Thue choice number and the counting argument

Matthieu Rosenfeld

February 25, 2024

A square is a non-empty word of the form uu. The period of uu is |u|A word is square-free if none of its factor is a square.

A square is a non-empty word of the form *uu*. The period of *uu* is |*u*| A word is square-free if none of its factor is a square. *abcabc* is a square. A square is a non-empty word of the form *uu*. The period of *uu* is |*u*| A word is square-free if none of its factor is a square. *abcabc* is a square. *babcbcabc* is not square-free. A square is a non-empty word of the form *uu*. The period of *uu* is |*u*| A word is square-free if none of its factor is a square. *abcabc* is a square. *ba<u>bcbc</u>abc* is not square-free.

abcacbac is square-free.

The starting point of combinatorics on words.

Theorem (Thue, 1906)

There exists arbitrarily long square-free words over $\{0, 1, 2\}$.

The starting point of combinatorics on words.

Theorem (Thue, 1906)

There exists arbitrarily long square-free words over $\{0, 1, 2\}$.

Many generalizations or variations were studied:

- Cubes, 4th powers, fractional powers,
- patterns, formulas (ABABA),
- k-abelian powers, k-binomial powers, additive powers, antipowers,
- nonrepetitive colorings of graphs (or other objects).

• ...

Fix a sequence of alphabet $(A_i)_{i \in \mathbb{N}}$

A word $w = w_1 \dots w_n$ respects $(A_i)_{i \in \mathbb{N}}$ if for all $i, w_i \in A_i$

Fix a sequence of alphabet $(A_i)_{i \in \mathbb{N}}$

A word $w = w_1 \dots w_n$ respects $(A_i)_{i \in \mathbb{N}}$ if for all $i, w_i \in A_i$

```
If w is infinite, we write w \in \prod_i A_i
```

Fix a sequence of alphabet $(A_i)_{i \in \mathbb{N}}$

A word $w = w_1 \dots w_n$ respects $(A_i)_{i \in \mathbb{N}}$ if for all $i, w_i \in A_i$

If w is infinite, we write $w \in \prod A_i$

Alphabets:
$$\begin{cases} 0\\1\\2 \end{cases} \quad \begin{cases} 0\\2\\3 \end{cases} \quad \begin{cases} 1\\2\\3 \end{cases} \quad \begin{cases} 0\\1\\3 \end{cases} \quad \begin{cases} 0\\1\\3 \end{cases} \quad \begin{cases} 0\\2\\3 \end{cases} \quad \begin{cases} 0\\1\\2 \end{cases} \quad \ldots$$

Fix a sequence of alphabet $(A_i)_{i \in \mathbb{N}}$

A word $w = w_1 \dots w_n$ respects $(A_i)_{i \in \mathbb{N}}$ if for all $i, w_i \in A_i$

If w is infinite, we write $w \in \prod A_i$

Alphabets:
$$\begin{pmatrix} 0\\1\\2 \end{pmatrix}$$
 $\begin{pmatrix} 0\\2\\3 \end{pmatrix}$ $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ $\begin{pmatrix} 0\\1\\3 \end{pmatrix}$ $\begin{pmatrix} 0\\2\\3 \end{pmatrix}$ $\begin{pmatrix} 0\\1\\2 \end{pmatrix}$...word:021302...

Fix a sequence of alphabet $(A_i)_{i \in \mathbb{N}}$

A word $w = w_1 \dots w_n$ respects $(A_i)_{i \in \mathbb{N}}$ if for all $i, w_i \in A_i$

If w is infinite, we write $w \in \prod A_i$

Alphabets:
$$\begin{pmatrix} 0\\1\\2 \end{pmatrix}$$
 $\begin{pmatrix} 0\\2\\3 \end{pmatrix}$ $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ $\begin{pmatrix} 0\\1\\3 \end{pmatrix}$ $\begin{pmatrix} 0\\2\\3 \end{pmatrix}$ $\begin{pmatrix} 0\\1\\2 \end{pmatrix}$...word:021302...

Question

Does there exists $k \in \mathbb{N}$, such that:

 $\forall i, |\mathsf{A}_i| \geq k \implies$ there exists a square-free word $w \in \prod_i \mathsf{A}_i$

Fix a sequence of alphabet $(A_i)_{i \in \mathbb{N}}$

A word $w = w_1 \dots w_n$ respects $(A_i)_{i \in \mathbb{N}}$ if for all $i, w_i \in A_i$

If w is infinite, we write $w \in \prod A_i$

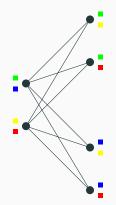
Alphabets:
$$\begin{pmatrix} 0\\1\\2 \end{pmatrix}$$
 $\begin{pmatrix} 0\\2\\3 \end{pmatrix}$ $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ $\begin{pmatrix} 0\\1\\3 \end{pmatrix}$ $\begin{pmatrix} 0\\2\\3 \end{pmatrix}$ $\begin{pmatrix} 0\\1\\2 \end{pmatrix}$...word:021302...

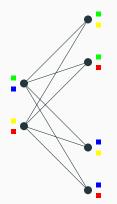
Question

Does there exists $k \in \mathbb{N}$, such that:

 $\forall i, |A_i| \ge k \implies$ there exists a square-free word $w \in \prod A_i$

The Thue choice number is the smallest such k.





We have graphs with $\chi(G) = 2$ and $\chi_{ch}(G)$ arbitrarily large.

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))

Let $(A_i)_{i\in\mathbb{N}}$ be a sequence of lists such that for all i, $|A_i| \ge 4$. Then there are square-free words in $\prod A_i$.

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))

Let $(A_i)_{i \in \mathbb{N}}$ be a sequence of lists such that for all i, $|A_i| \ge 4$. Then there are square-free words in $\prod_i A_i$.

We show instead a stronger result.

Fix $(A_i)_{i \in \mathbb{N}}$. Let C_n be the set of square-free words of length n that respect $(A_i)_{i \in \mathbb{N}}$.

Lemma

For any integer n,

 $|C_{n+1}| \geq 2|C_n|.$

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))

Let $(A_i)_{i \in \mathbb{N}}$ be a sequence of lists such that for all i, $|A_i| \ge 4$. Then there are square-free words in $\prod_i A_i$.

We show instead a stronger result.

Fix $(A_i)_{i \in \mathbb{N}}$. Let C_n be the set of square-free words of length n that respect $(A_i)_{i \in \mathbb{N}}$.

Lemma

For any integer n,

 $|C_{n+1}| \geq 2|C_n|.$

$$\implies |C_n| \ge 2^n \ge 1.$$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \leq \frac{|C_n|}{2^j}$.

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$,

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}|$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}|$

By the induction hypothesis, for all $j \in \{0, \dots, n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}|$

For all *i*, let B_i be the set of words from B that end with a square of period *i*.

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}|$

For all *i*, let \mathcal{B}_i be the set of words from \mathcal{B} that end with a square of period *i*. Then $\mathcal{B} = \bigcup_{i \ge 1} \mathcal{B}_i$ and $|\mathcal{B}| \le \sum_{i \ge 1} |\mathcal{B}_i|$.

By the induction hypothesis, for all $j \in \{0, \dots, n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}| \ge 4|C_n| - \sum_{i\ge 1} |\mathcal{B}_i|$

For all *i*, let \mathcal{B}_i be the set of words from \mathcal{B} that end with a square of period *i*. Then $\mathcal{B} = \bigcup_{i \ge 1} \mathcal{B}_i$ and $|\mathcal{B}| \le \sum_{i \ge 1} |\mathcal{B}_i|$.

By the induction hypothesis, for all $j \in \{0, \dots, n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}| \ge 4|C_n| - \sum_{i\ge 1} |\mathcal{B}_i|$

For all *i*, let \mathcal{B}_i be the set of words from \mathcal{B} that end with a square of period *i*. Then $\mathcal{B} = \bigcup_{i \ge 1} \mathcal{B}_i$ and $|\mathcal{B}| \le \sum_{i \ge 1} |\mathcal{B}_i|$.

For all $w \in \mathcal{B}_i$,

$$w \in \mathcal{B}_i$$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}| \ge 4|C_n| - \sum_{i\ge 1} |\mathcal{B}_i|$

For all *i*, let \mathcal{B}_i be the set of words from \mathcal{B} that end with a square of period *i*. Then $\mathcal{B} = \bigcup_{i \ge 1} \mathcal{B}_i$ and $|\mathcal{B}| \le \sum_{i \ge 1} |\mathcal{B}_i|$. For all $w \in \mathcal{B}_i$, $w \in \mathcal{B}_i$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}| \ge 4|C_n| - \sum_{i\ge 1} |\mathcal{B}_i|$

For all *i*, let \mathcal{B}_i be the set of words from \mathcal{B} that end with a square of period *i*. Then $\mathcal{B} = \bigcup_{i \ge 1} \mathcal{B}_i$ and $|\mathcal{B}| \le \sum_{i \ge 1} |\mathcal{B}_i|$. For all $w \in \mathcal{B}_i$, $w \in \mathcal{B}_i$

 $v \in C_{n+1-i}$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}| \ge 4|C_n| - \sum_{i\ge 1} |\mathcal{B}_i|$

For all *i*, let \mathcal{B}_i be the set of words from \mathcal{B} that end with a square of period *i*. Then $\mathcal{B} = \bigcup_{i \ge 1} \mathcal{B}_i$ and $|\mathcal{B}| \le \sum_{i \ge 1} |\mathcal{B}_i|$. For all $w \in \mathcal{B}_i$, $|\mathcal{B}_i| \le |C_{n+1-i}|$

 $v \in C_{n+1-i}$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \leq \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \geq 4|C_n| - |\mathcal{B}| \geq 4|C_n| - \sum_{i\geq 1} |\mathcal{B}_i|$

For all *i*, let \mathcal{B}_i be the set of words from \mathcal{B} that end with a square of period *i*. Then $\mathcal{B} = \bigcup_{i \ge 1} \mathcal{B}_i$ and $|\mathcal{B}| \le \sum_{i \ge 1} |\mathcal{B}_i|$. For all $w \in \mathcal{B}_i$, $|\mathcal{B}_i| \le |C_{n+1-i}| \le \frac{|C_n|}{2^{i-1}}$. $w \in C_{n+1-i}$

By the induction hypothesis, for all $j \in \{0, \dots, n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}| \ge 4|C_n| - \sum_{i\ge 1} |\mathcal{B}_i|$

For all *i*, let \mathcal{B}_i be the set of words from \mathcal{B} that end with a square of period *i*. Then $\mathcal{B} = \bigcup_{i \ge 1} \mathcal{B}_i$ and $|\mathcal{B}| \le \sum_{i \ge 1} |\mathcal{B}_i|$. For all $w \in \mathcal{B}_i$, $|\mathcal{B}_i| \le |\mathcal{C}_{n+1-i}| \le \frac{|\mathcal{C}_n|}{2^{i-1}}$. $w \in \mathcal{C}_{n+1-i}$

Finally,

$$|\mathsf{C}_{n+1}| \geq 4|\mathsf{C}_n| - \sum_{i \geq 1} |\mathcal{B}_i|$$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}| \ge 4|C_n| - \sum_{i>1} |\mathcal{B}_i|$

For all *i*, let \mathcal{B}_i be the set of words from \mathcal{B} that end with a square of period *i*. Then $\mathcal{B} = \bigcup_{i \ge 1} \mathcal{B}_i$ and $|\mathcal{B}| \le \sum_{i \ge 1} |\mathcal{B}_i|$. For all $w \in \mathcal{B}_i$, $|\mathcal{B}_i| \le |\mathcal{C}_{n+1-i}| \le \frac{|\mathcal{C}_n|}{2^{i-1}}$. $w \in \mathcal{C}_{n+1-i}$

Finally,

$$|C_{n+1}| \ge 4|C_n| - \sum_{i \ge 1} |\mathcal{B}_i| \ge 4|C_n| - \sum_{i \ge 1} \frac{|C_n|}{2^{i-1}}$$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}| \ge 4|C_n| - \sum_{i\ge 1} |\mathcal{B}_i|$

For all *i*, let \mathcal{B}_i be the set of words from \mathcal{B} that end with a square of period *i*. Then $\mathcal{B} = \bigcup_{i \ge 1} \mathcal{B}_i$ and $|\mathcal{B}| \le \sum_{i \ge 1} |\mathcal{B}_i|$. For all $w \in \mathcal{B}_i$, $|\mathcal{B}_i| \le |\mathcal{C}_{n+1-i}| \le \frac{|\mathcal{C}_n|}{2^{i-1}}$. $w \in \mathcal{B}_i$

Finally,

$$|C_{n+1}| \ge 4|C_n| - \sum_{i \ge 1} |\mathcal{B}_i| \ge 4|C_n| - \sum_{i \ge 1} \frac{|C_n|}{2^{i-1}} = |C_n| \left(4 - \sum_{i \ge 0} 2^{-i}\right)$$

The proof by induction that for all n, $|C_{n+1}| \ge 2|C_n|$

By the induction hypothesis, for all $j \in \{0, \dots, n\}$, $|C_{n-j}| \le \frac{|C_n|}{2^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A_{n+1}\} \setminus C_{n+1}$, then $|C_{n+1}| = |A_{n+1}| \cdot |C_n| - |\mathcal{B}| \ge 4|C_n| - |\mathcal{B}| \ge 4|C_n| - \sum_{i>1} |\mathcal{B}_i|$

For all *i*, let \mathcal{B}_i be the set of words from \mathcal{B} that end with a square of period *i*. Then $\mathcal{B} = \bigcup_{i \ge 1} \mathcal{B}_i$ and $|\mathcal{B}| \le \sum_{i \ge 1} |\mathcal{B}_i|$. For all $w \in \mathcal{B}_i$, $|\mathcal{B}_i| \le |\mathcal{C}_{n+1-i}| \le \frac{|\mathcal{C}_n|}{2^{i-1}}$. $w \in \mathcal{B}_i$

$$|C_{n+1}| \ge 4|C_n| - \sum_{i \ge 1} |\mathcal{B}_i| \ge 4|C_n| - \sum_{i \ge 1} \frac{|C_n|}{2^{i-1}} = |C_n| \left(4 - \sum_{i \ge 0} 2^{-i}\right) \ge 2|C_n| \quad \Box$$

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))

 $orall i, |\mathsf{A}_i| \geq$ 4 \implies there exists a square-free word w $\in \prod \mathsf{A}_i$

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))

$$orall i, |\mathsf{A}_i| \geq$$
 4 \implies there exists a square-free word w $\in \prod \mathsf{A}_i$

Question

Is the following true ?

$$orall i, |\mathsf{A}_i| \geq$$
 3 \implies there exists a square-free word $w \in \prod_i \mathsf{A}_i$

The main reason for which the proof is not sharp is this bound

$$|\mathcal{B}_i| \leq \frac{|\mathcal{C}_n|}{2^{i-1}}$$

The main reason for which the proof is not sharp is this bound

$$|\mathcal{B}_i| \leq \frac{|\mathcal{C}_n|}{2^{i-1}}$$

For large *i*, it doesn't really matter since the bound is really small anyway.

The main reason for which the proof is not sharp is this bound

$$|\mathcal{B}_i| \leq \frac{|\mathcal{C}_n|}{2^{i-1}}$$

For large *i*, it doesn't really matter since the bound is really small anyway.

How to improve the bound for small *i*?

Compute the growth rate α_{ℓ} of the language of words without squares of period less than ℓ and hope for something like:

$$|C_{n+1}| \gtrsim \alpha_{\ell} |C_n| - \sum_{i \geq \ell} |\mathcal{B}_i|$$

$$\widehat{C_n} := \sum_{w \in C_n} \text{weight of } w$$

$$\widehat{C_n} := \sum_{w \in C_n} \text{weight of } w$$

such that

$$\widehat{C_{n+1}} \ge \alpha_{\ell} \widehat{C_n} - \sum_{i \ge \ell} \widehat{\mathcal{B}}_i$$

$$\widehat{C_n} := \sum_{w \in C_n} \text{weight of } w$$

such that

$$\widehat{C_{n+1}} \ge \alpha_{\ell} \widehat{C_n} - \sum_{i \ge \ell} \widehat{\mathcal{B}}_i$$

- α_ℓ is the spectral radius of the automaton,
- the weight function is given by the associated eigenvector,
- we can bound $\widehat{\mathcal{B}}_i$ with some bijection.

$$\widehat{C_n} := \sum_{w \in C_n} \text{weight of } w$$

such that

$$\widehat{C_{n+1}} \ge \alpha_{\ell} \widehat{C_n} - \sum_{i \ge \ell} \widehat{\mathcal{B}}_i$$

- α_ℓ is the spectral radius of the automaton,
- the weight function is given by the associated eigenvector,
- we can bound $\widehat{\mathcal{B}}_i$ with some bijection.

A similar idea was used by Kolpakov, Rao, Shur to obtain bounds on the growth of power-free languages

Theorem (Rosenfeld, 2023)

Let $(A_i)_{i\in\mathbb{N}}$ be a sequence of lists such that

- for all i, $|A_i| \ge 3$
- and for all i, $A_i \subseteq \{0, 1, 2, 3\}$.

Then there are square-free words in $\prod A_i$.

Theorem (Rosenfeld, 2023)

Let $(A_i)_{i\in\mathbb{N}}$ be a sequence of lists such that

- for all i, $|A_i| \ge 3$
- and for all i, $A_i \subseteq \{0, 1, 2, 3\}$.

Then there are square-free words in $\prod A_i$.

Relies on the computation of the automaton recognizing words over $\{0, 1, 2, 3\}$ that do not contain squares of period less than 22.

(854683883 states, 70GB in memory, 2 hours of computation)

Theorem (Rosenfeld, 2023)

Let $(A_i)_{i\in\mathbb{N}}$ be a sequence of lists such that

- for all i, $|A_i| \ge 3$
- and for all i, $A_i \subseteq \{0, 1, 2, 3\}$.

Then there are square-free words in $\prod A_i$.

Relies on the computation of the automaton recognizing words over $\{0, 1, 2, 3\}$ that do not contain squares of period less than 22.

(854683883 states, 70GB in memory, 2 hours of computation)

A rough estimation seems to indicate that 10^7 GB or memory should be enough to remove the second condition on A_i (under the hypothesis that the growth rate is the same)

Other application of this proof technique

A generic sufficient condition for avoidability

Theorem

Let A be an alphabet and F be a set of forbiden factors over A. Suppose that there exists a positive real x such that

$$|\mathcal{A}| - \sum_{f \in \mathcal{F}} x^{1-|f|} \ge x \,,$$

then there exists arbitrarily long words over A that avoid F.

A generic sufficient condition for avoidability

Theorem

Let \mathcal{A} be an alphabet and \mathcal{F} be a set of forbiden factors over \mathcal{A} . Suppose that there exists a positive real x such that

$$|\mathcal{A}| - \sum_{f \in \mathcal{F}} x^{1-|f|} \ge x \,,$$

then there exists arbitrarily long words over \mathcal{A} that avoid \mathcal{F} .

Fix \mathcal{A} and \mathcal{F} .

For any *n*, let C_n be the set of words of length *n* over A that avoid F.

Lemma

Under the Theorem hypothesis, for all $n \in \mathbb{N}$,

 $|\mathcal{C}_{n+1}| \geq x \cdot |\mathcal{C}_n|.$

$$\implies |\mathcal{C}_n| \ge x^n$$

By the induction hypothesis, for all
$$j \in \{0, ..., n\}$$
, $|\mathcal{C}_{n-j}| \leq \frac{|\mathcal{C}_n|}{x^j}$.

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{x^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in A\} \setminus C_{n+1}$,

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|\mathcal{C}_{n-j}| \leq \frac{|\mathcal{C}_n|}{x^j}$. Let $\mathcal{B} = \{ua : u \in \mathcal{C}_n, a \in \mathcal{A}\} \setminus \mathcal{C}_{n+1}$, then $|\mathcal{C}_{n+1}| = |\mathcal{A}| \cdot |\mathcal{C}_n| - |\mathcal{B}|$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{\chi^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in \mathcal{A}\} \setminus C_{n+1}$, then $|C_{n+1}| = |\mathcal{A}| \cdot |C_n| - |\mathcal{B}|$

For any $f \in \mathcal{B}$, let \mathcal{B}_f be the set of words from \mathcal{B} that ends with an occurence of f.

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|C_{n-j}| \le \frac{|C_n|}{x^j}$. Let $\mathcal{B} = \{ua : u \in C_n, a \in \mathcal{A}\} \setminus C_{n+1}$, then $|C_{n+1}| = |\mathcal{A}| \cdot |C_n| - |\mathcal{B}|$

For any $f \in \mathcal{B}$, let \mathcal{B}_f be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B} = \bigcup_{f \in \mathcal{F}} \mathcal{B}_f$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$.

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|\mathcal{C}_{n-j}| \leq \frac{|\mathcal{C}_n|}{x^j}$. Let $\mathcal{B} = \{ua : u \in \mathcal{C}_n, a \in \mathcal{A}\} \setminus \mathcal{C}_{n+1}$, then $|\mathcal{C}_{n+1}| = |\mathcal{A}| \cdot |\mathcal{C}_n| - |\mathcal{B}| \geq |\mathcal{A}| \cdot |\mathcal{C}_n| - \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$

For any $f \in \mathcal{B}$, let \mathcal{B}_f be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B} = \bigcup_{f \in \mathcal{F}} \mathcal{B}_f$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$.

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|\mathcal{C}_{n-j}| \leq \frac{|\mathcal{C}_n|}{x^j}$. Let $\mathcal{B} = \{ua : u \in \mathcal{C}_n, a \in \mathcal{A}\} \setminus \mathcal{C}_{n+1}$, then $|\mathcal{C}_{n+1}| = |\mathcal{A}| \cdot |\mathcal{C}_n| - |\mathcal{B}| \geq |\mathcal{A}| \cdot |\mathcal{C}_n| - \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$

For any $f \in \mathcal{B}$, let \mathcal{B}_f be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B} = \bigcup_{f \in \mathcal{F}} \mathcal{B}_f$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$.

For all $w \in \mathcal{B}_{f}$,

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|\mathcal{C}_{n-j}| \leq \frac{|\mathcal{C}_n|}{x^j}$. Let $\mathcal{B} = \{ua : u \in \mathcal{C}_n, a \in \mathcal{A}\} \setminus \mathcal{C}_{n+1}$, then $|\mathcal{C}_{n+1}| = |\mathcal{A}| \cdot |\mathcal{C}_n| - |\mathcal{B}| \geq |\mathcal{A}| \cdot |\mathcal{C}_n| - \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$

For any $f \in \mathcal{B}$, let \mathcal{B}_f be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B} = \bigcup_{f \in \mathcal{F}} \mathcal{B}_f$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$.

For all $w \in \mathcal{B}_f$, we have w = vf for some $v \in \mathcal{C}_{n+1-|f|}$.

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|\mathcal{C}_{n-j}| \leq \frac{|\mathcal{C}_n|}{x^j}$. Let $\mathcal{B} = \{ua : u \in \mathcal{C}_n, a \in \mathcal{A}\} \setminus \mathcal{C}_{n+1}$, then $|\mathcal{C}_{n+1}| = |\mathcal{A}| \cdot |\mathcal{C}_n| - |\mathcal{B}| \geq |\mathcal{A}| \cdot |\mathcal{C}_n| - \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$

For any $f \in \mathcal{B}$, let \mathcal{B}_f be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B} = \bigcup_{f \in \mathcal{F}} \mathcal{B}_f$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$.

For all $w \in \mathcal{B}_f$, we have w = vf for some $v \in \mathcal{C}_{n+1-|f|}$.

$$|\mathcal{B}_f| \le |\mathcal{C}_{n+1-|f|}|$$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|\mathcal{C}_{n-j}| \leq \frac{|\mathcal{C}_n|}{\varkappa}$. Let $\mathcal{B} = \{ua : u \in \mathcal{C}_n, a \in \mathcal{A}\} \setminus \mathcal{C}_{n+1}$, then $|\mathcal{C}_{n+1}| = |\mathcal{A}| \cdot |\mathcal{C}_n| - |\mathcal{B}| \geq |\mathcal{A}| \cdot |\mathcal{C}_n| - \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$

For any $f \in \mathcal{B}$, let \mathcal{B}_f be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B} = \bigcup_{f \in \mathcal{F}} \mathcal{B}_f$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$.

For all $w \in \mathcal{B}_f$, we have w = vf for some $v \in \mathcal{C}_{n+1-|f|}$.

$$|\mathcal{B}_f| \le |\mathcal{C}_{n+1-|f|}| \le \frac{|\mathcal{C}_n|}{|\mathcal{X}|^{|f|-1|}}$$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|\mathcal{C}_{n-j}| \leq \frac{|\mathcal{C}_n|}{x^j}$. Let $\mathcal{B} = \{ua : u \in \mathcal{C}_n, a \in \mathcal{A}\} \setminus \mathcal{C}_{n+1}$, then $|\mathcal{C}_{n+1}| = |\mathcal{A}| \cdot |\mathcal{C}_n| - |\mathcal{B}| \geq |\mathcal{A}| \cdot |\mathcal{C}_n| - \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$

For any $f \in \mathcal{B}$, let \mathcal{B}_f be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B} = \bigcup_{f \in \mathcal{F}} \mathcal{B}_f$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$.

For all $w \in \mathcal{B}_f$, we have w = vf for some $v \in \mathcal{C}_{n+1-|f|}$.

$$|\mathcal{B}_f| \leq |\mathcal{C}_{n+1-|f|}| \leq \frac{|\mathcal{C}_n|}{\chi^{|f|-1}}.$$

$$|\mathcal{C}_{n+1}| \geq |\mathcal{A}||\mathcal{C}_n| - \sum_{f \in \mathcal{F}} \frac{|\mathcal{C}_n|}{x^{|f|-1}}$$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|\mathcal{C}_{n-j}| \leq \frac{|\mathcal{C}_n|}{x^j}$. Let $\mathcal{B} = \{ua : u \in \mathcal{C}_n, a \in \mathcal{A}\} \setminus \mathcal{C}_{n+1}$, then $|\mathcal{C}_{n+1}| = |\mathcal{A}| \cdot |\mathcal{C}_n| - |\mathcal{B}| \geq |\mathcal{A}| \cdot |\mathcal{C}_n| - \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$

For any $f \in \mathcal{B}$, let \mathcal{B}_f be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B} = \bigcup_{f \in \mathcal{F}} \mathcal{B}_f$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$.

For all $w \in \mathcal{B}_f$, we have w = vf for some $v \in \mathcal{C}_{n+1-|f|}$.

$$|\mathcal{B}_f| \le |\mathcal{C}_{n+1-|f|}| \le \frac{|\mathcal{C}_n|}{|\mathcal{X}|^{|f|-1|}}$$

$$|\mathcal{C}_{n+1}| \geq |\mathcal{A}||\mathcal{C}_n| - \sum_{f \in \mathcal{F}} \frac{|\mathcal{C}_n|}{x^{|f|-1}} = |\mathcal{C}_n| \left(|\mathcal{A}| - \sum_{f \in \mathcal{F}} x^{1-|f|} \right)$$

By the induction hypothesis, for all $j \in \{0, ..., n\}$, $|\mathcal{C}_{n-j}| \leq \frac{|\mathcal{C}_n|}{x^j}$. Let $\mathcal{B} = \{ua : u \in \mathcal{C}_n, a \in \mathcal{A}\} \setminus \mathcal{C}_{n+1}$, then $|\mathcal{C}_{n+1}| = |\mathcal{A}| \cdot |\mathcal{C}_n| - |\mathcal{B}| \geq |\mathcal{A}| \cdot |\mathcal{C}_n| - \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$

For any $f \in \mathcal{B}$, let \mathcal{B}_f be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B} = \bigcup_{f \in \mathcal{F}} \mathcal{B}_f$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}} |\mathcal{B}_f|$.

For all $w \in \mathcal{B}_f$, we have w = vf for some $v \in \mathcal{C}_{n+1-|f|}$.

$$|\mathcal{B}_f| \le |\mathcal{C}_{n+1-|f|}| \le \frac{|\mathcal{C}_n|}{|\mathcal{X}|^{|f|-1|}}$$

$$|\mathcal{C}_{n+1}| \geq |\mathcal{A}||\mathcal{C}_n| - \sum_{f \in \mathcal{F}} \frac{|\mathcal{C}_n|}{x^{|f|-1}} = |\mathcal{C}_n| \left(|\mathcal{A}| - \sum_{f \in \mathcal{F}} x^{1-|f|} \right) \geq x|\mathcal{C}_n| \quad \Box$$

Back to the result

Theorem (Ochem, 2016 and Rosenfeld, 2022)

Let \mathcal{A} be an alphabet and \mathcal{F} be a set of forbiden factors over \mathcal{A} . Suppose that there exists a positive real x such that

$$\mathcal{A} - \sum_{f \in \mathcal{F}} \mathbf{X}^{1-|f|} \ge \mathbf{X} \,,$$

then the number of words of length n avoiding \mathcal{F} is at least x^n .

Back to the result

Theorem (Ochem, 2016 and Rosenfeld, 2022)

Let \mathcal{A} be an alphabet and \mathcal{F} be a set of forbiden factors over \mathcal{A} . Suppose that there exists a positive real x such that

$$\mathcal{A} - \sum_{f \in \mathcal{F}} \mathbf{X}^{1-|f|} \ge \mathbf{X},$$

then the number of words of length n avoiding \mathcal{F} is at least x^n .

Stronger than Miller (2012) and Pavlov (2021).

Back to the result

Theorem (Ochem, 2016 and Rosenfeld, 2022)

Let \mathcal{A} be an alphabet and \mathcal{F} be a set of forbiden factors over \mathcal{A} . Suppose that there exists a positive real x such that

$$\mathcal{A} - \sum_{f \in \mathcal{F}} x^{1-|f|} \ge x \,,$$

then the number of words of length n avoiding \mathcal{F} is at least x^n .

Stronger than Miller (2012) and Pavlov (2021).

Corollary

Let \mathcal{F} be a set of forbidden factors that contain at most one factor of each size in $\{5, 6, 7, \ldots\}$ and no shorter factor. Then the number of words of size n avoiding \mathcal{F} over $\{0, 1\}$ is at least

$$\alpha_1^n \ge 1.755^n \,,$$

where α_1 is the largest root of $x^3 - 2x^2 + x - 1$.

Let $\alpha(k, x)$ be the growth of the language of x-free words over the alphabet $\{1, 2, \dots, k\}$.

Let $\alpha(k, x)$ be the growth of the language of x-free words over the alphabet $\{1, 2, \dots, k\}$.

Conjecture (Shur, 2009)

For any fixed integer $n \geq \mathbf{3}$ and arbitrarily large integer k the following holds

$$\alpha\left(k,\frac{n}{n-1}\right) = k+1-n-\frac{n-1}{k}+O\left(\frac{1}{k^2}\right)$$
$$\alpha\left(k,\frac{n}{n-1}\right) = k+2-n-\frac{n-1}{k}+O\left(\frac{1}{k^2}\right)$$

Let $\alpha(k, x)$ be the growth of the language of x-free words over the alphabet $\{1, 2, \dots, k\}$.

Theorem (Rosenfeld, 2020)

For any fixed integer $n \geq \mathbf{3}$ and arbitrarily large integer k the following holds

$$\alpha\left(k,\frac{n}{n-1}\right) \ge k+1-n-\frac{n-1}{k}+O\left(\frac{1}{k^2}\right)$$
$$\alpha\left(k,\frac{n}{n-1}\right) \ge k+2-n-\frac{n-1}{k}+O\left(\frac{1}{k^2}\right)$$

Thue game

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

00

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

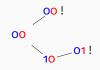
00! 00

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.



Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

Ben also has a simple strategy with 3 letters.

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

Ben also has a simple strategy with 3 letters.

Entropy compression (Grytczuk et al., 2011) \implies with \ge 6 symbols Ann wins.

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

Ben also has a simple strategy with 3 letters.

Entropy compression (Grytczuk et al., 2011) \implies with \ge 6 symbols Ann wins.

Theorem (Rosenfeld, 2022)

Over 4 letters Ann has a winning stategy.

A similar technique using formal power series was used by Bell and Goh, Rampersad, Blanchet-Sadri and Woodhouse, Ochem...

A similar technique using formal power series was used by Bell and Goh, Rampersad, Blanchet-Sadri and Woodhouse, Ochem...

This version of the argument is generalizable to tilings, subshifts, hypergraph colorings, graph colorings, *k*-SAT...

A similar technique using formal power series was used by Bell and Goh, Rampersad, Blanchet-Sadri and Woodhouse, Ochem...

This version of the argument is generalizable to tilings, subshifts, hypergraph colorings, graph colorings, *k*-SAT...

Theorem (Rosenfeld, 2022)

Let G be a countable amenable group and \mathcal{F} a set of forbidden patterns over the alphabet \mathcal{A} . If there exists a positive real β such that,

$$\beta + \sum_{f \in \mathcal{F}} |f| \beta^{1-|f|} \le |\mathcal{A}|$$
$$\alpha(\mathcal{X}_{\mathcal{F}}) > \beta.$$

then

Thanks !