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This talk is based on joint work with K. Soundararajan and Max
Xu.

Plan of the talk:

▶ Introduction, definitions, review of previous work

▶ A new result

▶ Why should you believe the new result?



Introduction

In 1944, Wintner constructed a random real sequence whose values
have a multiplicativity property, to model the Möbius function.

Definition 1
Let (f (p))p prime be independent Rademacher random variables
(i.e. taking values ±1 with probability 1/2 each). We define a
Rademacher random multiplicative function by setting
f (n) :=

∏
p|n f (p) for all squarefree n, and f (n) = 0 when n is not

squarefree.

Thus f (nm) = f (n)f (m) provided n,m are coprime (as for µ).
And f (n) = µ(n) = 0 if n has any non-trivial square divisors.
On squarefree n, f (n) and µ(n) take values ±1.



To model functions like n 7→ n−it or complex Dirichlet characters
χ(n), we also consider:

Definition 2
Let (f (p))p prime be independent Steinhaus random variables (i.e.
distributed uniformly on the unit circle {|z | = 1}). We define a
Steinhaus random multiplicative function by setting
f (n) :=

∏
pa||n f (p)

a for all n, where pa||n means that pa is the
highest power of p that divides n.

In the Steinhaus case, we have f (mn) = f (m)f (n) for all m, n (as
for n 7→ n−it or χ(n)).



Key probabilistic point: The values f (n) are not all independent.
For example, if we know f (2) and f (3) then f (6) = f (2)f (3) is
entirely determined.



Questions

The most obvious question to ask would seem to be:
“ What is the distribution of 1√

x

∑
n≤x f (n), as x → ∞ ? ”

In view of the classical Central Limit Theorem (although that
doesn’t apply here), one might expect the distribution to be
roughly (real or complex) Gaussian.



But in fact, we have:

Theorem 0 (H., 2020)

If f (n) is a Rademacher or Steinhaus random multiplicative
function, then uniformly for all large x and real 0 ≤ q ≤ 1 we have

E|
∑
n≤x

f (n)|2q ≍
(

x

1 + (1− q)
√
log log x

)q

.

In particular, E|
∑

n≤x f (n)| ≍
√
x

(log log x)1/4
. “Better than squareroot

cancellation”

This implies that 1√
x
E|

∑
n≤x f (n)| ≪

1
(log log x)1/4

→ 0 as x → ∞.

So 1√
x

∑
n≤x f (n) converges (in probability) to zero as x → ∞.



For the full sum, to get non-degenerate behaviour one should

actually study (log log x)1/4√
x

∑
n≤x f (n) instead of 1√

x

∑
n≤x f (n).

(“Non-trivial renormalisation”)

The problem of finding the limiting distribution of this (or even
whether one exists) remains open, although there has been
important recent progress by Gorodetsky–Wong and by S. Hardy.



“ What is the distribution of 1√
y

∑
x<n≤x+y f (n) ? ”

Here we think of the regime where y = y(x) satisfies y → ∞ as
x → ∞, but y = o(x) (growing but short intervals).

Important Note: In the classical central limit theorem (for sums
of IID random variables ϵn), there is no difference in distribution
between

∑
n≤y ϵn and

∑
x<n≤x+y ϵn.

But in the random multiplicative setting, the multiplicativity could
interact with the short interval of summation in a non-trivial way.



Known results

In the positive direction, it was known that 1√
y

∑
x<n≤x+y f (n)

does have a (non-degenerate) Gaussian limiting distribution
provided:

▶ x1/5 log x ≪ y = o( x
log x ) for f Rademacher;

(Chatterjee–Soundararajan, 2012)

▶ y → ∞ and y ≤ x
log2 log 2−1+ϵ x

for f Steinhaus;

x1/5 log x ≪ y ≤ x
log2 log 2−1+ϵ x

for f Rademacher.

(Soundararajan–Xu, 2023)



In the negative direction:

▶ using the moment bound of H., we see

1
√
y
E|

∑
x<n≤x+y

f (n)| ≤ 1
√
y
(E|

∑
n≤x+y

f (n)|+ E|
∑
n≤x

f (n)|)

≪ 1
√
y

√
x

(log log x)1/4

→ 0 as x → ∞,

provided that (x/y)√
log log x

→ 0.

▶ looking inside the proof of the moment bound, Caich (2024)
shows that 1√

yE|
∑

x<n≤x+y f (n)| → 0 provided that
log(x/y)√
log log x

→ 0.

When log(x/y)√
log log x

≫ 1, Caich shows instead that
1√
yE|

∑
x<n≤x+y f (n)| ≍ 1.



Our new result

Theorem 1 (H.–Soundararajan–Xu, in preparation)

If f (n) is a Steinhaus random multiplicative function and
x

log0.4 x
≤ y = o(x) (say), then the following is true.

▶ There exists a deterministic quantity V (x , y) such that

1√
V (x , y)

∑
x<n≤x+y

f (n)
d→ standard complex Gaussian as x → ∞.

▶ V (x , y) satisfies V (x , y) ≍ y min{1, log(x/y)√
log log x

}, and also

V (x , y) ∼ y as log(x/y)√
log log x

→ ∞.



We also have the much easier (given known results):

Theorem 2 (H.–Soundararajan–Xu, in preparation)

If f (n) is a Steinhaus or Rademacher random multiplicative
function, and δ > 0 is small, then the following is true.
If λ is large enough in terms of δ; and x is large enough in terms of
λ; and δx ≤ y ≤ x ; then

P(|
∑

x<n≤x+y

f (n)| > λ

√
y

(log log x)1/4
) ≫ 1

λC
.

Combined with results discussed earlier, this implies there is no
way to renormalise

∑
x<n≤x+y f (n) (with y ≥ δx and δ fixed) to

possibly get a non-degenerate Gaussian limit.



Remarks:

▶ Theorem 2 essentially just follows from the low moment
bounds and Hölder’s inequality, exploiting the blow-up as one
approaches the second moment.

▶ An analogue of Theorem 1 should also hold in the
Rademacher case, we may or may not include this depending
on our energy levels!

▶ You should think that one gets convergence to a Gaussian
whenever y = o(x), but the rate of convergence becomes
worse and worse the slower that x/y grows. Once x/y ≍ 1,
one can no longer have convergence to a (non-degenerate)
Gaussian.



Why should you believe Theorem 1?

For the full sum 1√
x

∑
n≤x f (n), it is fairly accurate to think the

distribution is like a Gaussian with random variance

≈ 1

log x

∫ 1

−1
|F (1/2 + it)|2dt,

where F (s) is the random Euler product corresponding to f (n) on

x-smooth numbers (e.g. F (s) =
∏

p≤x(1−
f (p)
ps )−1 in the

Steinhaus case).



▶ It turns out that the typical size of 1
log x

∫ 1
−1 |F (1/2 + it)|2dt is

≍ 1√
log log x

, hence the “better than squareroot cancellation”

for the full sum.

▶ It also turns out that the distribution of
1

log x

∫ 1
−1 |F (1/2 + it)|2dt has heavy tails, hence the overall

distribution of (log log x)1/4√
x

∑
n≤x f (n) is not Gaussian.



For the short interval sum 1√
y

∑
x<n≤x+y f (n), it is fairly accurate

to think the distribution is like a Gaussian with random variance

≈ 1

(x/y) log x

∫ (x/y)

−(x/y)
|F (1/2 + it)|2dt.

(This can be established using martingale theory + rather a lot of
work!)



▶ It turns out that the typical size of
1

(x/y) log x

∫ (x/y)
−(x/y) |F (1/2 + it)|2dt is ≍ min{1, log(x/y)√

log log x
}.

Hence the moment bounds of Caich, and the size of V (x , y)
in our theorem.

▶ Crucial Point:∫ (x/y)
−(x/y) |F (1/2 + it)|2dt ≈

∑
|n|≤x/y

∫ n+1/2
n−1/2 |F (1/2 + it)|2dt,

where the subintegrals
∫ n+1/2
n−1/2 |F (1/2 + it)|2dt are roughly

independent of one another.

So the random variance 1
(x/y) log x

∫ (x/y)
−(x/y) |F (1/2 + it)|2dt

concentrates around something deterministic (cf Law of Large
Numbers).


