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Mathematical Data, Proof Assistants, and AI

• Explosion of accessible mathematical data (arXiv, electronic books, Lean mathlib).
• Proof assistants becoming more user-friendly (e.g., Lean 4).
• AI could help organising mathematics and translating human proofs into
machine-readable formats.
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Overview of Proof Assistants

Proof assistants have been developed in computer science to check validity of
algorithms and proofs.

What is a Proof Assistant?
• Interactive theorem prover
• Assists in developing formal proofs
• Checks correctness of logical steps
• Used in mathematics, computer science, formal verification
• Combines automated and interactive techniques
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Examples of Popular Proof Assistants

• Lean - Calculus of Constructions (type theory), developed by Microsoft Research,
user-friendly, powerful features

• Coq - Calculus of Constructions (type theory), developed by INRIA, formalizes
mathematical proofs, verifies software

• Isabelle - Higher-order logic, developed by Tobias Nipkow and Lawrence Paulson,
supports various logics, formal verification

• HOL Light - Higher-order logic, developed by Mike Gordon at Cambridge
University, verifies mathematical proofs, hardware/software
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Importance in Mathematics

• Verification of complex proofs
• Four-color theorem (1976, verified 2005 in Coq by Gonthier)
• Liquid Tensor Experiment by Scholze (Lean)

• Formalizing mathematics (focus on Lean 4)
• Perfectoid spaces by Scholze, Buzzard, Commelin, Massot
• Cap-set problem by Dahmen, Hölzl, Lewis
• Continuum hypothesis by Han, van Doorn
• PFR conjecture by Tao, Dillies, Mehta
• Fermat’s Last Theorem by Buzzard, Taylor

• Reducing human error in proofs
• Facilitating collaboration



Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Lean 4
Technical features of Lean 4:

• Lean 4 is a functional programming language and interactive proof assistant.
• Lean 4 is strongly typed (every variable has a fixed type, think of integers)
• Lean 4 is based on the Calculus of Constructions (dependent type theory)
• Fully extensible: users can modify the parser, elaborator, tactics, decision
procedures, and more.

Practical features of Lean 4:
• Easily used in VS Code (via extension).
• Has a large library of formalized mathematics (mathlib).
• Has young and active community.
• Lean 4 is open source.

Lean 4 has been developed primarily by Leonardo de Moura at Microsoft Research.
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Dependent Type Theory I

”Standard” foundation of mathematics:
Set theory (ZFC) and first-order logic (predicate logic).

Curry-Howard-Lambek correspondence: Mathematical statements and proofs can
be equivalently formulated in:

• Set theory + first-order logic,
• (Dependent) type theory, or
• Category theory.

Important for Lean 4:
Curry-Howard correspondence ensures
set theory + first-order logic ⇔ dependent type theory
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Dependent Type Theory II
What is type theory?

1. There are terms and types.
2. Everything is a term. Notation: a,A,U ,N,Prop, etc.
3. Terms can be types. Notation: A,B,U ,N,Prop, etc.
4. Every term has a type. Notation a : A (a has type A).
5. Rules how to construct new types from given types.

Some basics:
• If there is a term a of type A, i.e. a : A, we say that A is inhabited.
• A type inhabited by types is called a universe.

Notation: U ,Uk,Prop, etc.
• 0/1 denote the generic type with no/one element.

Note: there are more types with no/one element
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Dependent Type Theory III

Constructing types from types (a few examples)
• Function types:
Given types A,B, the function type is denoted A → B.
Construction: if f : A → B and a : A then f(a) : B.
Note: A → B is not inhabited iff A is inhabited and B is not inhabited.

• Product types:
Given types A,B, the procduct type is denoted by A × B.
Construction: if a : A and b : B then (a, b) : A × B.

• Dependent function types:
Given a type A and a universe U and B : A → U .
The dependent function type is denoted by Π(x:A)B(x).
Construction: if f : Π(x:A)B(x) and a : A then f(a) : B(a).
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Propositions and Proofs in Type Theory

Propositions as types
• Prop is the universe of all propositions (true or false).
• Propositions are types P : Prop with no or one representative.
Example: P = Fermat’s last theorem

• P : Prop is true if it is inhabited, otherwise it’s false.
• Proofs are terms proof : P but not types.
Example: P = Fermat’s last theorem is inhabited, i.e. there exists a proof.
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Overview of Dependent Type Theory

Figure: Overview from the HoTT Book



Introduction What are Proof Assistants? Dependent Type Theory Proving in Lean 4 Formalising Noncommutative Geometry Developing New Tools

Dependent Type Theory and Lean 4

Generically Lean 4 requires constructive proofs.
Lean’s Calculus of Constructions:
Calculus of Constructions is equivalent to ZF with intuitionistic logic.

Lean 4 can also work non-constructively, i.e. with classical logic.
Lean library for standard logic: Classical
Provides full ZFC with first order logic.
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A ”Simple” Lean 4 Example: There are infinitely many primes

• Lean 4 uses tactics to construct
proofs.

• Tactic by starts a proof.
• Tactic show allows to show a goal
(helpful for large proofs).

• Tactic have allows to introduce a new
hypothesis.

• Tactic sorry declares a proof without
providing it.

0Formalisation from ”Mathematics in Lean”.
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Connes’ Reconstruction Theorem

Why formalising Noncommutative Geometry in Lean 4?
• Algebraic fields of mathematics are easier to formalise.
• NCG may provide back door to formalising Differential Geometry.
• Because I like NCG and want to formalise it.

The Aim: Reconstruction Theorem
Let (A,H,D) be a p-dimensional commutative spectral triple. There exist a compact
oriented Riemannian p-manifold X, a Hermitian vector bundle E → X, and an
essentially self-adjoint Dirac-type operator DE on E, such that

(A,H,D) ∼= (C∞(X), L2(X,E),DE).
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Where we stand: Functional Analysis & C∗-algebras

Definition/Theorem In mathlib
Hilbert space and bounded/self-adjoint/compact operators Yes
Compact operator and compact resolvent Yes
*-algebra and *-representation on Hilbert space Partial
GNS construction from a state on a C*-algebra No
C*-algebra and C*-norm identity Yes
Gelfand–Naimark theorem for C*-algebras Partial
Gelfand duality for commutative C*-algebras Yes
Compact operators K(H) Yes
Fredholm operators and Fredholm modules Partial
Functional calculus for self-adjoint operators Partial
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Where we stand: Smooth Manifolds & Vector Bundles

Definition/Theorem In mathlib
Smooth manifold (Hausdorff, second-countable, C∞-atlas) Yes
Algebra C∞(X) of smooth functions Yes
Complex vector bundle and smooth sections Partial
Serre–Swan theorem No
Riemannian metric on a manifold Partial
Orientation and oriented manifold No
Spin and spinc structures No
Spinor bundle from spinc structure No
Dirac-type operator on Hermitian bundle No
Spectral theorem for self-adjoint elliptic operators Partial
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Where we stand: Spectral Triples

Definition/Theorem In mathlib
Spectral triple (A,H,D) with bounded commutators No
Summability: Tr(|D|−s) < ∞ for s > p No
Dimension spectrum of a spectral triple No
Regularity: commutators with |D| densely defined No
Smooth domain of D No
H∞ =

∩
Dom(Dk) No

Finiteness: H∞ is finitely generated projective A-module No
Orientability: Hochschild p-cycle with πD(c) = γ No
Hochschild complex and Hochschild homology No
Grading γ with γD = −Dγ No
Real structure J on H No
First-order condition [[D, a], Jb∗J−1] = 0 No
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Challenges with Lean 4

• Learning curve: Lean 4 has a steep learning curve, especially for beginners.
• Precision: Everything has to be spelled out. No ”put it into coordinates and you
see...”’, ”as one easily sees...”, ”trivially...”, etc.

• Complexity: Lean 4’s syntax and semantics can be complex and difficult to
understand (although it is improving and better than in Lean 3).

• Limited libraries: Many mathematical concepts are not yet formalized in Lean 4.
• Documentation: Documentation for Lean 4 is still evolving, making it
challenging to find information.

• Searchability: Finding specific definitions or theorems in mathlib can be difficult
due to the large amount of data and naming conventions.

The iPhone-moment for Lean 4 is still to come.
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Graphical visualisation of Mathematics and Lean 4 code I

Lean blueprints: plasTeX plugin to generate graph representations of proofs

Graphical blueprint representation of the proof of Fermat’s Theorem. (K. Buzzard, R. Taylor)
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Graphical visualisation of Mathematics and Lean 4 code II

Paperproof :
• VS Code extension for Lean 4
• Graph representation of Lean 4 code
• Not interactive yet
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Current IT Project
Aim: Graph representation of mathematical texts and Lean 4 code.

• Interactive graph of definitions,
theorems & proofs

• Bidirectional sync: graph ↔ Lean code
• Nodes/edges show proof status &
presence in Lean

• Works with both math text and Lean
code

• VS Code plugin for Lean 4
• AI assistance for graph/code
generation

Graph of the reconstruction theorem.
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Resources

Lean Game Server Lean Main Lean Community

Lean mathlib Lean blueprint Paperproof

https://adam.math.hhu.de/
https://lean-lang.org/
https://leanprover-community.github.io/
https://leanprover-community.github.io/mathlib-overview.html
https://github.com/PatrickMassot/leanblueprint
https://github.com/Paper-Proof/paperproof
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People working on NCG in Lean 4

C. Stephan (Potsdam) J. Taylor (Potsdam)

L. Ronge (Potsdam) F. Hanisch (Potsdam)
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