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Square free words

A square is a non-empty word of the form uu. The period of uu is |u|

A word is square-free if none of its factor is a square.

abcabc is a square.

babcbcabc is not square-free.

abcacbac is square-free.
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An old result

The starting point of combinatorics on words.

Theorem (Thue, 1906)
There exists arbitrarily long square-free words over {0, 1, 2}.

Many generalizations or variations were studied:

• Cubes, 4th powers, fractional powers,
• patterns, formulas (ABABA),
• k-abelian powers, k-binomial powers, additive powers,

antipowers,
• nonrepetitive colorings of graphs (or other objects).
• ...
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Thue choice number

Fix a sequence of alphabet (Ai)i∈N

A word w = w1 . . .wn respects (Ai)i∈N if for all i, wi ∈ Ai

If w is infinite, we write w ∈
∏

i
Ai

Alphabets:


0
1
2




0
2
3




1
2
3




0
1
3




0
2
3




0
1
2

 . . .

word: 0 2 1 3 0 2 . . .

Question
Does there exists k ∈ N, such that:

∀i, |Ai| ≥ k =⇒ there exists a square-free word w ∈
∏

i

Ai

The Thue choice number is the smallest such k.
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A short detour by graph coloring

A proper coloring of a graph G, is a coloring such that two adjacent
vertices receive different colors

We have graphs with χ(G) = 2 and χch(G) arbitrarily large.

5



A short detour by graph coloring

A proper coloring of a graph G, is a coloring such that two adjacent
vertices receive different colors

We have graphs with χ(G) = 2 and χch(G) arbitrarily large.

5



A short detour by graph coloring

A proper coloring of a graph G, is a coloring such that two adjacent
vertices receive different colors

We have graphs with χ(G) = 2 and χch(G) arbitrarily large.

5



A short detour by graph coloring

A proper coloring of a graph G, is a coloring such that two adjacent
vertices receive different colors

We have graphs with χ(G) = 2 and χch(G) arbitrarily large.

5



A short detour by graph coloring

A proper coloring of a graph G, is a coloring such that two adjacent
vertices receive different colors

We have graphs with χ(G) = 2 and χch(G) arbitrarily large.

5



Avoiding squares over lists of size 4

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))
Let (Ai)i∈N be a sequence of lists such that for all i, |Ai| ≥ 4. Then
there are square-free words in

∏
i

Ai.

We show instead a stronger result.

Fix (Ai)i∈N. Let Cn be the set of square-free words of length n that
respect (Ai)i∈N.

Lemma
For any integer n,

|Cn+1| ≥ 2|Cn| .

=⇒ |Cn| ≥ 2n ≥ 1.
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The proof by induction that for all n, |Cn+1| ≥ 2|Cn|

By the induction hypothesis, for all j ∈ {0, . . . ,n}, |Cn−j| ≤
|Cn|
2j .

Let B = {ua : u ∈ Cn,a ∈ An+1} \ Cn+1, then

|Cn+1| = |An+1| · |Cn| − |B| ≥ 4|Cn| − |B|

≥ 4|Cn| −
∑
i≥1

|Bi|

For all i, let Bi be the set of words from B that end with a square of
period i. Then B =

⋃
i≥1

Bi and |B| ≤
∑
i≥1

|Bi|.

For all w ∈ Bi,

|Bi| ≤ |Cn+1−i|

≤ |Cn|
2i−1 .

w ∈ Bi

Finally,

|Cn+1| ≥ 4|Cn|−
∑
i≥1

|Bi| ≥ 4|Cn|−
∑
i≥1

|Cn|
2i−1 = |Cn|

Ñ
4 −

∑
i≥0

2−i

é
≥ 2|Cn|
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∑
i≥1

|Bi|

For all i, let Bi be the set of words from B that end with a square of
period i. Then B =

⋃
i≥1

Bi and |B| ≤
∑
i≥1

|Bi|.

For all w ∈ Bi,

|Bi| ≤ |Cn+1−i| ≤
|Cn|
2i−1 .

w ∈ Bi

u︷ ︸︸ ︷u︷ ︸︸ ︷
︸ ︷︷ ︸
v∈Cn+1−i

Finally,

|Cn+1| ≥ 4|Cn|−
∑
i≥1

|Bi| ≥ 4|Cn|−
∑
i≥1

|Cn|
2i−1 = |Cn|

Ñ
4 −

∑
i≥0

2−i

é
≥ 2|Cn|

7



The Thue choice number

Theorem (Grytczuk, Przybyło and Zhu (2011), ..., Rosenfeld (2020))

∀i, |Ai| ≥ 4 =⇒ there exists a square-free word w ∈
∏

i

Ai

Question
Is the following true ?

∀i, |Ai| ≥ 3 =⇒ there exists a square-free word w ∈
∏

i

Ai

8
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Sharpening the proof - I

The main reason for which the proof is not sharp is this bound

|Bi| ≤
|Cn|
2i−1

For large i, it doesn’t really matter since the bound is really small
anyway.

How to improve the bound for small i?

Compute the growth rate αℓ of the language of words without
squares of period less than ℓ and hope for something like:

|Cn+1| ≳ αℓ|Cn| −
∑
i≥ℓ

|Bi|

9
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Sharpening the proof sharp - II

Using elementary automata theory and linear algebra, we define a
weight for each word and

Ĉn :=
∑
w∈Cn

weight of w

such that ‘Cn+1 ≥ αℓĈn −
∑
i≥ℓ

“Bi

• αℓ is the spectral radius of the automaton,
• the weight function is given by the associated eigenvector,
• we can bound “Bi with some bijection.

A similar idea was used by Kolpakov, Rao, Shur to obtain bounds on
the growth of power-free languages

10
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Ĉn :=
∑
w∈Cn

weight of w

such that ‘Cn+1 ≥ αℓĈn −
∑
i≥ℓ

“Bi

• αℓ is the spectral radius of the automaton,
• the weight function is given by the associated eigenvector,
• we can bound “Bi with some bijection.

A similar idea was used by Kolpakov, Rao, Shur to obtain bounds on
the growth of power-free languages

10



Back to the Thue choice number

Theorem (Rosenfeld, 2023)
Let (Ai)i∈N be a sequence of lists such that

• for all i, |Ai| ≥ 3
• and for all i, Ai ⊆ {0, 1, 2, 3}.

Then there are square-free words in
∏

Ai.

Relies on the computation of the automaton recognizing words over
{0, 1, 2, 3} that do not contain squares of period less than 22.

(854683883 states, 70GB in memory, 2 hours of computation)

A rough estimation seems to indicate that 107GB or memory should
be enough to remove the second condition on Ai (under the
hypothesis that the growth rate is the same)

11



Back to the Thue choice number

Theorem (Rosenfeld, 2023)
Let (Ai)i∈N be a sequence of lists such that

• for all i, |Ai| ≥ 3
• and for all i, Ai ⊆ {0, 1, 2, 3}.

Then there are square-free words in
∏

Ai.

Relies on the computation of the automaton recognizing words over
{0, 1, 2, 3} that do not contain squares of period less than 22.

(854683883 states, 70GB in memory, 2 hours of computation)

A rough estimation seems to indicate that 107GB or memory should
be enough to remove the second condition on Ai (under the
hypothesis that the growth rate is the same)

11



Back to the Thue choice number

Theorem (Rosenfeld, 2023)
Let (Ai)i∈N be a sequence of lists such that

• for all i, |Ai| ≥ 3
• and for all i, Ai ⊆ {0, 1, 2, 3}.

Then there are square-free words in
∏

Ai.

Relies on the computation of the automaton recognizing words over
{0, 1, 2, 3} that do not contain squares of period less than 22.

(854683883 states, 70GB in memory, 2 hours of computation)

A rough estimation seems to indicate that 107GB or memory should
be enough to remove the second condition on Ai (under the
hypothesis that the growth rate is the same)

11



Other application of this proof
technique



A generic sufficient condition for avoidability

Theorem
Let A be an alphabet and F be a set of forbiden factors over A.
Suppose that there exists a positive real x such that

|A| −
∑
f∈F

x1−|f | ≥ x ,

then there exists arbitrarily long words over A that avoid F .

Fix A and F .

For any n, let Cn be the set of words of length n over A that avoid F .
Lemma
Under the Theorem hypothesis, for all n ∈ N,

|Cn+1| ≥ x · |Cn| .

=⇒ |Cn| ≥ xn

12
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The proof by induction that |Cn+1| ≥ x · |Cn|

By the induction hypothesis, for all j ∈ {0, . . . ,n}, |Cn−j| ≤
|Cn|
xj .

Let B = {ua : u ∈ Cn,a ∈ A} \ Cn+1, then

|Cn+1| = |A| · |Cn| − |B|

≥ |A| · |Cn| −
∑
f∈F

|Bf |

For any f ∈ B, let Bf be the set of words from B that ends with an
occurence of f . Then B =

⋃
f∈F

Bf and |B| ≤
∑

f∈F
|Bf |.

For all w ∈ Bf , we have w = vf for some v ∈ Cn+1−|f |.

|Bf | ≤ |Cn+1−|f || ≤
|Cn|

x|f |−1 .

Finally,

|Cn+1| ≥ |A||Cn| −
∑
f∈F

|Cn|
x|f |−1 = |Cn|

Ñ
|A| −

∑
f∈F

x1−|f |

é
≥ x|Cn|

13
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Back to the result

Theorem (Ochem, 2016 and Rosenfeld, 2022)
Let A be an alphabet and F be a set of forbiden factors over A.
Suppose that there exists a positive real x such that

A−
∑
f∈F

x1−|f | ≥ x ,

then the number of words of length n avoiding F is at least xn.

Stronger than Miller (2012) and Pavlov (2021).
Corollary
Let F be a set of forbidden factors that contain at most one factor
of each size in {5, 6, 7, . . .} and no shorter factor. Then the number
of words of size n avoiding F over {0, 1} is at least

αn
1 ≥ 1.755n ,

where α1 is the largest root of x3 − 2x2 + x − 1.
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Fractional repetitions

Let α(k, x) be the growth of the language of x-free words over the
alphabet {1, 2, . . . , k}.

Conjecture (Shur, 2009)
For any fixed integer n ≥ 3 and arbitrarily large integer k the
following holds

α

Å
k, n

n − 1

ã
= k + 1 − n − n − 1

k + O
( 1

k2

)
α

Å
k, n

n − 1
+
ã
= k + 2 − n − n − 1

k + O
( 1

k2

)
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Thue game

Thue game is between Ann and Ben

• at their turn Ann and Ben add a letter at the end of the word,
• if a square of length at least 4 appears Ben wins.

Over 2 letters:

00

10
1 !
01 !

00 !

Ben also has a simple strategy with 3 letters.

Entropy compression (Grytczuk et al., 2011) =⇒ with ≥ 6 symbols
Ann wins.
Theorem (Rosenfeld, 2022)
Over 4 letters Ann has a winning stategy.
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The counting argument applied to other objects

A similar technique using formal power series was used by Bell and
Goh, Rampersad, Blanchet-Sadri and Woodhouse, Ochem...

This version of the argument is generalizable to tilings, subshifts,
hypergraph colorings, graph colorings, k-SAT...

Theorem (Rosenfeld, 2022)
Let G be a countable amenable group and F a set of forbidden
patterns over the alphabet A. If there exists a positive real β such
that,

β +
∑
f∈F

|f |β1−|f | ≤ |A|

then α(XF ) ≥ β .
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Thanks !
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	Other application of this proof technique

