

Improved bounds for the Fourier uniformity conjecture

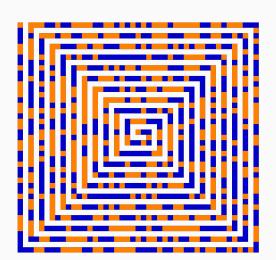
Prime numbers and arithmetic randomness – CIRM

Cédric Pilatte

23 June 2025 - Luminy

University of Oxford - Mathematical Institute

Introduction



Liouville pseudo-randomness

Guiding heuristic

Statistics of the completely multiplicative function $\lambda(n) := (-1)^{\Omega(n)}$

 \approx

Statistics of random sequence of +1 and -1.

Liouville pseudo-randomness

Guiding heuristic

Statistics of the completely multiplicative function $\lambda(n) := (-1)^{\Omega(n)}$

 \approx

Statistics of random sequence of +1 and -1.

Cancellation in long sums ← **Prime Number Theorem**

$$\sum_{n\leqslant X}\lambda(n)=o(X)$$

Liouville pseudo-randomness

Guiding heuristic

Statistics of the completely multiplicative function $\lambda(n) := (-1)^{\Omega(n)}$

 \approx

Statistics of random sequence of +1 and -1.

Cancellation in long sums ← **Prime Number Theorem**

$$\sum_{n\leqslant X}\lambda(n)=o(X)$$

Square-root cancellation \iff Riemann Hypothesis

$$\sum_{n \leq X} \lambda(n) = O(X^{1/2+\varepsilon})$$

Define
$$\mathbb{E}_{n\leqslant X}^* f(n) := \frac{1}{\log X} \sum_{n\leqslant X} \frac{1}{n} f(n)$$
.

Define
$$\mathbb{E}_{n\leqslant X}^* f(n) := \frac{1}{\log X} \sum_{n\leqslant X} \frac{1}{n} f(n)$$
.

Logarithmic Chowla conjecture

Fix distinct integers h_1, \ldots, h_k . Then

$$\mathop{\mathbb{E}^*}_{n \leqslant X} \lambda(n+h_1)\lambda(n+h_2)\cdots\lambda(n+h_k) = o(1)$$

as
$$X \to \infty$$
.

Define
$$\mathbb{E}_{n\leqslant X}^* f(n) := \frac{1}{\log X} \sum_{n\leqslant X} \frac{1}{n} f(n)$$
.

Logarithmic Chowla conjecture

Fix distinct integers h_1, \ldots, h_k . Then

$$\mathop{\mathbb{E}^*}_{n\leqslant X}\lambda(n+h_1)\lambda(n+h_2)\cdots\lambda(n+h_k)=o(1)$$

as $X \to \infty$.

Theorem (Tao 2016, Tao-Teräväinen, Helfgott-Radziwiłł, P. 2023)

The logarithmic Chowla conjecture is true for k = 2.

Define $\mathbb{E}_{n\leqslant X}^* f(n) := \frac{1}{\log X} \sum_{n\leqslant X} \frac{1}{n} f(n)$.

Logarithmic Chowla conjecture

Fix distinct integers h_1, \ldots, h_k . Then

$$\mathop{\mathbb{E}^*}_{n \leqslant X} \lambda(n+h_1)\lambda(n+h_2)\cdots\lambda(n+h_k) = o(1)$$

as $X \to \infty$.

Theorem (Tao 2016, Tao-Teräväinen, Helfgott-Radziwill, P. 2023)

The logarithmic Chowla conjecture is true for k = 2. In fact,

$$\mathop{\mathbb{E}^*}_{n\leqslant X}\lambda(n+h_1)\lambda(n+h_2)\ll (\log X)^{-c}$$

for some absolute constant c > 0.

Define $\mathbb{E}_{n\leqslant X}^* f(n) := \frac{1}{\log X} \sum_{n\leqslant X} \frac{1}{n} f(n)$.

Logarithmic Chowla conjecture

Fix distinct integers h_1, \ldots, h_k . Then

$$\underset{n \leqslant X}{\mathbb{E}^*} \lambda(n+h_1)\lambda(n+h_2)\cdots\lambda(n+h_k) = o(1)$$

as $X \to \infty$.

Theorem (Tao 2016, Tao-Teräväinen, Helfgott-Radziwiłł, P. 2023)

The logarithmic Chowla conjecture is true for k = 2. In fact,

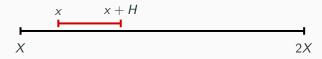
$$\mathop{\mathbb{E}^*}_{n\leqslant X}\lambda(n+h_1)\lambda(n+h_2)\ll (\log X)^{-c}$$

for some absolute constant c > 0.

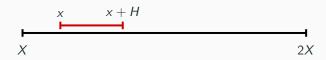
Theorem (Tao-Teräväinen 2017)

The logarithmic Chowla conjecture is true for k = 3, 5, 7, 9, ...

Cancellation in almost all short intervals



Cancellation in almost all short intervals



Theorem (Matomäki-Radziwiłł 2015)

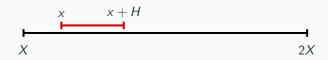
Let $H = H(X) \leqslant X$ be a function tending to infinity with X. Then

$$\sum_{X \leqslant x \leqslant 2X} \left| \sum_{x \leqslant n \leqslant x+H} \lambda(n) \right| = o(HX)$$

as $X \to \infty$.

4

Cancellation in almost all short intervals



Theorem (Matomäki-Radziwiłł-Tao 2015)

Let $H = H(X) \leqslant X$ be a function tending to infinity with X. Then

$$\sup_{\alpha \in \mathbb{R}} \sum_{X \leqslant x \leqslant 2X} \left| \sum_{x \leqslant n \leqslant x+H} \lambda(n) e(n\alpha) \right| = o(HX)$$

as $X \to \infty$.

Here $e(n\alpha) := e^{2\pi i n\alpha}$.

Fourier pseudo-randomness in almost all short intervals



Fourier uniformity conjecture

Let $H = H(X) \leq X$ be a function tending to infinity with X. Then

$$\sum_{X \leqslant x \leqslant 2X} \sup_{\alpha \in \mathbb{R}} \left| \sum_{x \leqslant n \leqslant x+H} \lambda(n) \frac{e(n\alpha)}{e(n\alpha)} \right| = o(HX)$$

as $X \to \infty$.

Consequences

Fourier uniformity conjecture

Let $H = H(X) \leqslant X$ be a function tending to infinity with X. Then

$$\left| \sum_{X \leqslant x \leqslant 2X} \sup_{\alpha \in \mathbb{R}} \left| \sum_{x \leqslant n \leqslant x + H} \lambda(n) e(n\alpha) \right| = o(HX)$$
 (\(\phi\))

as $X \to \infty$.

7

Consequences

Fourier uniformity conjecture

Let $H = H(X) \leqslant X$ be a function tending to infinity with X. Then

$$\sum_{X \leqslant x \leqslant 2X} \sup_{\alpha \in \mathbb{R}} \left| \sum_{x \leqslant n \leqslant x + H} \lambda(n) e(n\alpha) \right| = o(HX) \tag{\bigstar}$$

as $X \to \infty$.

To prove the *logarithmic Chowla* and *logarithmic Sarnak* conjectures, it suffices to establish either of the following (for nilsequences):

1. (\bigstar) holds when $H := (\log X)^{\varepsilon}$, for all $\varepsilon > 0$;

7

Consequences

Fourier uniformity conjecture

Let $H = H(X) \leq X$ be a function tending to infinity with X. Then

$$\sum_{X \leq x \leq 2X} \sup_{\alpha \in \mathbb{R}} \left| \sum_{x \leq n \leq x + H} \lambda(n) e(n\alpha) \right| = o(HX) \tag{\bigstar}$$

as $X \to \infty$.

To prove the *logarithmic Chowla* and *logarithmic Sarnak* conjectures, it suffices to establish either of the following (for nilsequences):

- 1. (\bigstar) holds when $H := (\log X)^{\varepsilon}$, for all $\varepsilon > 0$;
- 2. $\exists c > 0$ such that (\bigstar) holds when $H := \exp((\log X)^{1/2-c})$, and the Helfgott-Radziwiłł approach can be extended to k-point correlations.

Known results

Theorem (Walsh 2023)

The Fourier uniformity conjecture holds for intervals of length

$$H \geqslant \exp((\log X)^{1/2+\varepsilon}).$$

Improves earlier work by Matomäki-Radziwiłł-Tao, M-R-T-Teräväinen-Ziegler.

8

Known results

Theorem (Walsh 2023)

The Fourier uniformity conjecture holds for intervals of length

$$H \geqslant \exp((\log X)^{1/2+\varepsilon}).$$

Improves earlier work by Matomäki-Radziwiłł-Tao, M-R-T-Teräväinen-Ziegler.

Theorem (Walsh 2023)

Assuming GRH, the Fourier uniformity conjecture holds for intervals of length

$$H \geqslant (\log X)^{\psi(X)}$$

for any given function $\psi(X)$ tending to infinity.

8

Theorem (P. 2025+)

The Fourier uniformity conjecture holds for intervals of length

$$H \geqslant \exp((\log X)^{2/5+\varepsilon}).$$

Proof ideas

General approach

Suppose that

$$\sum_{X \leqslant x \leqslant 2X} \left| \sum_{x \leqslant n \leqslant x+H} \lambda(n) e(n\alpha_x) \right| \gg HX$$

for some unknown real numbers $(\alpha_x)_{x \in [X,2X]}$.

- 1. Turán-Kubilius inequality. Get local relations between frequencies.
- 2. Combinatorial analysis. Obtain globlal formula for the frequencies.
- 3. Taylor expansion. Reduction to the Matomäki-Radziwiłł theorem.

Application of Turán-Kubilius

1. Obtain local relations

Let $I \subset \mathbb{N}$ be a discrete interval of length H.

Let $f: I \to \mathbb{C}$ be an arbitrary 1-bounded function.

Turán-Kubilius inequality

We have

$$\underset{n \in I}{\mathbb{E}} f(n) = \underset{\substack{n \in I \\ p \mid n}}{\mathbb{E}} f(n) + O(\delta)$$

for "many" primes $H^{c(\delta)} \leqslant p \leqslant H^{1/2}$.

1. Obtain local relations

Let $I \subset \mathbb{N}$ be a discrete interval of length H.

Let $f: I \to \mathbb{C}$ be an arbitrary 1-bounded function.

Turán-Kubilius inequality

We have

$$\mathbb{E}_{\substack{n \in I \\ p \mid n}} f(n) = \mathbb{E}_{\substack{n \in I \\ p \mid n}} f(n) + O(\delta)$$

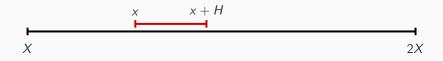
for "many" primes $H^{c(\delta)} \leqslant p \leqslant H^{1/2}$.

Parseval

Let $S \subset [0,1]$ be a $\frac{1}{H}$ -separated set such that, for all $\alpha \in S$,

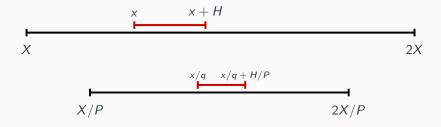
$$\left| \underset{n \in I}{\mathbb{E}} f(n)e(n\alpha) \right| \gg 1.$$

Then $|S| \ll 1$.



By Turán–Kubilius, for some scale $P=H^c$, there are many pairs (x,q) where q is a prime satisfying $P\leqslant q\leqslant (1+c)P$, such that

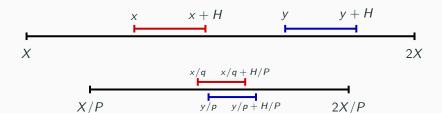
$$\underset{x \leqslant n \leqslant x + H}{\mathbb{E}} \lambda(n) e(\alpha_x n) \approx \underset{\substack{x \leqslant n \leqslant x + H \\ q \mid n}}{\mathbb{E}} \lambda(n) e(\alpha_x n)$$



By Turán–Kubilius, for some scale $P = H^c$, there are many pairs (x, q) where q is a prime satisfying $P \leq q \leq (1 + c)P$, such that

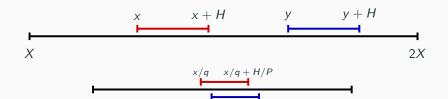
$$\mathbb{E}_{x \leqslant n \leqslant x+H} \lambda(n) e(\alpha_x n) \approx \mathbb{E}_{x \leqslant n \leqslant x+H} \lambda(n) e(\alpha_x n)$$

$$\approx - \mathbb{E}_{x/q \leqslant m \leqslant x/q+H/P} \lambda(m) e(\alpha_x q m).$$



If two such pairs
$$(x,q)$$
 and (y,p) satisfy $\left|\frac{x}{q} - \frac{y}{p}\right| \leqslant c\frac{H}{P}$, then $[x/q, x/q + H/P]$ and $[y/p, y/p + H/P]$

are essentially the same interval I,

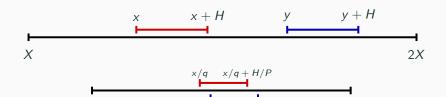


If two such pairs
$$(x,q)$$
 and (y,p) satisfy $\left|\frac{x}{q} - \frac{y}{p}\right| \leqslant c\frac{H}{P}$, then $[x/q, x/q + H/P]$ and $[y/p, y/p + H/P]$

are essentially the same interval I, and

X/P

$$\begin{cases} \mathbb{E}_{x \leqslant n \leqslant x+H} \lambda(n) e(\alpha_x n) \approx -\mathbb{E}_{m \in I} \lambda(m) e(\alpha_x q m) \\ \mathbb{E}_{y \leqslant n \leqslant y+H} \lambda(n) e(\alpha_y n) \approx -\mathbb{E}_{m \in I} \lambda(m) e(\alpha_y p m). \end{cases}$$



If two such pairs
$$(x,q)$$
 and (y,p) satisfy $\left|\frac{x}{q} - \frac{y}{p}\right| \leqslant c\frac{H}{P}$, then $[x/q, x/q + H/P]$ and $[y/p, y/p + H/P]$

are essentially the same interval I, and

X/P

$$\begin{cases} \mathbb{E}_{x \leq n \leq x+H} \lambda(n) e(\alpha_x n) \approx - \mathbb{E}_{m \in I} \lambda(m) e(\alpha_x q m) \\ \mathbb{E}_{y \leq n \leq y+H} \lambda(n) e(\alpha_y n) \approx - \mathbb{E}_{m \in I} \lambda(m) e(\alpha_y p m). \end{cases}$$

However, there are only O(1) frequencies θ (up to a small error) such that

$$\left| \underset{m \in I}{\mathbb{E}} \lambda(m) e(\theta m) \right| \gg 1.$$

Suppose that

$$\sum_{X \leqslant x \leqslant 2X} \left| \sum_{x \leqslant n \leqslant x+H} \lambda(n) e(n\alpha_x) \right| \gg HX.$$

Conclusion of Step 1

For some *H*-separated $A \subset [X, 2X]$ of size $|A| \gg X/H$, there are

$$\gg |A||\mathcal{P}|^2$$

quadruples $(x, y, p, q) \in A^2 \times \mathcal{P}^2$ satisfying

$$|px - qy| \leqslant \frac{P}{10}$$
 and $||q\alpha_x - p\alpha_y|| \leqslant \frac{P}{H}$.

Here \mathcal{P} is the set of primes in [P,2P], for some $P=H^c$.

2. Combinatorial analysis

2. Combinatorial analysis

Let
$$Y = X/H$$
 and $K = H/P$.

Definition

A configuration with concentration δ is a pair

$$\mathcal{A} = (A, (\alpha_x)_{x \in A})$$

where $A \subset [Y,2Y]$ set of integers and $\alpha_x \in \mathbb{R}$ (the frequencies),

2. Combinatorial analysis

Let
$$Y = X/H$$
 and $K = H/P$.

Definition

A configuration with concentration δ is a pair

$$\mathcal{A} = (A, (\alpha_x)_{x \in A})$$

where $A \subset [Y,2Y]$ set of integers and $\alpha_x \in \mathbb{R}$ (the frequencies), such that there are

$$\geqslant \delta |A||\mathcal{P}|^2$$

quadruples $(x, y, p, q) \in A^2 \times \mathcal{P}^2$ satisfying

$$|\mathit{px}-\mathit{qy}|\leqslant \frac{\mathit{P}}{10}\quad \text{and}\quad \|\mathit{q}\alpha_{\mathsf{x}}-\mathit{p}\alpha_{\mathsf{y}}\|\leqslant \frac{1}{\mathit{K}}.$$

Example 1

Suppose

$$\alpha_{\scriptscriptstyle X} pprox rac{T}{x} \pmod{1}$$

for all $x \in A$, where T is constant.

Then, whenever $|px - qy| \leqslant \frac{P}{10}$, we have

$$\|q\alpha_x - p\alpha_y\| \approx \left\|\frac{T(px - qy)}{xy}\right\| \ll \frac{TP}{Y^2}.$$

This gives examples of configurations of concentration $\gg 1$.

Example 1

Suppose

$$\alpha_{\mathsf{x}} pprox rac{\mathcal{T}}{\mathsf{x}} \pmod{1}$$

for all $x \in A$, where T is constant.

Then, whenever $|px - qy| \leq \frac{P}{10}$, we have

$$\|q\alpha_x - p\alpha_y\| \approx \left\|\frac{T(px - qy)}{xy}\right\| \ll \frac{TP}{Y^2}.$$

This gives examples of configurations of concentration $\gg 1$.

Goal: global formula

Show that the only configurations with size $|A| \gg Y$ and concentration $\gg 1$ are given by Example 1 (and slight variants).

3. Reduction to the

Matomäki-Radziwiłł theorem

Suppose that

$$\sum_{X\leqslant x\leqslant 2X}\left|\sum_{x\leqslant n\leqslant x+H}\lambda(n)e\left(n\frac{T}{x}\right)\right|\gg HX.$$

Suppose that

$$\sum_{X \leq x \leq 2X} \left| \sum_{x \leq n \leq x+H} \lambda(n) e\left(n\frac{T}{x}\right) \right| \gg HX.$$

By a simple Taylor expansion, this implies

$$\sum_{X \leqslant x \leqslant 2X} \left| \sum_{x \leqslant n \leqslant x + H'} \lambda(n) n^{2\pi i T} \right| \gg H' X$$

for some H' slightly smaller than H.

Suppose that

$$\sum_{X \leqslant x \leqslant 2X} \left| \sum_{x \leqslant n \leqslant x + H} \lambda(n) e\left(n \frac{T}{x}\right) \right| \gg HX.$$

By a simple Taylor expansion, this implies

$$\sum_{X \leq x \leq 2X} \left| \sum_{x \leq n \leq x + H'} \lambda(n) n^{2\pi i T} \right| \gg H' X$$

for some H' slightly smaller than H.

But this is impossible, by the Matomäki-Radziwiłł theorem.

Heart of the proof:

combinatorial analysis

Every α_x is, on average, related to $symp |\mathcal{P}|^2$ other frequencies α_y .

Every α_x is, on average, related to $\approx |\mathcal{P}|^2$ other frequencies α_y .

In order to relate $\alpha_{\rm x}$ to most frequencies, need an iterative argument with

$$imes \frac{\log Y}{\log P}$$

steps. We call these steps lifts (we will not define them).

Every α_x is, on average, related to $\approx |\mathcal{P}|^2$ other frequencies α_y .

In order to relate $\alpha_{\rm x}$ to most frequencies, need an iterative argument with

$$\simeq \frac{\log Y}{\log P}$$

steps. We call these steps lifts (we will not define them).

Difficulty

If every step loses a **constant factor**, then total loss is $\approx e^{\frac{\log Y}{\log P}}$.

We can only afford to lose a factor P^c , which forces

$$P \geqslant \exp((\log Y)^{1/2+o(1)}).$$

Walsh's iterations

Walsh proved the following dichotomy.

Key structure theorem (Walsh 2023)

Let $\mathcal{A} = (A, (\alpha_x)_{x \in A})$ be a configuration with $|A| \gg Y$ and concentration $\delta \gg 1$. Then:

Walsh's iterations

Walsh proved the following dichotomy.

Key structure theorem (Walsh 2023)

Let $A = (A, (\alpha_x)_{x \in A})$ be a configuration with $|A| \gg Y$ and concentration $\delta \gg 1$. Then:

 \bullet either \mathcal{A} has a lift with almost **no loss**,

Walsh's iterations

Walsh proved the following dichotomy.

Key structure theorem (Walsh 2023)

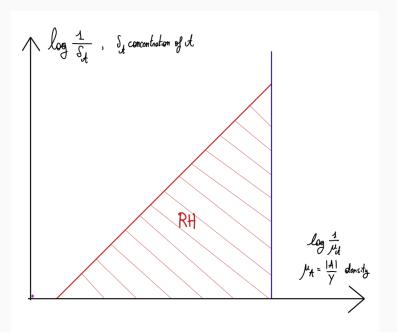
Let $\mathcal{A} = (A, (\alpha_x)_{x \in A})$ be a configuration with $|A| \gg Y$ and concentration $\delta \gg 1$. Then:

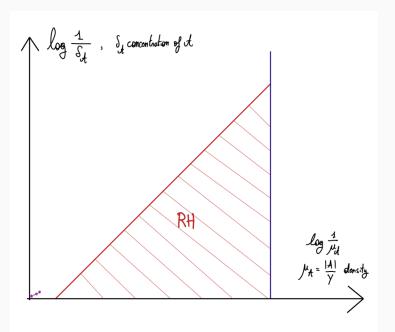
- either A has a lift with almost **no loss**,
- or there is a subset $A' \subset A$ of size $|A'| \ge |A|/\log Y$ such that the configuration $(A', (\alpha_x)_{x \in A'})$ has concentration

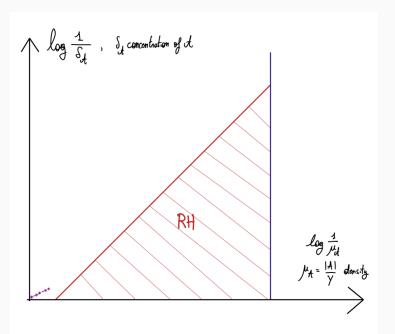
$$\geqslant \delta \left(\frac{|A'|}{|A|} \right)^{1/2}$$
.

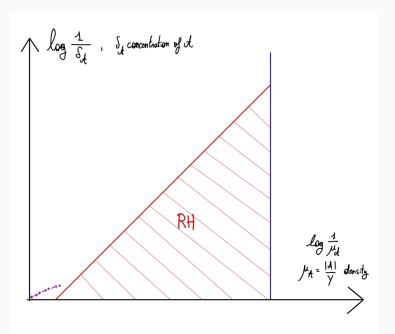
Assuming the Riemann Hypothesis

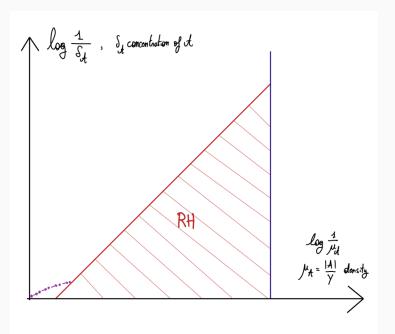
Let $P \geqslant (\log Y)^{10}$. Then, any configuration $\mathcal{A} = (A, (\alpha_x)_{x \in A})$ with density $\mu_A := \frac{|A|}{Y} \geqslant P^{-c}$ has concentration $\delta \ll \mu_A$.











New work

Relative structure theorem (P. 2025+)

Let $\mathcal{A}=(A,(\alpha_x)_{x\in\mathcal{A}})$ be a configuration with $|A|\geqslant P^{-c}Y$ and concentration $\delta\gg 1$. Then:

New work

Relative structure theorem (P. 2025+)

Let $\mathcal{A}=(A,(\alpha_{\times})_{\times\in\mathcal{A}})$ be a configuration with $|A|\geqslant P^{-c}Y$ and concentration $\delta\gg 1$. Then:

either A has a lift with almost no loss,

New work

Relative structure theorem (P. 2025+)

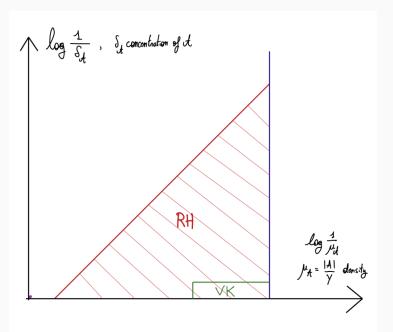
Let $\mathcal{A} = (A, (\alpha_x)_{x \in A})$ be a configuration with $|A| \geqslant P^{-c}Y$ and concentration $\delta \gg 1$. Then:

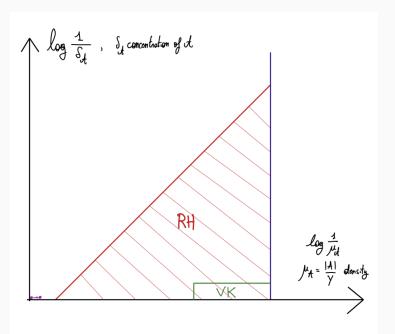
- either A has a lift with almost **no loss**,
- or there is a subset $A' \subset A$ with $|A|/\log Y \leq |A'| \leq |A|/2$ such that the configuration $(A', (\alpha_x)_{x \in A'})$ has concentration

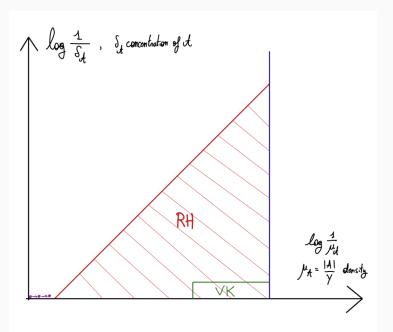
$$\geqslant \delta - \frac{1}{(\log P)^{1-o(1)}}.$$

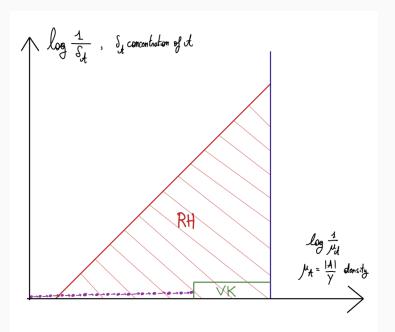
Unconditionally (Vinogradov-Korobov)

For $P = \exp((\log Y)^{\theta})$, any configuration $\mathcal{A} = (A, (\alpha_{\mathsf{x}})_{\mathsf{x} \in A})$ with concentration $\delta \gg 1$ has density $\mu_A := \frac{|A|}{Y} \geqslant \exp\left((\log Y)^{1-\frac{3\theta}{2} + o(1)}\right)$.









Open problems

Open problem 1

Let
$$\theta = \frac{2}{5} - \frac{1}{1000}$$
.

Let $P := \exp((\log Y)^{\theta})$ and let \mathcal{P} be the set of primes in [P, 2P].

Let $A \subset [Y, 2Y] \cap \mathbb{N}$ be such that

$$N(A):=\left|\left\{(x,y,p,q)\in A^2 imes \mathcal{P}^2\,:\, |px-qy|\leqslant rac{1}{10}P
ight\}\right|\gg |A||\mathcal{P}|^2.$$

Prove that $|A| \gg P^{-0.0001} Y$.

Open problem 1 (implies Open problem 2)

Let
$$\theta = \frac{2}{5} - \frac{1}{1000}$$
.

Let $P := \exp((\log Y)^{\theta})$ and let \mathcal{P} be the set of primes in [P, 2P].

Let $A \subset [Y, 2Y] \cap \mathbb{N}$ be such that

$$N(A) := \left|\left\{(x, y, p, q) \in A^2 \times \mathcal{P}^2 : |px - qy| \leqslant \frac{1}{10}P\right\}\right| \gg |A||\mathcal{P}|^2.$$

Prove that $|A| \gg P^{-0.0001} Y$.

Open problem 2

Let $\theta = \frac{2}{5} - \frac{1}{1000}$. Let $P := \exp((\log Y)^{\theta})$ and $\mathcal{P} \subset [P, 2P]$ as above.

Let A_1, \ldots, A_L be a partition of $[Y, 2Y] \cap \mathbb{N}$ with each $|A_i| \simeq Y/L$. Suppose that

$$\sum_{i=1}^{L} N(A_i) \gg Y|\mathcal{P}|^2.$$

Prove that $L \ll P^{0.0001}$.

Thank you!