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Liouville pseudo-randomness

Guiding heuristic

Statistics of the completely multiplicative function λ(n) := (−1)Ω(n)

≈

Statistics of random sequence of +1 and −1.

Cancellation in long sums ⇐⇒ Prime Number Theorem∑
n6X

λ(n) = o(X )

Square-root cancellation ⇐⇒ Riemann Hypothesis∑
n6X

λ(n) = O(X 1/2+ε)
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Correlations of the Liouville function

Define E∗n6X f (n) := 1
log X

∑
n6X

1
n f (n).

Logarithmic Chowla conjecture

Fix distinct integers h1, . . . , hk . Then

E*

n6X
λ(n + h1)λ(n + h2) · · ·λ(n + hk) = o(1)

as X →∞.

Theorem (Tao 2016, Tao-Teräväinen, Helfgott-Radziwi l l, P. 2023)

The logarithmic Chowla conjecture is true for k = 2. In fact,

E*

n6X
λ(n + h1)λ(n + h2)� (logX )−c

for some absolute constant c > 0.

Theorem (Tao-Teräväinen 2017)

The logarithmic Chowla conjecture is true for k = 3, 5, 7, 9, . . .
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Cancellation in almost all short intervals

X 2X

x x + H

Theorem (Matomäki-Radziwi l l 2015)

Let H = H(X ) 6 X be a function tending to infinity with X . Then∑
X6x62X

∣∣∣∣ ∑
x6n6x+H

λ(n)

∣∣∣∣ = o(HX )

as X →∞.
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Cancellation in almost all short intervals

X 2X

x x + H

Theorem (Matomäki-Radziwi l l-Tao 2015)

Let H = H(X ) 6 X be a function tending to infinity with X . Then

sup
α∈R

∑
X6x62X

∣∣∣∣ ∑
x6n6x+H

λ(n)e(nα)

∣∣∣∣ = o(HX )

as X →∞.

Here e(nα) := e2πinα.
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Fourier pseudo-randomness in almost all short intervals

X 2X

x x + H

Fourier uniformity conjecture

Let H = H(X ) 6 X be a function tending to infinity with X . Then∑
X6x62X

sup
α∈R

∣∣∣∣ ∑
x6n6x+H

λ(n)e(nα)

∣∣∣∣ = o(HX )

as X →∞.

6



Consequences

Fourier uniformity conjecture

Let H = H(X ) 6 X be a function tending to infinity with X . Then∑
X6x62X

sup
α∈R

∣∣∣∣ ∑
x6n6x+H

λ(n)e(nα)

∣∣∣∣ = o(HX ) (F)

as X →∞.

To prove the logarithmic Chowla and logarithmic Sarnak conjectures, it

suffices to establish either of the following (for nilsequences):

1. (F) holds when H := (logX )ε, for all ε > 0;

2. ∃c > 0 such that (F) holds when H := exp((logX )1/2−c), and the

Helfgott-Radziwi l l approach can be extended to k-point correlations.
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Known results

Theorem (Walsh 2023)

The Fourier uniformity conjecture holds for intervals of length

H > exp((logX )1/2+ε).

Improves earlier work by Matomäki-Radziwi l l-Tao, M-R-T-Teräväinen-Ziegler.

Theorem (Walsh 2023)

Assuming GRH, the Fourier uniformity conjecture holds for intervals of length

H > (logX )ψ(X )

for any given function ψ(X ) tending to infinity.
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Theorem (P. 2025+)

The Fourier uniformity conjecture holds for intervals of length

H > exp((logX )2/5+ε).
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Proof ideas



General approach

Suppose that ∑
X6x62X

∣∣∣∣ ∑
x6n6x+H

λ(n)e(nαx)

∣∣∣∣� HX

for some unknown real numbers (αx)x∈[X ,2X ].

1. Turán–Kubilius inequality. Get local relations between frequencies.

2. Combinatorial analysis. Obtain globlal formula for the frequencies.

3. Taylor expansion. Reduction to the Matomäki-Radziwi l l theorem.

10



Application of Turán–Kubilius



1. Obtain local relations

Let I ⊂ N be a discrete interval of length H.

Let f : I → C be an arbitrary 1-bounded function.

Turán–Kubilius inequality

We have

E
n∈I

f (n) = E
n∈I
p|n

f (n) + O(δ)

for “many” primes Hc(δ) 6 p 6 H1/2.

Parseval

Let S ⊂ [0, 1] be a 1
H -separated set such that, for all α ∈ S ,∣∣∣ E

n∈I
f (n)e(nα)

∣∣∣� 1.

Then |S | � 1.
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X 2X

x x + H

By Turán–Kubilius, for some scale P = Hc , there are many pairs (x , q)

where q is a prime satisfying P 6 q 6 (1 + c)P, such that

E
x6n6x+H

λ(n)e(αxn) ≈ E
x6n6x+H

q|n

λ(n)e(αxn)
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X 2X

x x + H

X/P 2X/P

x/q x/q + H/P

By Turán–Kubilius, for some scale P = Hc , there are many pairs (x , q)

where q is a prime satisfying P 6 q 6 (1 + c)P, such that

E
x6n6x+H

λ(n)e(αxn) ≈ E
x6n6x+H

q|n

λ(n)e(αxn)

≈ − E
x/q6m6x/q+H/P

λ(m)e(αxqm).
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X 2X

x x + H y y + H

X/P 2X/P

x/q x/q + H/P

y/p y/p + H/P

If two such pairs (x , q) and (y , p) satisfy

∣∣∣∣xq − y

p

∣∣∣∣ 6 c
H

P
, then

[x/q, x/q + H/P] and [y/p, y/p + H/P]

are essentially the same interval I ,

and
E

x6n6x+H
λ(n)e(αxn) ≈ − E

m∈I
λ(m)e(αxqm)

E
y6n6y+H

λ(n)e(αyn) ≈ − E
m∈I

λ(m)e(αypm).

However, there are only O(1) frequencies θ (up to a small error) such that∣∣∣ E
m∈I

λ(m)e(θm)
∣∣∣� 1.
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Suppose that ∑
X6x62X

∣∣∣∣ ∑
x6n6x+H

λ(n)e(nαx)

∣∣∣∣� HX .

Conclusion of Step 1

For some H-separated A ⊂ [X , 2X ] of size |A| � X/H, there are

� |A||P|2

quadruples (x , y , p, q) ∈ A2 × P2 satisfying

|px − qy | 6 P

10
and ‖qαx − pαy‖ 6

P

H
.

Here P is the set of primes in [P, 2P], for some P = Hc .
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2. Combinatorial analysis



2. Combinatorial analysis

Let Y = X/H and K = H/P.

Definition

A configuration with concentration δ is a pair

A = (A, (αx)x∈A)

where A ⊂ [Y , 2Y ] set of integers and αx ∈ R (the frequencies),

such

that there are

> δ|A||P|2

quadruples (x , y , p, q) ∈ A2 × P2 satisfying

|px − qy | 6 P

10
and ‖qαx − pαy‖ 6

1

K
.
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Example 1

Suppose

αx ≈
T

x
(mod 1)

for all x ∈ A, where T is constant.

Then, whenever |px − qy | 6 P
10 , we have

‖qαx − pαy‖ ≈
∥∥∥∥T (px − qy)

xy

∥∥∥∥� TP

Y 2
.

This gives examples of configurations of concentration � 1.

Goal: global formula

Show that the only configurations with size |A| � Y and

concentration � 1 are given by Example 1 (and slight variants).
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3. Reduction to the

Matomäki-Radziwi l l theorem



Suppose that ∑
X6x62X

∣∣∣∣ ∑
x6n6x+H

λ(n)e

(
n
T

x

)∣∣∣∣� HX .

By a simple Taylor expansion, this implies∑
X6x62X

∣∣∣∣ ∑
x6n6x+H′

λ(n)n2πiT

∣∣∣∣� H ′X

for some H ′ slightly smaller than H.

But this is impossible, by the Matomäki-Radziwi l l theorem.
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Heart of the proof:

combinatorial analysis



Every αx is, on average, related to � |P|2 other frequencies αy .

In order to relate αx to most frequencies, need an iterative argument with

� logY

logP

steps. We call these steps lifts (we will not define them).

Difficulty

If every step loses a constant factor, then total loss is ≈ e
log Y
log P .

We can only afford to lose a factor Pc , which forces

P > exp((logY )1/2+o(1)).
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Walsh’s iterations

Walsh proved the following dichotomy.

Key structure theorem (Walsh 2023)

Let A = (A, (αx)x∈A) be a configuration with |A| � Y and

concentration δ � 1. Then:

• either A has a lift with almost no loss,

• or there is a subset A′ ⊂ A of size |A′| > |A|/ logY such that the

configuration (A′, (αx)x∈A′) has concentration

> δ

(
|A′|
|A|

)1/2

.

Assuming the Riemann Hypothesis

Let P > (logY )10. Then, any configuration A = (A, (αx)x∈A) with

density µA :=
|A|
Y

> P−c has concentration δ � µA.

20
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New work

Relative structure theorem (P. 2025+)

Let A = (A, (αx)x∈A) be a configuration with |A| > P−cY and

concentration δ � 1. Then:

• either A has a lift with almost no loss,

• or there is a subset A′ ⊂ A with |A|/ logY 6 |A′| 6 |A|/2 such that

the configuration (A′, (αx)x∈A′) has concentration

> δ − 1

(logP)1−o(1)
.

Unconditionally (Vinogradov-Korobov)

For P = exp((logY )θ), any configuration A = (A, (αx)x∈A) with

concentration δ � 1 has density µA :=
|A|
Y

> exp
(
(logY )1− 3θ

2 +o(1)
)
.
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Open problems



Open problem 1

Let θ = 2
5 −

1
1000 .

Let P := exp((logY )θ) and let P be the set of primes in [P, 2P].

Let A ⊂ [Y , 2Y ] ∩ N be such that

N(A) :=
∣∣∣{(x , y , p, q) ∈ A2 × P2 : |px − qy | 6 1

10P
}∣∣∣� |A||P|2.

Prove that |A| � P−0.0001Y .
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Open problem 1 (implies Open problem 2)

Let θ = 2
5 −

1
1000 .

Let P := exp((logY )θ) and let P be the set of primes in [P, 2P].

Let A ⊂ [Y , 2Y ] ∩ N be such that

N(A) :=
∣∣∣{(x , y , p, q) ∈ A2 × P2 : |px − qy | 6 1

10P
}∣∣∣� |A||P|2.

Prove that |A| � P−0.0001Y .

Open problem 2

Let θ = 2
5 −

1
1000 . Let P := exp((logY )θ) and P ⊂ [P, 2P] as above.

Let A1, . . . ,AL be a partition of [Y , 2Y ] ∩ N with each |Ai | � Y /L.

Suppose that
L∑

i=1

N(Ai )� Y |P|2.

Prove that L� P0.0001.
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Thank you!
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