic
Statistics of the completely multiplicative function A(n) := (—1)%("

Q

Statistics of random sequence of +1 and —1.

Cancellation in long sums <= Prime Number Theorem

Square-root cancellation <= Riemann Hypothesis

Z )\ X1/2+6)

n<X



Correlations of the Liouville function

Define By x f(n) i= gax S pex »(n).
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Correlations of the Liouville function

Define Ei’gx f(n):= @ anx %f(n).
Logarithmic Chowla conjecture

Fix distinct integers hy, ..., he. Then
Ig*x AMn+ ho)X(n+ h2) -+~ X(n+ he) = o(1)
ns

as X — oo.
Theorem (Tao 2016, Tao-Terdvainen, Helfgott-Radziwilt, P. 2023)
The logarithmic Chowla conjecture is true for k = 2. In fact,

E" A(n+ h)A(n + hy) < (log X) ¢
n<X

for some absolute constant ¢ > 0.

Theorem (Tao-Teravainen 2017)
The logarithmic Chowla conjecture is true for k = 3,5,7,9, ...
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Cancellation in almost all short intervals

X x+H

X 2X

Theorem (Matomaki-Radziwil-Tao 2015)
Let H= H(X) < X be a function tending to infinity with X. Then

sup > ‘ > An)e(na)

a€R y <oX Ix<n<x+H

= o(HX)

as X — oo.

Here e(na) := e*™ine,



Fourier pseudo-randomness in almost all short intervals

X x+H

X 2X

Fourier uniformity conjecture
Let H = H(X) < X be a function tending to infinity with X. Then

Z A(n)e(na)

x<n<x+H

sup = o(HX)

a€R

X<x<2X

as X — oo.
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Consequences

Fourier uniformity conjecture
Let H = H(X) < X be a function tending to infinity with X. Then
= o(HX) (%)

sup
a€R

> An)e(na)

x<n<x+H

X<x<2X

as X — oo.

To prove the logarithmic Chowla and logarithmic Sarnak conjectures, it
suffices to establish either of the following (for nilsequences):

1. (%) holds when H := (log X)¢, for all £ > 0;

2. ¢ > 0 such that (%) holds when H := exp((log X)'/2~<), and the
Helfgott-Radziwitt approach can be extended to k-point correlations.



Known results

Theorem (Walsh 2023)

The Fourier uniformity conjecture holds for intervals of length

H > exp((log X)/2+¢).

Improves earlier work by Matomaki-Radziwitt-Tao, M-R-T-Teravainen-Ziegler.



Known results

Theorem (Walsh 2023)

The Fourier uniformity conjecture holds for intervals of length

H > exp((log X)/2+¢).

Improves earlier work by Matomaki-Radziwitt-Tao, M-R-T-Teravainen-Ziegler.

Theorem (Walsh 2023)

Assuming GRH, the Fourier uniformity conjecture holds for intervals of length
H > (log X)*™)

for any given function 1(X) tending to infinity.



Theorem (P. 2025+)
The Fourier uniformity conjecture holds for intervals of length

H > exp((log X)*/*¢).



Proof ideas



General approach

Suppose that

> HX

2

X<x<2X

Z A(n)e(nay)

x<n<x+H

for some unknown real numbers (o )cex,2x]-

1. Turan—Kubilius inequality. Get local relations between frequencies.
2. Combinatorial analysis. Obtain globlal formula for the frequencies.

3. Taylor expansion. Reduction to the Matomaki-Radziwitt theorem.

10



Application of Turan—Kubilius



1. Obtain local relations

Let / C N be a discrete interval of length H.
Let f: | — C be an arbitrary 1-bounded function.
Turan—Kubilius inequality
We have
nIEI f(n) = rg% f(n) + O(9)

for “many” primes H<(®) < p < HY/2,
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1. Obtain local relations

Let / C N be a discrete interval of length H.
Let f : | — C be an arbitrary 1-bounded function.

Turan—Kubilius inequality
We have
nIE/ f(n) = nllgl f(n) + O(9)
pln

for “many” primes H<(®) < p < HY/2,

Parseval

Let S C [0,1] be a £-separated set such that, for all a € S,

E f(n)e(na)| > 1.

nel

Then |S| < 1.

11



X x+H

By Turdn—Kubilius, for some scale P = H¢, there are many pairs (x, q)
where g is a prime satisfying P < g < (1 + ¢)P, such that

xgnlgEerH A(n)e(axn) ~ xgngx+H A(n)e(axn)
qln

12



X x+H

X 2X
x/q x/q+H/P
| —

X/P 2X./P

By Turan—Kubilius, for some scale P = H€, there are many pairs (x, q)
where g is a prime satisfying P < g < (1 + ¢)P, such that
e e A(n)e(axn) =~ X@IEXJFH)\(n)e(aXn)
qln

~ — E A b .
x/q<m<x/q+H/P (m)e(axqm)

13



X x+H y y+H

. | — | —
X
x/q x/q+H/P
L M ']
e )
X/P y/p y/p+H/P 2X/P
. ) X oy H
If two such pairs (x, g) and (y, p) satisfy |- — =| < cp then
qg p

[x/q, x/q+H/P] and [y/p,y/p+ H/P]

are essentially the same interval /,

2X
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X x+H y y+H

. | — | —
X
x/q  x/q+H/P
L M ']
e )
X/P y/p y/p+H/P 2X/P
. ) X oy H
If two such pairs (x, g) and (y, p) satisfy |- — =| < cp then
qg p

x/a. x/a+ H/P] and ly/p, y/p+ H/P]
are essentially the same interval /, and
E  A(n)e(axn) =~ — EIA(m)e(axqm)
me

x<n<x+H

ygngy+H A(n)e(ayn) ~ — mIEI A(m)e(ay, pm).

2X

14



X x+H y y+H

| — | —
X 2X
x/q  x/q+H/P

L M ']
e )

X/P y/p y/p+H/P 2X/P

. ) X oy H
If two such pairs (x, g) and (y, p) satisfy Pl < cp then

x/q. x/a+ H/P] and ly/p, y/p+ H/P]
are essentially the same interval /, and
E  A(n)e(axn) =~ — EIA(m)e(axqm)
me

x<n<x+H
E ~_F -
y<n<y+H )\(n)e(ayn) méel )‘(m)e(aypm)

However, there are only O(1) frequencies 6 (up to a small error) such that

E X(m)e(6m)| > 1.

mel



Suppose that

> HX.

>

X<x<2X

Z A(n)e(nay)

x<n<x+H

Conclusion of Step 1
For some H-separated A C [X,2X] of size |A| > X/H, there are

> |A||P?

quadruples (x, y, p, q) € A% x P? satisfying

P
lpx —qy| < — and ||gax — pay || <

i
10 H

Here P is the set of primes in [P, 2P], for some P = H¢.

15



2. Combinatorial analysis




2. Combinatorial analysis

Let Y = X/H and K = H/P.
Definition

A configuration with concentration ¢ is a pair
A = (A, (ax)xea)

where A C [Y,2Y] set of integers and «a, € R (the frequencies),
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2. Combinatorial analysis

Let Y = X/H and K = H/P.
Definition
A configuration with concentration ¢ is a pair

A= (A, (O‘X)xeA)

where A C [Y,2Y] set of integers and «, € R (the frequencies), such
that there are

> 8|A|[PI?
quadruples (x, y, p, q) € A% x P? satisfying

1

‘ | < a || || <
PX q nd qo po °
YIS 10 x W= K

16



Example 1
Suppose

T
R — dl1
« - (mod 1)

for all x € A, where T is constant.

Then, whenever |px — qy| < %, we have

T(px— TP
H (P); qy)H <P

lqax — pay || ~ vz

This gives examples of configurations of concentration > 1.

17



Example 1
Suppose

T
N — dl1
« - (mod 1)

for all x € A, where T is constant.

P

Then, whenever |px — qy| < 15, we have

K =5

|| | T(px = qy) TP
qax — pay|| & || ———— V2

This gives examples of configurations of concentration > 1.

Goal: global formula

Show that the only configurations with size |A| > Y and
concentration >> 1 are given by Example 1 (and slight variants).



3. Reduction to the
Matomaki-Radziwi#t theorem




Suppose that

>

X<x<2X

Z A(n)e

x<n<x+H

(nT)‘ > HX.
X

18



Suppose that

>

X<x<2X

x<n<x+H
By a simple Taylor expansion, this implies

3 ’ S AT

X<xL2X ' x<n<x+H’

> H'X

for some H’ slightly smaller than H.

> A(n)e(nz)‘ > HX.

18



Suppose that

>

X<x<2X

> A(n)e(nz)‘ > HX.

x<n<x+H
By a simple Taylor expansion, this implies

3 ’ S AT

X<xL2X ' x<n<x+H’

> H'X

for some H’ slightly smaller than H.

But this is impossible, by the Matomaki-Radziwitt theorem.

18



Heart of the proof:
combinatorial analysis




Every ay is, on average, related to < |P|? other frequencies «,.

19



Every ay is, on average, related to < |P|? other frequencies «,.
In order to relate a, to most frequencies, need an iterative argument with

_logY
“log P

steps. We call these steps lifts (we will not define them).

19



Every ay is, on average, related to < |P|? other frequencies «,.
In order to relate a, to most frequencies, need an iterative argument with

_logY
“log P

steps. We call these steps lifts (we will not define them).
Difficulty

log Y
If every step loses a constant factor, then total loss is ~ ereP .

We can only afford to lose a factor P€, which forces

P > exp((log Y)Y/2+°(W),

19



Walsh’s iterations

Walsh proved the following dichotomy.
Key structure theorem (Walsh 2023)

Let A = (A, (a)xea) be a configuration with |A| > Y and
concentration § > 1. Then:

20
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Walsh’s iterations

Walsh proved the following dichotomy.
Key structure theorem (Walsh 2023)

Let A = (A, (ax)xea) be a configuration with |A| > Y and
concentration 6 > 1. Then:

e either A has a lift with almost no loss,

e or there is a subset A" C A of size |A’| > |A|/log Y such that the
configuration (A’, (ax)xea’) has concentration

A1 )1/2
>4 ( .
Al
Assuming the Riemann Hypothesis
Let P > (log Y)'°. Then, any configuration A = (A, (ax)xea) with

Al

density pa == v > P~ has concentration § < pa.

20



21



22



23



24



25



Relative structure theorem (P. 2025+)

Let A = (A, (ax)xea) be a configuration with |A| > P=¢Y and
concentration 6 > 1. Then:
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Relative structure theorem (P. 2025+)
Let A = (A, (ax)xea) be a configuration with |[A] > P~°Y and
concentration § > 1. Then:
e either A has a lift with almost no loss,
e or there is a subset A" C A with |A|/log Y < |A| < |A|/2 such that
the configuration (A’, (ax)xea’) has concentration
1
>0 ——— .
(log P)1~o(1)

Unconditionally (Vinogradov-Korobov)
For P = exp((log Y)?), any configuration A = (A, (ax)xea) with

A 30
concentration § > 1 has density 1 := = > exp ((log Y)'~ 2 to(),

26
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Open problems




Open problem 1

__ 2 1

Let P := exp((log Y)?) and let P be the set of primes in [P, 2P].
Let AC[Y,2Y] NN be such that

N(A) = [{(x,y,p.0) € A2 x P2 : |px — ay| < HP}| > |AIIPP.

Prove that |A| > p~0-0001y,

31



Open problem 1 (implies Open problem 2)

—_2_ _1
Let 0 = £ — 1000

Let P := exp((log Y)?) and let P be the set of primes in [P, 2P].
Let AC [Y,2Y] NN be such that

N(A) == H(X,y,p, q) € A2 x P?: |px — qy| < TIOPH > |A|IP|.

Prove that |A| > p~0.0001y,

Open problem 2

Let 6 = § 1000

Let Ag,..., AL be a partition of [Y,2Y] NN with each |A;| < Y/L.

Suppose that
L

> N(A) > Y|P

i=1

Prove that L < P0-0001

— L= Let P :=exp((log Y)?) and P C [P,2P] as above.

32



Thank youl!
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