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Erdős and irrationality

▶ Paul Erdős was interested in problems in many different
branches of mathematics

▶ At sundry times and seasons, he thought about various
irrationality questions

▶ He was not, in the main, interested in the central questions in
irrationality

▶ Erdős: We will discuss here only special series which do not
connect up with the general theory at all but which seem
attractive to us and where often clever special methods are
needed which usually are not available in general.
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Joseph Fourier’s 1815 proof that e is irrational

▶ Assume e = a
b =

∑
n≥0

1
n!

▶ For any N ∈ N with N ≥ b, have A := N!
(
e −

∑N
n=0

1
n!

)
is

an integer

▶ Note A = N!
∑∞

n=N+1
1
n! =

1
N+1 + 1

(N+1)(N+2) + · · · ≤ 1
N

▶ If N ≥ 2, say, then A ∈ Z satisfies 0 < A < 1, contradiction!
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General principles from the proof

1. A ∈ R given by infinite series, expect A ̸∈ Q
2. If A ∈ Q, can obtain an integrality condition (rigidity)

3. If series for A converges quickly, don’t have to consider too
many terms

4. Show terms of A are too “flexible” to always satisfy rigid
integrality condition
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Conjecture on irrationality of sum-of-divisor-powers series

Conjecture (Erdős and Kac, 1953)

For positive integers k , n define σk(n) =
∑

d |n d
k . Then

αk :=
∞∑
n=1

σk(n)

n!

is irrational for every k ∈ N.

▶ Exercise: Show α1, α2 ̸∈ Q
▶ α3 independently shown, using sieve methods, to be irrational

by Schlage-Puchta and Friedlander–Luca–Stoiciu (∼ 2006)

▶ Also showed αk is irrational for every k assuming Schinzel’s
Hypothesis H, or appropriate version of prime k-tuples
conjecture
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Irrationality of α4

Theorem (P, 2023)

The number

α4 =
∞∑
n=1

σ4(n)

n!
= 42.30104 . . .

is irrational.

▶ Proof relies on sieve theory, as in previous works, but more
complicated arguments

▶ Substantial new ideas seem needed for k ≥ 5
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Ideas in the proof, I

▶ Assume α4 = a/b. For large prime p ∼ x ,

A = (p − 1)!
∑∞

n=p
σ4(n)
n! = (p − 1)!

(
α4 −

∑p−1
n=1

σ4(n)
n!

)
is an

integer.

▶ σ4(n) ≪ n4

▶ Hence

σ4(p)

p
+

σ4(p + 1)

p(p + 1)
+

σ4(p + 2)

p(p + 1)(p + 2)
+

σ4(p + 3)

p(p + 1)(p + 2)(p + 3)

is within distance ≪ x−1 of an integer.

▶ This is the rigid “integrality” condition.
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Ideas in the proof, II

▶ For θ ∈ R, write ∥θ∥ = minn∈Z |θ − n|
▶ ∥σ4(p)

p + σ4(p+1)
p(p+1) + σ4(p+2)

p(p+1)(p+2) +
σ4(p+3)

p(p+1)(p+2)(p+3)∥ ≪ x−1

▶ σ4(p)/p = p3 + p−1 = p3 + O(x−1)

▶ Impose condition: p+3
2 has no prime factors ≤ (log x)100

▶ More severe condition: p + 2 has no prime factors ≤ x1/4+ϵ

▶ Hence, for all such prime p ∼ x , have
∥σ4(p+1)

p(p+1) + 1
16∥ ≤ (log x)−100
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Ideas in the proof, III

▶ ∥σ4(p+1)
p(p+1) + 1

16∥ ≤ (log x)−100

▶ Most p ∼ x have factorization p + 1 = ℓq, where q ≈ xϵ is a
prime

▶ σ4(p+1)
p(p+1) ≈ σ4(p+1)

(p+1)2
= σ4(ℓ)σ4(q)

ℓ2q2
= σ4(ℓ)

ℓ2
(q2 + q−2)

▶ By positivity arguments and Fourier analysis, can reduce to
bounding exponential sums

∑
n∼Q e(A(n2 + n−2)) for some A

much larger than Q; here n runs over integers

▶ Conclusion: one can find primes p ∼ x for which
∥σ4(p+1)

p(p+1) + 1
16∥ ≤ (log x)−100 fails, contradiction!
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E -functions

▶ Conjecture of Erdős–Kac about αk reminiscent of Siegel
E -functions

▶ E -function: f (z) =
∑∞

n=0
an
n! z

n, where an are algebraic
integers, say, that do not grow too quickly

▶ If f satisfies suitable differential equation, results of Siegel,
Shidlovskii, many others gives relatively satisfactory
transcendence theory

▶ No such differential structure for
∑∞

n=1
σk (n)
n! zn

▶ Still, expect
∑∞

n=1
σk (n)
n! γn is transcendental for every k ∈ N

and nonzero algebraic γ

▶ Can “arithmetic” structure overcome lack of differential
structure?
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Erdős irrationality result for τ(n)

Theorem (Erdős, 1948)

Let τ(n) denote the divisor function. Then s :=
∑∞

n=1
τ(n)
2n is

irrational.

▶ Assume s = a/b. For large N ∼ x ,

A = b
∑

k≥1
τ(N+k)

2k
= b2N

(
s −

∑N
n=1

τ(n)
2n

)
is an integer.

▶ For K ≈ (log x)1/10, L ≈ 100 log x , split sum into three parts:
k ≤ K ,K < k ≤ L, k > L

▶ Choose N such that τ(N + k) ≡ 0 (mod 2k) for k ≤ K , and
τ(N + k) ≤ (log x)100 for K < k ≤ L

▶ Sum over k ≤ K is an integer, and the sum over k > K is too
small
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Erdős conjectures for other arithmetic functions

▶ Let ω(n), φ(n), σ(n) = σ1(n) be number of distinct prime
divisors of n, Euler totient of n, and sum of divisors of n

Conjecture (Erdős, 1948)

The following numbers are all irrational:

∞∑
n=1

ω(n)

2n
,

∞∑
n=1

φ(n)

2n
,

∞∑
n=1

σ(n)

2n
.

▶ Try to follow outline for τ(n): since φ(n), σ(n) ≈ n, need
strong control on many initial terms in the sum

▶ ω(n) ≈ log log n is small on average, but need “global”
information about prime factors of n, rather than only “local”
information on prime factors as with τ(N + k)
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Nesterenko’s theorem

▶ Problem with
∑∞

n=1
σ(n)
2n is solved

Theorem (Nesterenko, 1996)

Let γ be an algebraic number with 0 < |γ| < 1. Then∑∞
n=1 σ(n)γ

n is transcendental.

▶ Weight two Eisenstein series E2(z) = 1− 24
∑∞

n=1 σ(n)z
n is a

quasimodular form

▶ Ring Q[E2(z),E4(z),E6(z)] is closed under action of
differential operator z d

dz

▶ Construct auxiliary polynomial P(z ,E2(z),E4(z),E6(z)) with
large order of vanishing at z = 0

▶ Key input is deep “zero estimate” on how many zeros such a
polynomial can have
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Conditional irrationality for ω(n)

Theorem (P, 2025)

Assume a suitable version of the prime k-tuples conjecture. Then
the number

βt :=
∞∑
n=1

ω(n)

tn

is irrational for every integer t ≥ 2.

▶ For 1 ≤ i ≤ k , let Li (n) = ain + bi be linear form with
ai , bi ∈ N

▶ Need that if {L1, . . . , Lk} is “admissible,” then we have
expected asymptotic formula for number of n ≤ x with Li (n)
all prime, 1 ≤ i ≤ k

▶ Need some uniformity, so that k , ai , bi can grow with x
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Ideas in the proof, I

▶ β = βt =
∑∞

n=1
ω(n)
tn

▶ Assume β = a/b. For any N ∈ N,

A = b
∑
k≥1

ω(N + k)

tk
= btN

β −
∑
n≤N

ω(n)

tn


is an integer

▶ We choose N ∼ x . Set K ≈ 5 log log log x , L ≈ 2 log log x .
Choose N with k | N for all k ≤ K

▶ Split sum over k into three parts: k ≤ K ,K < k ≤ L, k > L

▶ Contribution from k > L is trivially O( log x
tL

)
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Ideas in the proof, II

▶ Write sum over k ≤ K as

= b
∑
k≤K

ω(N + k)

tk
= b

∑
k≤K

ω(k(Nk + 1))

tk

= b
∑
k≤K

ω(k)

tk
+ b

∑
k≤K

ω(Nk + 1)

tk

= a+ O

(
logK

tK

)
+ b

∑
k≤K

ω(Nk + 1)

tk

▶ Use prime k-tuples conjecture to find N ∼ x with N
k + 1 prime

for all k ≤ K

▶ Sum over k ≤ K is then a+ b
t−1 + O

(
logK
tK

)
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Ideas in the proof, III

▶ b
∑

k≤L
ω(N+k)

tk
is close to integer

▶ Sum over k ≤ K is a+ b
t−1 + o(1)

▶ For sum over K < k ≤ L: find N ∼ x with
ω(N + k) ≤ (log log x)2, say, for K < k ≤ L

▶ Also want ω(N + K + 1) > 1
10 log log x , say

▶ b
∑

K<k≤L
ω(N+k)

tk
= o(1), but also not too small (by lower

bound on ω(N + K + 1))

▶ Some careful analysis gives existence of integer strictly
between 0 and 1, contradiction!
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Ideas in the proof, IV

▶ Need a choice of N ∼ x such that N
k + 1 is prime for all

k ≤ K and ω(N + K + 1) > 1
10 log log x

▶ By prime k-tuples conjecture, number of N ∼ x with N
k + 1

prime for all k ≤ K is ≈ x(log x)−K

▶ Want to show ∑
N∼x

N/k+1 is prime,∀k≤K

ω(N+K+1)≤ 1
10

log log x

1 ⪅
x

(log x)K
· 1

(log x)c
,

for some constant c > 0; can do this unconditionally using
sieve theory
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G -functions

▶ Erdős problems with
∑

n≥1 a(n)t
−n are reminiscent of Siegel

G -functions

▶ G -function: f (z) =
∑∞

n=0 anz
n, where an are algebraic

integers, say, with |an| ≤ cn

▶ If f (z) satisfies suitable differential equation, then work of
Bombieri, Chudnovskys, others gives some irrationality results

▶ Currently, no transcendence results for G -functions via
Siegel’s theory

▶ No reason to expect this differential structure for most
arithmetic functions a(n)

▶ Can “arithmetic” structure overcome lack of differential
structure?
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Other Erdős questions: Are the following irrational?

∑
n≥1

φ(n)

2n
,

∑
n≥2

1

n!− 1
,

∑
n≥1

pn
2n

, (pn is n-th prime),

∑
n≥1

µ2(n)
n

2n
,

...
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Problem of a different flavor

▶ Let t ≥ 2 an integer, q ∈ Q with q ̸= −tn for any n ∈ N.
▶ Borwein (1991) showed

∑∞
n=1

1
tn+q is irrational, resolving

conjecture of Erdős and Graham (1980)

Conjecture (Stolarsky, Erdős, ≤ 1980)

Let (an) be an infinite sequence of positive integers such that∑
n

1
an

converges. There is some t ∈ N such that
∑

n
1

an+t is
irrational.

Theorem (Kovač–Tao, 2024)

There is a strictly increasing sequence of positive integers an such
that

∑
n

1
an+t converges to a rational number for all

t ∈ Q\{−a1,−a2, . . .}.
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Thank you for your attention!
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