
Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Formalising Noncommutative Geometry in Lean 4:
First Steps Towards Connes’ Reconstruction Theorem

Christoph Stephan

Institut für Mathematik

NCG at CIRM
April 2025

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Mathematical Data, Proof Assistants, and AI

• Explosion of accessible mathematical data (arXiv, electronic books, Lean mathlib).
• Proof assistants becoming more user-friendly (e.g., Lean 4).
• AI could help organising mathematics and translating human proofs into
machine-readable formats.

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Overview of Proof Assistants

Proof assistants have been developed in computer science to check validity of
algorithms and proofs.

What is a Proof Assistant?
• Interactive theorem prover
• Assists in developing formal proofs
• Checks correctness of logical steps
• Used in mathematics, computer science, formal verification
• Combines automated and interactive techniques

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Examples of Popular Proof Assistants

• Lean - Calculus of Constructions (type theory), developed by Microsoft Research,
user-friendly, powerful features

• Coq - Calculus of Constructions (type theory), developed by INRIA, formalizes
mathematical proofs, verifies software

• Isabelle - Higher-order logic, developed by Tobias Nipkow and Lawrence Paulson,
supports various logics, formal verification

• HOL Light - Higher-order logic, developed by Mike Gordon at Cambridge
University, verifies mathematical proofs, hardware/software

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Importance in Mathematics

• Verification of complex proofs
• Four-color theorem (1976, verified 2005 in Coq by Gonthier)
• Liquid Tensor Experiment by Scholze (Lean)

• Formalizing mathematics (focus on Lean 4)
• Perfectoid spaces by Scholze, Buzzard, Commelin, Massot
• Cap-set problem by Dahmen, Hölzl, Lewis
• Continuum hypothesis by Han, van Doorn
• PFR conjecture by Tao, Dillies, Mehta
• Fermat’s Last Theorem by Buzzard, Taylor

• Reducing human error in proofs
• Facilitating collaboration

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Lean 4
Technical features of Lean 4:

• Lean 4 is a functional programming language and interactive proof assistant.
• Lean 4 is strongly typed (every variable has a fixed type, think of integers)
• Lean 4 is based on the Calculus of Constructions (dependent type theory)
• Fully extensible: users can modify the parser, elaborator, tactics, decision
procedures, and more.

Practical features of Lean 4:
• Easily used in VS Code (via extension).
• Has a large library of formalized mathematics (mathlib).
• Has young and active community.
• Lean 4 is open source.

Lean 4 has been developed primarily by Leonardo de Moura at Microsoft Research.

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory I

”Standard” foundation of mathematics:
Set theory (ZFC) and first-order logic (predicate logic).

Curry-Howard-Lambek correspondence: Mathematical statements and proofs can
be equivalently formulated in:

• Set theory + first-order logic,
• (Dependent) type theory, or
• Category theory.

Important for Lean 4:
Curry-Howard correspondence ensures
set theory + first-order logic ⇔ dependent type theory

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory I

”Standard” foundation of mathematics:
Set theory (ZFC) and first-order logic (predicate logic).

Curry-Howard-Lambek correspondence: Mathematical statements and proofs can
be equivalently formulated in:

• Set theory + first-order logic,
• (Dependent) type theory, or
• Category theory.

Important for Lean 4:
Curry-Howard correspondence ensures
set theory + first-order logic ⇔ dependent type theory

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory II
What is type theory?

1. There are terms and types.
2. Everything is a term. Notation: a,A,U ,N,Prop, etc.
3. Terms can be types. Notation: A,B,U ,N,Prop, etc.
4. Every term has a type. Notation a : A (a has type A).
5. Rules how to construct new types from given types.

Some basics:
• If there is a term a of type A, i.e. a : A, we say that A is inhabited.
• A type inhabited by types is called a universe.

Notation: U ,Uk,Prop, etc.
• 0/1 denote the generic type with no/one element.

Note: there are more types with no/one element

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory II
What is type theory?
1. There are terms and types.

2. Everything is a term. Notation: a,A,U ,N,Prop, etc.
3. Terms can be types. Notation: A,B,U ,N,Prop, etc.
4. Every term has a type. Notation a : A (a has type A).
5. Rules how to construct new types from given types.

Some basics:
• If there is a term a of type A, i.e. a : A, we say that A is inhabited.
• A type inhabited by types is called a universe.

Notation: U ,Uk,Prop, etc.
• 0/1 denote the generic type with no/one element.

Note: there are more types with no/one element

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory II
What is type theory?
1. There are terms and types.
2. Everything is a term. Notation: a,A,U ,N,Prop, etc.

3. Terms can be types. Notation: A,B,U ,N,Prop, etc.
4. Every term has a type. Notation a : A (a has type A).
5. Rules how to construct new types from given types.

Some basics:
• If there is a term a of type A, i.e. a : A, we say that A is inhabited.
• A type inhabited by types is called a universe.

Notation: U ,Uk,Prop, etc.
• 0/1 denote the generic type with no/one element.

Note: there are more types with no/one element

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory II
What is type theory?
1. There are terms and types.
2. Everything is a term. Notation: a,A,U ,N,Prop, etc.
3. Terms can be types. Notation: A,B,U ,N,Prop, etc.

4. Every term has a type. Notation a : A (a has type A).
5. Rules how to construct new types from given types.

Some basics:
• If there is a term a of type A, i.e. a : A, we say that A is inhabited.
• A type inhabited by types is called a universe.

Notation: U ,Uk,Prop, etc.
• 0/1 denote the generic type with no/one element.

Note: there are more types with no/one element

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory II
What is type theory?
1. There are terms and types.
2. Everything is a term. Notation: a,A,U ,N,Prop, etc.
3. Terms can be types. Notation: A,B,U ,N,Prop, etc.
4. Every term has a type. Notation a : A (a has type A).

5. Rules how to construct new types from given types.
Some basics:

• If there is a term a of type A, i.e. a : A, we say that A is inhabited.
• A type inhabited by types is called a universe.

Notation: U ,Uk,Prop, etc.
• 0/1 denote the generic type with no/one element.

Note: there are more types with no/one element

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory II
What is type theory?
1. There are terms and types.
2. Everything is a term. Notation: a,A,U ,N,Prop, etc.
3. Terms can be types. Notation: A,B,U ,N,Prop, etc.
4. Every term has a type. Notation a : A (a has type A).
5. Rules how to construct new types from given types.

Some basics:
• If there is a term a of type A, i.e. a : A, we say that A is inhabited.
• A type inhabited by types is called a universe.

Notation: U ,Uk,Prop, etc.
• 0/1 denote the generic type with no/one element.

Note: there are more types with no/one element

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory II
What is type theory?
1. There are terms and types.
2. Everything is a term. Notation: a,A,U ,N,Prop, etc.
3. Terms can be types. Notation: A,B,U ,N,Prop, etc.
4. Every term has a type. Notation a : A (a has type A).
5. Rules how to construct new types from given types.

Some basics:
• If there is a term a of type A, i.e. a : A, we say that A is inhabited.

• A type inhabited by types is called a universe.
Notation: U ,Uk,Prop, etc.

• 0/1 denote the generic type with no/one element.
Note: there are more types with no/one element

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory II
What is type theory?
1. There are terms and types.
2. Everything is a term. Notation: a,A,U ,N,Prop, etc.
3. Terms can be types. Notation: A,B,U ,N,Prop, etc.
4. Every term has a type. Notation a : A (a has type A).
5. Rules how to construct new types from given types.

Some basics:
• If there is a term a of type A, i.e. a : A, we say that A is inhabited.
• A type inhabited by types is called a universe.
Notation: U ,Uk,Prop, etc.

• 0/1 denote the generic type with no/one element.
Note: there are more types with no/one element

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory II
What is type theory?
1. There are terms and types.
2. Everything is a term. Notation: a,A,U ,N,Prop, etc.
3. Terms can be types. Notation: A,B,U ,N,Prop, etc.
4. Every term has a type. Notation a : A (a has type A).
5. Rules how to construct new types from given types.

Some basics:
• If there is a term a of type A, i.e. a : A, we say that A is inhabited.
• A type inhabited by types is called a universe.
Notation: U ,Uk,Prop, etc.

• 0/1 denote the generic type with no/one element.
Note: there are more types with no/one element

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory III

Constructing types from types (a few examples)
• Function types:
Given types A,B, the function type is denoted A → B.
Construction: if f : A → B and a : A then f(a) : B.
Note: A → B is not inhabited iff A is inhabited and B is not inhabited.

• Product types:
Given types A,B, the procduct type is denoted by A × B.
Construction: if a : A and b : B then (a, b) : A × B.

• Dependent function types:
Given a type A and a universe U and B : A → U .
The dependent function type is denoted by Π(x:A)B(x).
Construction: if f : Π(x:A)B(x) and a : A then f(a) : B(a).

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Propositions and Proofs in Type Theory

Propositions as types
• Prop is the universe of all propositions (true or false).
• Propositions are types P : Prop with no or one representative.
Example: P = Fermat’s last theorem

• P : Prop is true if it is inhabited, otherwise it’s false.
• Proofs are terms proof : P but not types.
Example: P = Fermat’s last theorem is inhabited, i.e. there exists a proof.

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Overview of Dependent Type Theory

Figure: Overview from the HoTT Book

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory and Lean 4

Generically Lean 4 requires constructive proofs.
Lean’s Calculus of Constructions:
Calculus of Constructions is equivalent to ZF with intuitionistic logic.

Lean 4 can also work non-constructively, i.e. with classical logic.
Lean library for standard logic: Classical
Provides full ZFC with first order logic.

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

A ”Simple” Lean 4 Example: There are infinitely many primes

• Lean 4 uses tactics to construct
proofs.

• Tactic by starts a proof.
• Tactic show allows to show a goal
(helpful for large proofs).

• Tactic have allows to introduce a new
hypothesis.

• Tactic sorry declares a proof without
providing it.

0Formalisation from ”Mathematics in Lean”.

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Connes’ Reconstruction Theorem

Why formalising Noncommutative Geometry in Lean 4?
• Algebraic fields of mathematics are easier to formalise.
• NCG may provide back door to formalising Differential Geometry.
• Because I like NCG and want to formalise it.

The Aim: Reconstruction Theorem
Let (A,H,D) be a p-dimensional commutative spectral triple. There exist a compact
oriented Riemannian p-manifold X, a Hermitian vector bundle E → X, and an
essentially self-adjoint Dirac-type operator DE on E, such that

(A,H,D) ∼= (C∞(X), L2(X,E),DE).

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Where we stand: Functional Analysis & C∗-algebras

Definition/Theorem In mathlib
Hilbert space and bounded/self-adjoint/compact operators Yes
Compact operator and compact resolvent Yes
*-algebra and *-representation on Hilbert space Partial
GNS construction from a state on a C*-algebra No
C*-algebra and C*-norm identity Yes
Gelfand–Naimark theorem for C*-algebras Partial
Gelfand duality for commutative C*-algebras Yes
Compact operators K(H) Yes
Fredholm operators and Fredholm modules Partial
Functional calculus for self-adjoint operators Partial

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Where we stand: Smooth Manifolds & Vector Bundles

Definition/Theorem In mathlib
Smooth manifold (Hausdorff, second-countable, C∞-atlas) Yes
Algebra C∞(X) of smooth functions Yes
Complex vector bundle and smooth sections Partial
Serre–Swan theorem No
Riemannian metric on a manifold Partial
Orientation and oriented manifold No
Spin and spinc structures No
Spinor bundle from spinc structure No
Dirac-type operator on Hermitian bundle No
Spectral theorem for self-adjoint elliptic operators Partial

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Where we stand: Spectral Triples

Definition/Theorem In mathlib
Spectral triple (A,H,D) with bounded commutators No
Summability: Tr(|D|−s) < ∞ for s > p No
Dimension spectrum of a spectral triple No
Regularity: commutators with |D| densely defined No
Smooth domain of D No
H∞ =

∩
Dom(Dk) No

Finiteness: H∞ is finitely generated projective A-module No
Orientability: Hochschild p-cycle with πD(c) = γ No
Hochschild complex and Hochschild homology No
Grading γ with γD = −Dγ No
Real structure J on H No
First-order condition [[D, a], Jb∗J−1] = 0 No

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Challenges with Lean 4

• Learning curve: Lean 4 has a steep learning curve, especially for beginners.
• Precision: Everything has to be spelled out. No ”put it into coordinates and you
see...”’, ”as one easily sees...”, ”trivially...”, etc.

• Complexity: Lean 4’s syntax and semantics can be complex and difficult to
understand (although it is improving and better than in Lean 3).

• Limited libraries: Many mathematical concepts are not yet formalized in Lean 4.
• Documentation: Documentation for Lean 4 is still evolving, making it
challenging to find information.

• Searchability: Finding specific definitions or theorems in mathlib can be difficult
due to the large amount of data and naming conventions.

The iPhone-moment for Lean 4 is still to come.

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Graphical visualisation of Mathematics and Lean 4 code I

Lean blueprints: plasTeX plugin to generate graph representations of proofs

Graphical blueprint representation of the proof of Fermat’s Theorem. (K. Buzzard, R. Taylor)

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Graphical visualisation of Mathematics and Lean 4 code II

Paperproof :
• VS Code extension for Lean 4
• Graph representation of Lean 4 code
• Not interactive yet

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Current IT Project
Aim: Graph representation of mathematical texts and Lean 4 code.

• Interactive graph of definitions,
theorems & proofs

• Bidirectional sync: graph ↔ Lean code
• Nodes/edges show proof status &
presence in Lean

• Works with both math text and Lean
code

• VS Code plugin for Lean 4
• AI assistance for graph/code
generation

Graph of the reconstruction theorem.

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Resources

Lean Game Server Lean Main Lean Community

Lean mathlib Lean blueprint Paperproof

https://adam.math.hhu.de/
https://lean-lang.org/
https://leanprover-community.github.io/
https://leanprover-community.github.io/mathlib-overview.html
https://github.com/PatrickMassot/leanblueprint
https://github.com/Paper-Proof/paperproof

Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

People working on NCG in Lean 4

C. Stephan (Potsdam) J. Taylor (Potsdam)

L. Ronge (Potsdam) F. Hanisch (Potsdam)

	Introduction
	What are Proof Assistants?
	Dependent Type Theory
	Proving in Lean 4
	Formalising Noncommutative Geometry
	Developing New Tools

