Thue choice number and the counting argument

Matthieu Rosenfeld
February 25, 2024

Square free words

A square is a non-empty word of the form $u u$. The period of $u u$ is $|u|$ A word is square-free if none of its factor is a square.

Square free words

A square is a non-empty word of the form $u u$. The period of $u u$ is $|u|$ A word is square-free if none of its factor is a square. $a b c a b c$ is a square.

Square free words

A square is a non-empty word of the form $u u$. The period of $u u$ is $|u|$ A word is square-free if none of its factor is a square. $a b c a b c$ is a square.
$b a b c b c a b c$ is not square-free.

Square free words

A square is a non-empty word of the form $u u$. The period of $u u$ is $|u|$
A word is square-free if none of its factor is a square. $a b c a b c$ is a square.
babcbcabc is not square-free. $a b c a c b a c$ is square-free.

An old result

The starting point of combinatorics on words.
Theorem (Thue, 1906)
There exists arbitrarily long square-free words over $\{0,1,2\}$.

An old result

The starting point of combinatorics on words.

Theorem (Thue, 1906)

There exists arbitrarily long square-free words over $\{0,1,2\}$.
Many generalizations or variations were studied:

- Cubes, 4th powers, fractional powers,
- patterns, formulas (ABABA),
- k-abelian powers, k-binomial powers, additive powers, antipowers,
- nonrepetitive colorings of graphs (or other objects).
- ...

Thue choice number

Fix a sequence of alphabet $\left(A_{i}\right)_{i \in \mathbb{N}}$
A word $w=w_{1} \ldots w_{n}$ respects $\left(A_{i}\right)_{i \in \mathbb{N}}$ if for all $i, w_{i} \in A_{i}$

Thue choice number

Fix a sequence of alphabet $\left(A_{i}\right)_{i \in \mathbb{N}}$
A word $w=w_{1} \ldots w_{n}$ respects $\left(A_{i}\right)_{i \in \mathbb{N}}$ if for all $i, w_{i} \in A_{i}$
If w is infinite, we write $w \in \prod_{i} A_{i}$

Thue choice number

Fix a sequence of alphabet $\left(A_{i}\right)_{i \in \mathbb{N}}$
A word $w=w_{1} \ldots w_{n}$ respects $\left(A_{i}\right)_{i \in \mathbb{N}}$ if for all $i, w_{i} \in A_{i}$
If w is infinite, we write $w \in \prod_{i} A_{i}$
Alphabets: $\left\{\begin{array}{l}0 \\ 1 \\ 2\end{array}\right\}\left\{\begin{array}{l}0 \\ 2 \\ 3\end{array}\right\}\left\{\begin{array}{l}1 \\ 2 \\ 3\end{array}\right\}\left\{\begin{array}{l}0 \\ 1 \\ 3\end{array}\right\} \quad\left\{\begin{array}{l}0 \\ 2 \\ 3\end{array}\right\}\left\{\begin{array}{l}0 \\ 1 \\ 2\end{array}\right\}$

Thue choice number

Fix a sequence of alphabet $\left(A_{i}\right)_{i \in \mathbb{N}}$
A word $w=w_{1} \ldots w_{n}$ respects $\left(A_{i}\right)_{i \in \mathbb{N}}$ if for all $i, w_{i} \in A_{i}$
If w is infinite, we write $w \in \prod_{i} A_{i}$

Thue choice number

Fix a sequence of alphabet $\left(A_{i}\right)_{i \in \mathbb{N}}$
A word $w=w_{1} \ldots w_{n}$ respects $\left(A_{i}\right)_{i \in \mathbb{N}}$ if for all $i, w_{i} \in A_{i}$
If w is infinite, we write $w \in \prod_{i} A_{i}$

Question

Does there exists $k \in \mathbb{N}$, such that:
$\forall i,\left|A_{i}\right| \geq k \Longrightarrow$ there exists a square-free word $w \in \prod_{i} A_{i}$

Thue choice number

Fix a sequence of alphabet $\left(A_{i}\right)_{i \in \mathbb{N}}$
A word $w=w_{1} \ldots w_{n}$ respects $\left(A_{i}\right)_{i \in \mathbb{N}}$ if for all $i, w_{i} \in A_{i}$
If w is infinite, we write $w \in \prod_{i} A_{i}$

Question

Does there exists $k \in \mathbb{N}$, such that:
$\forall i,\left|A_{i}\right| \geq k \Longrightarrow$ there exists a square-free word $w \in \prod_{i} A_{i}$
The Thue choice number is the smallest such k.

A short detour by graph coloring

A proper coloring of a graph G, is a coloring such that two adjacent vertices receive different colors

A short detour by graph coloring

A proper coloring of a graph G, is a coloring such that two adjacent vertices receive different colors

A short detour by graph coloring

A proper coloring of a graph G, is a coloring such that two adjacent vertices receive different colors

A short detour by graph coloring

A proper coloring of a graph G, is a coloring such that two adjacent vertices receive different colors

A short detour by graph coloring

A proper coloring of a graph G, is a coloring such that two adjacent vertices receive different colors

We have graphs with $\chi(G)=2$ and $\chi_{c h}(G)$ arbitrarily large.

Avoiding squares over lists of size 4

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))
 Let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of lists such that for all $i,\left|A_{i}\right| \geq 4$. Then there are square-free words in $\prod_{i} A_{i}$.

Avoiding squares over lists of size 4

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))
Let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of lists such that for all $i,\left|A_{i}\right| \geq 4$. Then there are square-free words in $\prod_{i} A_{i}$.

We show instead a stronger result.
Fix $\left(A_{i}\right)_{i \in \mathbb{N}}$. Let C_{n} be the set of square-free words of length n that respect $\left(A_{i}\right)_{i \in \mathbb{N}}$.

Lemma

For any integer n,

$$
\left|C_{n+1}\right| \geq 2\left|C_{n}\right| .
$$

Avoiding squares over lists of size 4

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))
Let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of lists such that for all $i,\left|A_{i}\right| \geq 4$. Then there are square-free words in $\prod_{i} A_{i}$.

We show instead a stronger result.
Fix $\left(A_{i}\right)_{i \in \mathbb{N}}$. Let C_{n} be the set of square-free words of length n that respect $\left(A_{i}\right)_{i \in \mathbb{N}}$.

Lemma

For any integer n,

$$
\left|C_{n+1}\right| \geq 2\left|C_{n}\right|
$$

$\Longrightarrow\left|C_{n}\right| \geq 2^{n} \geq 1$.

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$,

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}|
$$

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}|
$$

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i.

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i. Then $\mathcal{B}=\bigcup_{i \geq 1} \mathcal{B}_{i}$ and $|\mathcal{B}| \leq \sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$.

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i. Then $\mathcal{B}=\bigcup_{i \geq 1} \mathcal{B}_{i}$ and $|\mathcal{B}| \leq \sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$.

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i. Then $\mathcal{B}=\bigcup_{i \geq 1} \mathcal{B}_{i}$ and $|\mathcal{B}| \leq \sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$.
For all $w \in \mathcal{B}_{i}$,

$$
w \in \mathcal{B}_{i}
$$

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i. Then $\mathcal{B}=\bigcup_{i \geq 1} \mathcal{B}_{i}$ and $|\mathcal{B}| \leq \sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$.
For all $w \in \mathcal{B}_{i}$,

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i. Then $\mathcal{B}=\bigcup_{i \geq 1} \mathcal{B}_{i}$ and $|\mathcal{B}| \leq \sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$.
For all $w \in \mathcal{B}_{i}$,

$$
v \in C_{n+1-i}
$$

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i. Then $\mathcal{B}=\bigcup_{i \geq 1} \mathcal{B}_{i}$ and $|\mathcal{B}| \leq \sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$.
For all $w \in \mathcal{B}_{i}$,

$$
\left|\mathcal{B}_{i}\right| \leq\left|C_{n+1-i}\right|
$$

$$
v \in C_{n+1-i}
$$

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i. Then $\mathcal{B}=\bigcup_{i \geq 1} \mathcal{B}_{i}$ and $|\mathcal{B}| \leq \sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$.
For all $w \in \mathcal{B}_{i}$,

$$
\left|\mathcal{B}_{i}\right| \leq\left|C_{n+1-i}\right| \leq \frac{\left|C_{n}\right|}{2^{i-1}} .
$$

$$
v \in C_{n+1-i}
$$

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i. Then $\mathcal{B}=\bigcup_{i \geq 1} \mathcal{B}_{i}$ and $|\mathcal{B}| \leq \sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$.
For all $w \in \mathcal{B}_{i}$,

$$
\left|\mathcal{B}_{i}\right| \leq\left|C_{n+1-i}\right| \leq \frac{\left|C_{n}\right|}{2^{i-1}} .
$$

$$
v \in C_{n+1-i}
$$

Finally,
$\left|C_{n+1}\right| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i. Then $\mathcal{B}=\bigcup_{i \geq 1} \mathcal{B}_{i}$ and $|\mathcal{B}| \leq \sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$.
For all $w \in \mathcal{B}_{i}$,

$$
\left|\mathcal{B}_{i}\right| \leq\left|C_{n+1-i}\right| \leq \frac{\left|C_{n}\right|}{2^{i-1}} .
$$

$$
v \in C_{n+1-i}
$$

Finally,

$$
\left|C_{n+1}\right| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right| \geq 4\left|C_{n}\right|-\sum_{i \geq 1} \frac{\left|C_{n}\right|}{2^{i-1}}
$$

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i. Then $\mathcal{B}=\bigcup_{i \geq 1} \mathcal{B}_{i}$ and $|\mathcal{B}| \leq \sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$.
For all $w \in \mathcal{B}_{i}$,

$$
\left|\mathcal{B}_{i}\right| \leq\left|C_{n+1-i}\right| \leq \frac{\left|C_{n}\right|}{2^{i-1}} .
$$

$$
v \in C_{n+1-i}
$$

Finally,

$$
\left|C_{n+1}\right| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right| \geq 4\left|C_{n}\right|-\sum_{i \geq 1} \frac{\left|C_{n}\right|}{2^{i-1}}=\left|C_{n}\right|\left(4-\sum_{i \geq 0} 2^{-i}\right)
$$

The proof by induction that for all $n,\left|C_{n+1}\right| \geq 2\left|C_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|C_{n-j}\right| \leq \frac{\left|C_{n}\right|}{2 j}$.
Let $\mathcal{B}=\left\{u a: u \in C_{n}, a \in A_{n+1}\right\} \backslash C_{n+1}$, then

$$
\left|C_{n+1}\right|=\left|A_{n+1}\right| \cdot\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-|\mathcal{B}| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right|
$$

For all i, let \mathcal{B}_{i} be the set of words from \mathcal{B} that end with a square of period i. Then $\mathcal{B}=\bigcup_{i \geq 1} \mathcal{B}_{i}$ and $|\mathcal{B}| \leq \sum_{i \geq 1}\left|\mathcal{B}_{i}\right|$.
For all $w \in \mathcal{B}_{i}$,

$$
\left|\mathcal{B}_{i}\right| \leq\left|C_{n+1-i}\right| \leq \frac{\left|C_{n}\right|}{2^{i-1}} .
$$

$$
v \in C_{n+1-i}
$$

Finally,

$$
\left|C_{n+1}\right| \geq 4\left|C_{n}\right|-\sum_{i \geq 1}\left|\mathcal{B}_{i}\right| \geq 4\left|C_{n}\right|-\sum_{i \geq 1} \frac{\left|C_{n}\right|}{2^{i-1}}=\left|C_{n}\right|\left(4-\sum_{i \geq 0} 2^{-i}\right) \geq 2\left|C_{n}\right|
$$

The Thue choice number

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))
$\forall i,\left|A_{i}\right| \geq 4 \Longrightarrow$ there exists a square-free word $w \in \prod A_{i}$

The Thue choice number

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))

$$
\forall i,\left|A_{i}\right| \geq 4 \Longrightarrow \text { there exists a square-free word } w \in \prod_{i} A_{i}
$$

Question

Is the following true?

$$
\forall i,\left|A_{i}\right| \geq 3 \Longrightarrow \text { there exists a square-free word } w \in \prod_{i} A_{i}
$$

Sharpening the proof -I

The main reason for which the proof is not sharp is this bound

$$
\left|\mathcal{B}_{i}\right| \leq \frac{\left|C_{n}\right|}{2^{i-1}}
$$

Sharpening the proof -I

The main reason for which the proof is not sharp is this bound

$$
\left|\mathcal{B}_{i}\right| \leq \frac{\left|C_{n}\right|}{2^{i-1}}
$$

For large i, it doesn't really matter since the bound is really small anyway.

Sharpening the proof -I

The main reason for which the proof is not sharp is this bound

$$
\left|\mathcal{B}_{i}\right| \leq \frac{\left|C_{n}\right|}{2^{i-1}}
$$

For large i, it doesn't really matter since the bound is really small anyway.

How to improve the bound for small i?
Compute the growth rate α_{ℓ} of the language of words without squares of period less than ℓ and hope for something like:

$$
\left|C_{n+1}\right| \gtrsim \alpha_{\ell}\left|C_{n}\right|-\sum_{i \geq \ell}\left|\mathcal{B}_{i}\right|
$$

Sharpening the proof sharp - II

Using elementary automata theory and linear algebra, we define a weight for each word and

$$
\widehat{C_{n}}:=\sum_{w \in C_{n}} \text { weight of } w
$$

Sharpening the proof sharp - II

Using elementary automata theory and linear algebra, we define a weight for each word and

$$
\widehat{C_{n}}:=\sum_{w \in C_{n}} \text { weight of } w
$$

such that

$$
\widehat{C_{n+1}} \geq \alpha_{\ell} \widehat{C_{n}}-\sum_{i \geq \ell} \widehat{\mathcal{B}_{i}}
$$

Sharpening the proof sharp - II

Using elementary automata theory and linear algebra, we define a weight for each word and

$$
\widehat{C_{n}}:=\sum_{w \in C_{n}} \text { weight of } w
$$

such that

$$
\widehat{C_{n+1}} \geq \alpha_{\ell} \widehat{C_{n}}-\sum_{i \geq \ell} \widehat{\mathcal{B}_{i}}
$$

- α_{ℓ} is the spectral radius of the automaton,
- the weight function is given by the associated eigenvector,
- we can bound $\widehat{\mathcal{B}}_{i}$ with some bijection.

Sharpening the proof sharp - II

Using elementary automata theory and linear algebra, we define a weight for each word and

$$
\widehat{C_{n}}:=\sum_{w \in C_{n}} \text { weight of } w
$$

such that

$$
\widehat{C_{n+1}} \geq \alpha_{\ell} \widehat{C_{n}}-\sum_{i \geq \ell} \widehat{\mathcal{B}}_{i}
$$

- α_{ℓ} is the spectral radius of the automaton,
- the weight function is given by the associated eigenvector,
- we can bound $\widehat{\mathcal{B}}_{i}$ with some bijection.

A similar idea was used by Kolpakov, Rao, Shur to obtain bounds on the growth of power-free languages

Back to the Thue choice number

Theorem (Rosenfeld, 2023)

Let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of lists such that

- for all $i,\left|A_{i}\right| \geq 3$
- and for all $i, A_{i} \subseteq\{0,1,2,3\}$.

Then there are square-free words in $\prod A_{i}$.

Back to the Thue choice number

Theorem (Rosenfeld, 2023)

Let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of lists such that

- for all $i,\left|A_{i}\right| \geq 3$
- and for all $i, A_{i} \subseteq\{0,1,2,3\}$.

Then there are square-free words in $\prod A_{i}$.
Relies on the computation of the automaton recognizing words over $\{0,1,2,3\}$ that do not contain squares of period less than 22.
(854683883 states, 70 GB in memory, 2 hours of computation)

Back to the Thue choice number

Theorem (Rosenfeld, 2023)

Let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a sequence of lists such that

- for all $i,\left|A_{i}\right| \geq 3$
- and for all $i, A_{i} \subseteq\{0,1,2,3\}$.

Then there are square-free words in $\prod A_{i}$.
Relies on the computation of the automaton recognizing words over $\{0,1,2,3\}$ that do not contain squares of period less than 22.
(854683883 states, 70 GB in memory, 2 hours of computation)
A rough estimation seems to indicate that $10^{7} \mathrm{~GB}$ or memory should be enough to remove the second condition on A_{i} (under the hypothesis that the growth rate is the same)

Other application of this proof technique

A generic sufficient condition for avoidability

Theorem

Let \mathcal{A} be an alphabet and \mathcal{F} be a set of forbiden factors over \mathcal{A}.
Suppose that there exists a positive real x such that

$$
|\mathcal{A}|-\sum_{f \in \mathcal{F}} x^{1-|f|} \geq x
$$

then there exists arbitrarily long words over \mathcal{A} that avoid \mathcal{F}.

A generic sufficient condition for avoidability

Theorem

Let \mathcal{A} be an alphabet and \mathcal{F} be a set of forbiden factors over \mathcal{A}.
Suppose that there exists a positive real x such that

$$
|\mathcal{A}|-\sum_{f \in \mathcal{F}} x^{1-|f|} \geq x
$$

then there exists arbitrarily long words over \mathcal{A} that avoid \mathcal{F}.
Fix \mathcal{A} and \mathcal{F}.
For any n, let \mathcal{C}_{n} be the set of words of length n over \mathcal{A} that avoid \mathcal{F}.

Lemma

Under the Theorem hypothesis, for all $n \in \mathbb{N}$,

$$
\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right| .
$$

$\Longrightarrow\left|\mathcal{C}_{n}\right| \geq x^{n}$

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$,

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$, then

$$
\left|C_{n+1}\right|=|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-|\mathcal{B}|
$$

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$, then

$$
\left|C_{n+1}\right|=|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-|\mathcal{B}|
$$

For any $f \in \mathcal{B}$, let \mathcal{B}_{f} be the set of words from \mathcal{B} that ends with an occurence of f.

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$, then

$$
\left|C_{n+1}\right|=|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-|\mathcal{B}|
$$

For any $f \in \mathcal{B}$, let \mathcal{B}_{f} be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B}=\bigcup_{f \in \mathcal{F}} \mathcal{B}_{f}$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|$.

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$, then

$$
\left|C_{n+1}\right|=|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-|\mathcal{B}| \geq|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-\sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|
$$

For any $f \in \mathcal{B}$, let \mathcal{B}_{f} be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B}=\bigcup_{f \in \mathcal{F}} \mathcal{B}_{f}$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|$.

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$, then

$$
\left|C_{n+1}\right|=|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-|\mathcal{B}| \geq|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-\sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|
$$

For any $f \in \mathcal{B}$, let \mathcal{B}_{f} be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B}=\bigcup_{f \in \mathcal{F}} \mathcal{B}_{f}$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|$.
For all $w \in \mathcal{B}_{f}$,

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$, then

$$
\left|C_{n+1}\right|=|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-|\mathcal{B}| \geq|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-\sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|
$$

For any $f \in \mathcal{B}$, let \mathcal{B}_{f} be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B}=\bigcup_{f \in \mathcal{F}} \mathcal{B}_{f}$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|$.
For all $w \in \mathcal{B}_{f}$, we have $w=v f$ for some $v \in \mathcal{C}_{n+1-|f|}$.

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$, then

$$
\left|C_{n+1}\right|=|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-|\mathcal{B}| \geq|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-\sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|
$$

For any $f \in \mathcal{B}$, let \mathcal{B}_{f} be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B}=\bigcup_{f \in \mathcal{F}} \mathcal{B}_{f}$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|$.
For all $w \in \mathcal{B}_{f}$, we have $w=v f$ for some $v \in \mathcal{C}_{n+1-|f|}$.

$$
\left|\mathcal{B}_{f}\right| \leq\left|C_{n+1-|f|}\right|
$$

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$, then

$$
\left|C_{n+1}\right|=|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-|\mathcal{B}| \geq|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-\sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|
$$

For any $f \in \mathcal{B}$, let \mathcal{B}_{f} be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B}=\bigcup_{f \in \mathcal{F}} \mathcal{B}_{f}$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|$.
For all $w \in \mathcal{B}_{f}$, we have $w=v f$ for some $v \in \mathcal{C}_{n+1-|f|}$.

$$
\left|\mathcal{B}_{f}\right| \leq\left|C_{n+1-|f|}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{|f|-1}} .
$$

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$, then

$$
\left|C_{n+1}\right|=|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-|\mathcal{B}| \geq|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-\sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|
$$

For any $f \in \mathcal{B}$, let \mathcal{B}_{f} be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B}=\bigcup_{f \in \mathcal{F}} \mathcal{B}_{f}$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|$.
For all $w \in \mathcal{B}_{f}$, we have $w=v f$ for some $v \in \mathcal{C}_{n+1-|f|}$.

$$
\left|\mathcal{B}_{f}\right| \leq\left|\mathcal{C}_{n+1-|f|}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{|f|-1}} .
$$

Finally,

$$
\left|\mathcal{C}_{n+1}\right| \geq|\mathcal{A}|\left|\mathcal{C}_{n}\right|-\sum_{f \in \mathcal{F}} \frac{\left|\mathcal{C}_{n}\right|}{x^{|f|-1}}
$$

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$, then

$$
\left|C_{n+1}\right|=|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-|\mathcal{B}| \geq|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-\sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|
$$

For any $f \in \mathcal{B}$, let \mathcal{B}_{f} be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B}=\bigcup_{f \in \mathcal{F}} \mathcal{B}_{f}$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|$.
For all $w \in \mathcal{B}_{f}$, we have $w=v f$ for some $v \in \mathcal{C}_{n+1-|f|}$.

$$
\left|\mathcal{B}_{f}\right| \leq\left|C_{n+1-|f|}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{|f|-1}} .
$$

Finally,

$$
\left|\mathcal{C}_{n+1}\right| \geq|\mathcal{A}|\left|C_{n}\right|-\sum_{f \in \mathcal{F}} \frac{\left|\mathcal{C}_{n}\right|}{x^{|f|-1}}=\left|C_{n}\right|\left(|\mathcal{A}|-\sum_{f \in \mathcal{F}} x^{1-|f|}\right)
$$

The proof by induction that $\left|\mathcal{C}_{n+1}\right| \geq x \cdot\left|\mathcal{C}_{n}\right|$

By the induction hypothesis, for all $j \in\{0, \ldots, n\},\left|\mathcal{C}_{n-j}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{j}}$.
Let $\mathcal{B}=\left\{u a: u \in \mathcal{C}_{n}, a \in \mathcal{A}\right\} \backslash \mathcal{C}_{n+1}$, then

$$
\left|C_{n+1}\right|=|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-|\mathcal{B}| \geq|\mathcal{A}| \cdot\left|\mathcal{C}_{n}\right|-\sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|
$$

For any $f \in \mathcal{B}$, let \mathcal{B}_{f} be the set of words from \mathcal{B} that ends with an occurence of f. Then $\mathcal{B}=\bigcup_{f \in \mathcal{F}} \mathcal{B}_{f}$ and $|\mathcal{B}| \leq \sum_{f \in \mathcal{F}}\left|\mathcal{B}_{f}\right|$.
For all $w \in \mathcal{B}_{f}$, we have $w=v f$ for some $v \in \mathcal{C}_{n+1-|f|}$.

$$
\left|\mathcal{B}_{f}\right| \leq\left|C_{n+1-|f|}\right| \leq \frac{\left|\mathcal{C}_{n}\right|}{x^{|f|-1}} .
$$

Finally,

$$
\left|\mathcal{C}_{n+1}\right| \geq|\mathcal{A}|\left|C_{n}\right|-\sum_{f \in \mathcal{F}} \frac{\left|\mathcal{C}_{n}\right|}{x^{|f|-1}}=\left|C_{n}\right|\left(|\mathcal{A}|-\sum_{f \in \mathcal{F}} x^{1-|f|}\right) \geq x\left|C_{n}\right|
$$

Back to the result

Theorem (Ochem, 2016 and Rosenfeld, 2022)

Let \mathcal{A} be an alphabet and \mathcal{F} be a set of forbiden factors over \mathcal{A}.
Suppose that there exists a positive real x such that

$$
\mathcal{A}-\sum_{f \in \mathcal{F}} x^{1-|f|} \geq x,
$$

then the number of words of length n avoiding \mathcal{F} is at least x^{n}.

Back to the result

Theorem (Ochem, 2016 and Rosenfeld, 2022)

Let \mathcal{A} be an alphabet and \mathcal{F} be a set of forbiden factors over \mathcal{A}.
Suppose that there exists a positive real x such that

$$
\mathcal{A}-\sum_{f \in \mathcal{F}} x^{1-|f|} \geq x,
$$

then the number of words of length n avoiding \mathcal{F} is at least x^{n}.
Stronger than Miller (2012) and Pavlov (2021).

Back to the result

Theorem (Ochem, 2016 and Rosenfeld, 2022)

Let \mathcal{A} be an alphabet and \mathcal{F} be a set of forbiden factors over \mathcal{A}.
Suppose that there exists a positive real x such that

$$
\mathcal{A}-\sum_{f \in \mathcal{F}} x^{1-|f|} \geq x,
$$

then the number of words of length n avoiding \mathcal{F} is at least x^{n}.
Stronger than Miller (2012) and Pavlov (2021).

Corollary

Let \mathcal{F} be a set of forbidden factors that contain at most one factor of each size in $\{5,6,7, \ldots\}$ and no shorter factor. Then the number of words of size n avoiding \mathcal{F} over $\{0,1\}$ is at least

$$
\alpha_{1}^{n} \geq 1.755^{n}
$$

where α_{1} is the largest root of $x^{3}-2 x^{2}+x-1$.

Fractional repetitions

Let $\alpha(k, x)$ be the growth of the language of x-free words over the alphabet $\{1,2, \ldots, k\}$.

Fractional repetitions

Let $\alpha(k, x)$ be the growth of the language of x-free words over the alphabet $\{1,2, \ldots, k\}$.

Conjecture (Shur, 2009)

For any fixed integer $n \geq 3$ and arbitrarily large integer k the following holds

$$
\begin{aligned}
& \alpha\left(k, \frac{n}{n-1}\right)=k+1-n-\frac{n-1}{k}+O\left(\frac{1}{k^{2}}\right) \\
& \alpha\left(k, \frac{n}{n-1}^{+}\right)=k+2-n-\frac{n-1}{k}+O\left(\frac{1}{k^{2}}\right)
\end{aligned}
$$

Fractional repetitions

Let $\alpha(k, x)$ be the growth of the language of x-free words over the alphabet $\{1,2, \ldots, k\}$.

Theorem (Rosenfeld, 2020)

For any fixed integer $n \geq 3$ and arbitrarily large integer k the following holds

$$
\begin{aligned}
& \alpha\left(k, \frac{n}{n-1}\right) \geq k+1-n-\frac{n-1}{k}+O\left(\frac{1}{k^{2}}\right) \\
& \alpha\left(k, \frac{n}{n-1}^{+}\right) \geq k+2-n-\frac{n-1}{k}+O\left(\frac{1}{k^{2}}\right)
\end{aligned}
$$

Thue game

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Thue game

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

Thue game

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

Thue game

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

Thue game

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

Thue game

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

Thue game

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

Ben also has a simple strategy with 3 letters.

Thue game

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

Ben also has a simple strategy with 3 letters.
Entropy compression (Grytczuk et al., 2011) \Longrightarrow with ≥ 6 symbols Ann wins.

Thue game

Thue game is between Ann and Ben

- at their turn Ann and Ben add a letter at the end of the word,
- if a square of length at least 4 appears Ben wins.

Over 2 letters:

Ben also has a simple strategy with 3 letters.
Entropy compression (Grytczuk et al., 2011) \Longrightarrow with ≥ 6 symbols Ann wins.

Theorem (Rosenfeld, 2022)

Over 4 letters Ann has a winning stategy.

The counting argument applied to other objects

A similar technique using formal power series was used by Bell and Goh, Rampersad, Blanchet-Sadri and Woodhouse, Ochem...

The counting argument applied to other objects

A similar technique using formal power series was used by Bell and Goh, Rampersad, Blanchet-Sadri and Woodhouse, Ochem...

This version of the argument is generalizable to tilings, subshifts, hypergraph colorings, graph colorings, k-SAT...

The counting argument applied to other objects

A similar technique using formal power series was used by Bell and Goh, Rampersad, Blanchet-Sadri and Woodhouse, Ochem...

This version of the argument is generalizable to tilings, subshifts, hypergraph colorings, graph colorings, k-SAT...

Theorem (Rosenfeld, 2022)

Let G be a countable amenable group and \mathcal{F} a set of forbidden patterns over the alphabet \mathcal{A}. If there exists a positive real β such that,
then

$$
\beta+\sum_{f \in \mathcal{F}}|f| \beta^{1-|f|} \leq|\mathcal{A}|
$$

$$
\alpha\left(\mathcal{X}_{\mathcal{F}}\right) \geq \beta .
$$

Thanks!

