### String attractors of Rote sequences

#### Veronika Hendrychová, Ľubomíra Dvořáková

Czech Technical University in Prague

February 26, 2024



V. Hendrychová, L. Dvořáková

String attractors of Rote sequences

February 2024

### Motivation

- 2 String attractors overview
  - 3 Palindromic closures and Sturmian sequences
- Pseudopalindromic closures and Rote sequences

### 5 Open questions

### Motivation

- 2 String attractors overview
- 3 Palindromic closures and Sturmian sequences
- Pseudopalindromic closures and Rote sequences

### Den questions

・ 同 ト ・ ヨ ト ・ ヨ ト

ヨト・イヨト・

### Dictionary

compressors



Lempel-Ziv methods



Pointer macro scheme



Grammars V. Hendrychová, L. Dvořáková < 47 ▶

ヨト イヨト

Induced repetitiveness measures



Dictionary

compressors

 $\rightarrow z = \text{size of the}$  parsing

Lempel-Ziv methods



 $\rightarrow b =$  size of the scheme

Pointer macro scheme



Grammars V. Hendrychová, L. Dvořáková Dictionary compressors Induced repetitiveness Bounds via the smallest string attractors



 $\rightarrow z =$  size of the parsing

 $z^* \in \mathcal{O}(\gamma^* \log^2(rac{n}{\gamma^*}))$ 

Lempel-Ziv methods

 $\overset{\text{\tiny (ball of ball of ball$ 

Pointer macro scheme



 $\rightarrow g =$  size of the straight-line program

$$g^* \in \mathcal{O}(\gamma^* \log^2(rac{n}{\gamma^*}))$$

[Kempa & Prezza, 2018]

• Repetitiveness measures also upper bounds for the smallest string attractor

### [Kempa & Prezza, STOC 2018]

Dictionary compressors can be interpreted as approximation algorithms for the smallest string attractor.

- Minimum size of an attractor gives us
  - lower and upper bounds for dictionary compression methods
  - direct stringological measure instead of the result of a specific compression method

• Repetitiveness measures also upper bounds for the smallest string attractor

### [Kempa & Prezza, STOC 2018]

Dictionary compressors can be interpreted as approximation algorithms for the smallest string attractor.

- Minimum size of an attractor gives us
  - lower and upper bounds for dictionary compression methods
  - direct stringological measure instead of the result of a specific compression method
- Finding the smallest attractor size is NP-hard
  - $\bullet \rightarrow$  CoW approach:

structural assumption (e.g., special classes of words) may make the computation tractable

< ロ > < 同 > < 回 > < 回 >

### 2 String attractors overview

< A > <

Definition: Let  $w = w_0 w_1 \dots w_n$  be a word, let  $u = w_i w_{i+1} \dots w_j$  be its factor. Then  $\{i, i+1, \dots, j\}$  is an *occurrence* of u in w.

国际 化国际

Definition: Let  $w = w_0 w_1 \dots w_n$  be a word, let  $u = w_i w_{i+1} \dots w_j$  be its factor. Then  $\{i, i+1, \dots, j\}$  is an *occurrence* of u in w.

#### Definition of a string attractor [Prezza, ICTCS 2017]

Let  $w = w_0 w_1 \dots w_n$  be a finite word over alphabet  $\mathcal{A}$ . A string attractor of w is a set of positions  $\Gamma \subseteq \{0, \dots, n\}$  such that every substring of w has an occurrence containing an element of  $\Gamma$ .

ヘロト 人間ト ヘヨト ヘヨト

Definition: Let  $w = w_0 w_1 \dots w_n$  be a word, let  $u = w_i w_{i+1} \dots w_j$  be its factor. Then  $\{i, i+1, \dots, j\}$  is an *occurrence* of u in w.

#### Definition of a string attractor [Prezza, ICTCS 2017]

Let  $w = w_0 w_1 \dots w_n$  be a finite word over alphabet  $\mathcal{A}$ . A string attractor of w is a set of positions  $\Gamma \subseteq \{0, \dots, n\}$  such that every substring of w has an occurrence containing an element of  $\Gamma$ .

#### Example:

$$w = 012300123012$$

$$\Gamma = \{2, 3, 4, 8, 10\} \leftrightarrow w = 012300123012$$

・ロト ・何ト ・ヨト ・ヨト

Definition: Let  $w = w_0 w_1 \dots w_n$  be a word, let  $u = w_i w_{i+1} \dots w_j$  be its factor. Then  $\{i, i+1, \dots, j\}$  is an *occurrence* of u in w.

#### Definition of a string attractor [Prezza, ICTCS 2017]

Let  $w = w_0 w_1 \dots w_n$  be a finite word over alphabet  $\mathcal{A}$ . A string attractor of w is a set of positions  $\Gamma \subseteq \{0, \dots, n\}$  such that every substring of w has an occurrence containing an element of  $\Gamma$ .

#### Example:

$$w = 012300123012$$

$$\Gamma = \{2, 3, 4, 8, 10\} \leftrightarrow w = 012300123012$$

$$\Gamma^* = \{2, 3, 4, 10\} \leftrightarrow w = 012300123012$$

・ロト ・何ト ・ヨト ・ヨト

Definition: Let  $w = w_0 w_1 \dots w_n$  be a word, let  $u = w_i w_{i+1} \dots w_j$  be its factor. Then  $\{i, i+1, \dots, j\}$  is an *occurrence* of u in w.

#### Definition of a string attractor [Prezza, ICTCS 2017]

Let  $w = w_0 w_1 \dots w_n$  be a finite word over alphabet  $\mathcal{A}$ . A string attractor of w is a set of positions  $\Gamma \subseteq \{0, \dots, n\}$  such that every substring of w has an occurrence containing an element of  $\Gamma$ .

### Example:

$$w = 012300123012$$

$$\Gamma = \{2, 3, 4, 8, 10\} \leftrightarrow w = 012300123012$$

$$\Gamma^* = \{2, 3, 4, 10\} \leftrightarrow w = 012300123012$$

$$\Gamma^* = \{3, 5, 7, 10\} \leftrightarrow w = 012300123012$$

 $\Gamma^* =$  some attractor with the minimum length

イロト 不得 トイラト イラト 二日

### Overview of attractors in CoW

In CoW, minimal attractors have been determined for

イロト イポト イヨト イヨト

э

### Overview of attractors in CoW

In CoW, minimal attractors have been determined for

- particular prefixes
  - of standard Sturmian sequences by Mantaci, Restivo, Romana, Rosone, Sciortino, 2021
  - of the Thue-Morse sequence by Kutsukake et al., 2020

### Overview of attractors in CoW

In CoW, minimal attractors have been determined for

- particular prefixes
  - of standard Sturmian sequences by Mantaci, Restivo, Romana, Rosone, Sciortino, 2021
  - of the Thue-Morse sequence by Kutsukake et al., 2020
- for prefixes
  - of standard Sturmian sequences by Restivo, Romana, Sciortino, 2022
  - of the Tribonacci sequence by Schaeffer & Shallit, 2021
  - of the Thue-Morse sequence by Schaeffer & Shallit, 2021
  - of the period-doubling sequence by Schaeffer & Shallit, 2021
  - of the powers of two sequence by Schaeffer & Shallit, 2021

In CoW, minimal attractors have been determined for

- particular prefixes
  - of standard Sturmian sequences by Mantaci, Restivo, Romana, Rosone, Sciortino, 2021
  - of the Thue-Morse sequence by Kutsukake et al., 2020
- for prefixes
  - of standard Sturmian sequences by Restivo, Romana, Sciortino, 2022
  - of the Tribonacci sequence by Schaeffer & Shallit, 2021
  - of the Thue-Morse sequence by Schaeffer & Shallit, 2021
  - of the period-doubling sequence by Schaeffer & Shallit, 2021
  - of the powers of two sequence by Schaeffer & Shallit, 2021
- for factors
  - of episturmian sequences by Dvořáková, 2022
  - of the Thue-Morse sequence by Dolce, 2023

- Schaeffer & Shallit, 2021: study of attractors in linearly recurrent and in automatic sequences
- Restivo, Romana, Sciortino, 2022: combinatorial properties of attractors (relation to factor complexity, recurrence function, etc.), study of attractors in fixed points of morphisms
- Romana: String Attractor: a Combinatorial Object from Data Compression, 2022
- Gheeraert, Romana, Stipulanti, 2023: study of attractors in fixed points of k-bonacci-like morphisms

### 1 Motivation

2 String attractors overview

### 3 Palindromic closures and Sturmian sequences

Pseudopalindromic closures and Rote sequences

### Open questions

< A > <

### Way to generate Sturmian sequences: Palindromic closures

#### **Palindromes:**

Word u is a *palindrome* if it reads the same forward and backward.

**e.g.** 1001, 11011, 10101

#### **Palindromes:**

Word u is a *palindrome* if it reads the same forward and backward.

**e.g.** 1001, 11011, 10101

### **Palindromic closure**

Palindromic closure of u is the shortest palindrome having u as a prefix.

e.g. 100  $\rightarrow$  1001, 1011  $\rightarrow$  101101

#### **Palindromes:**

Word u is a *palindrome* if it reads the same forward and backward.

**e.g.** 1001, 11011, 10101

### **Palindromic closure**

Palindromic closure of u is the shortest palindrome having u as a prefix.

e.g. 100  $\rightarrow$  1001, 1011  $\rightarrow$  101101

[X. Droubay, J. Justin, G. Pirillo, 2001]

#### Algorithm for generating Sturmian sequences

- Take any binary sequence (= directive sequence)
- Add letters from directive sequence one by one to generated word
- After each letter addition, make a palindromic closure

Directive sequence  $\Delta = (01)^{\omega} = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \dots$ 

### Attractors of Sturmian sequences via palindromic closures

Directive sequence 
$$\Delta = (01)^{\omega} = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots$$
  
 $u_1 = 0$ 

### Attractors of Sturmian sequences via palindromic closures

Directive sequence 
$$\Delta = (01)^{\omega} = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots$$
  
 $u_1 = 0$   
 $u_2 = 01$ 

### Attractors of Sturmian sequences via palindromic closures

Directive sequence 
$$\Delta = (01)^{\omega} = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots$$
  
 $u_1 = 0$   
 $u_2 = 010$ 

Directive sequence 
$$\Delta = (01)^{\omega} = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots$$
  
 $u_1 = 0$   
 $u_2 = 0 \ 1 \ 0$   
 $u_3 = 0 \ 1 \ 0 \ 0$ 

Directive sequence 
$$\Delta = (01)^{\omega} = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots$$
  
 $u_1 = 0$   
 $u_2 = 010$   
 $u_3 = 010010$ 

Directive sequence  $\Delta = (01)^{\omega} = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots$  $u_1 = 0$  $u_2 = 010$  $u_3 = 0 \ 100 \ 10$  $u_4 = 0100 \ 101 \ 0010$ 

Directive sequence  $\Delta = (01)^{\omega} = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots$   $u_1 = 0$   $u_2 = 010$   $u_3 = 0 \ 1 \ 0 \ 10$   $u_4 = 0100 \ 1010010$  $u_5 = 010010 \ 1010010$ 

Directive sequence  $\Delta = (01)^{\omega} = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots$   $u_1 = 0$   $u_2 = 010$   $u_3 = 010010$   $u_4 = 01001010010$   $u_5 = 01001010010010$ :

Highlights mark the *longest palindromic prefixes* followed by 0 and 1

Directive sequence  $\Delta = (01)^{\omega} = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \dots$   $u_1 = 0$   $u_2 = 010$   $u_3 = 010010$   $u_4 = 010010100$  $u_5 = 01001010000000$ 

Highlights mark the *longest palindromic prefixes* followed by **0** and **1 Longest palindromic prefixes followed by distinct letters** mark attractors for all palindromic prefixes of standard Sturmian words [L. Dvořáková, 2022]

# Attractors of episturmian sequences via palindromic closures

 $\rightarrow$  generalizing for any alphabet size

< ∃⇒

# Attractors of episturmian sequences via palindromic closures

 $\rightarrow$  generalizing for any alphabet size

### Example: Tribonacci sequence

Directive sequence  $\Delta = (012)^{\omega} = 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ \cdots$
$\rightarrow$  generalizing for any alphabet size

#### Example: Tribonacci sequence

Directive sequence 
$$\Delta = (012)^{\omega} = 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ \cdots$$
  
 $u_1 = 0$ 

 $\rightarrow$  generalizing for any alphabet size

#### Example: Tribonacci sequence

I

Directive sequence 
$$\Delta = (012)^{\omega} = 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ \cdots$$
  
 $u_1 = 0$   
 $u_2 = 010$ 

 $\rightarrow$  generalizing for any alphabet size

#### Example: Tribonacci sequence

Directive sequence  $\Delta = (012)^{\omega} = 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1 \ 2 \dots$  $u_1 = 0$  $u_2 = 010$  $u_3 = 0102010$ 

 $\rightarrow$  generalizing for any alphabet size

#### Example: Tribonacci sequence

Directive sequence  $\Delta = (012)^{\omega} = 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ \cdots$  $u_1 = 0$  $u_2 = 010$  $u_3 = 0102010$  $u_4 = 01020100102010$ 

 $\rightarrow$  generalizing for any alphabet size

#### Example: Tribonacci sequence

Directive sequence  $\Delta = (012)^{\omega} = 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ \cdots$   $u_1 = 0$   $u_2 = 010$   $u_3 = 0102010$   $u_4 = 01020100102010$  $u_5 = 01020100102010102010$ 

The *longest palindromic prefixes* followed by distinct letters form attractors for episturmian words. [L. Dvořáková, 2022]

V. Hendrychová, L. Dvořáková

- Pseudopalindromic closures and Rote sequences

< A > <

#### Definition

Complementary-symmetric (CS) Rote sequences are binary sequences having complexity 2n and such that their language is closed under letter exchange.

Closely connected to Sturmian sequences by words' sum:

#### Definition

Complementary-symmetric (CS) Rote sequences are binary sequences having complexity 2n and such that their language is closed under letter exchange.

Closely connected to Sturmian sequences by words' sum:

#### Definition

Complementary-symmetric (CS) Rote sequences are binary sequences having complexity 2n and such that their language is closed under letter exchange.

Closely connected to Sturmian sequences by words' sum:

#### Structural theorem [G. Rote, 1994]

A binary sequence w is a CS Rote sequence if and only if the sequence S(w) is a Sturmian sequence.

ヘロン 人間 とくほとう ほとう

# How can we obtain Rote attractors from Sturmian ones?

- ∢ ⊒ →

# How can we obtain Rote attractors from Sturmian ones?

It seems that we cannot - not with known attractors of palindromic prefixes for Sturmian words.

It seems that we cannot - not with known attractors of palindromic prefixes for Sturmian words.

#### Example:

Rote:  $w = 0011 \underline{10}0011$  - unique factor underlined Sturmian:  $u = 0100 \underline{1}0010$  - attractor should contain this position It seems that we cannot - not with known attractors of palindromic prefixes for Sturmian words.

#### Example:

Rote:  $w = 0011 \underline{10}0011$  - unique factor underlined Sturmian:  $u = 0100 \underline{1}0010$  - attractor should contain this position

Currently known Sturmian attractors:

 $u = 010010010 \qquad \qquad u = 010010010$ 

No straightforward way how to obtain the necessary position from these.

# Back to closures: Generalized pseudostandard sequences

#### Antipalindromes (on binary alphabet):

Word w is an *antipalindrome* if it reads forward and backward the same, only with letter exchange  $(\overline{1} = 0, \overline{0} = 1)$ .

**e.g.** 1010, 110100, 10110010

# Back to closures: Generalized pseudostandard sequences

### Antipalindromes (on binary alphabet):

Word w is an *antipalindrome* if it reads forward and backward the same, only with letter exchange  $(\overline{1} = 0, \overline{0} = 1)$ .

**e.g.** 1010, 110100, 10110010

#### Antipalindromic closure

Antipalindromic closure of w is the shortest antipalindrome having w as a prefix.

e.g. 100  $\rightarrow$  100110, 101  $\rightarrow$  1010

# Back to closures: Generalized pseudostandard sequences

### Antipalindromes (on binary alphabet):

Word w is an *antipalindrome* if it reads forward and backward the same, only with letter exchange  $(\overline{1} = 0, \overline{0} = 1)$ .

**e.g.** 1010, 110100, 10110010

#### Antipalindromic closure

Antipalindromic closure of w is the shortest antipalindrome having w as a prefix.

e.g. 100  $\rightarrow$  100110, 101  $\rightarrow$  1010

#### Algorithm for generating generalized pseudostandard sequences

- Take any binary bisequence (= directive bisequence) specifying letters  $\{0,1\}$  and closures  $\{R,E\}$
- Add letters from directive bisequence one by one to generated word
- After each letter addition, make an (anti)palindromic closure

# Rote sequences are subset of generalized pseudostandard sequences

#### Theorem [Blondin-Massé A. et al., 2013]

Let  $(\Delta, \Theta)$  be a directive bisequence. Then *w* generated by this bisequence is a standard CS Rote sequence if and only if *w* is aperiodic and no factor of the directive bisequence is in the following sets: { $(ab, EE) : a, b \in \{0, 1\},$ { $(aa, RR) : a \in \{0, 1\},$ { $(aa, RE) : a \in \{0, 1\}.$ 

Omitting these pairs in the bisequence, we can generate Rote sequences using pseudopalindromic closures!

イロト イポト イヨト イヨト

CS Rote sequences generated by pseudopalindromic closures omitting the following patterns:

```
 \{ (ab, EE) : a, b \in \{0, 1\} \} \cup \{ (a\overline{a}, RR) : a \in \{0, 1\} \} \cup \\ \{ (aa, RE) : a \in \{0, 1\} \}
```

#### Example:

CS Rote sequences generated by pseudopalindromic closures omitting the following patterns:

```
 \{ (ab, EE) : a, b \in \{0, 1\} \} \cup \{ (a\overline{a}, RR) : a \in \{0, 1\} \} \cup \\ \{ (aa, RE) : a \in \{0, 1\} \}
```

#### Example:

 $\Delta = 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad \dots$  $\Theta = R \quad R \quad E \quad R \quad E \quad R \quad \dots$  $W_1 = 0$ 

(人間) トイヨト イヨト

CS Rote sequences generated by pseudopalindromic closures omitting the following patterns:

```
 \{ (ab, EE) : a, b \in \{0, 1\} \} \cup \{ (a\overline{a}, RR) : a \in \{0, 1\} \} \cup \\ \{ (aa, RE) : a \in \{0, 1\} \}
```

#### Example:

 $\Delta = \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \dots$  $\Theta = \mathbf{R} \quad \mathbf{R} \quad \mathbf{E} \quad \mathbf{R} \quad \mathbf{E} \quad \mathbf{R} \quad \dots$ 

< 4 → <

CS Rote sequences generated by pseudopalindromic closures omitting the following patterns:

```
\{(ab, EE) : a, b \in \{0, 1\}\} \cup \{(a\overline{a}, RR) : a \in \{0, 1\}\} \cup
\{(aa, RE) : a \in \{0, 1\}\}
```

#### Example:

 $\Delta = 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ \dots$  $\Theta = R R E R E R \dots$ 



< 4 → <

CS Rote sequences generated by pseudopalindromic closures omitting the following patterns:

```
\{(ab, EE) : a, b \in \{0, 1\}\} \cup \{(a\overline{a}, RR) : a \in \{0, 1\}\} \cup
\{(aa, RE) : a \in \{0, 1\}\}
```

#### Example:

- $\Delta = 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0$  $\Theta = R R E R E R \dots$  $W_1$ W<sub>2</sub> =00 $W_3 = 0011$ 
  - $w_4 = 0011100$

< A > <

CS Rote sequences generated by pseudopalindromic closures omitting the following patterns:

```
 \{ (ab, EE) : a, b \in \{0, 1\} \} \cup \{ (a\overline{a}, RR) : a \in \{0, 1\} \} \cup \\ \{ (aa, RE) : a \in \{0, 1\} \}
```

#### Example:



$$w_2 = 00$$

- $w_3 = 00\frac{1}{1}$
- <mark>w4</mark> =0011<mark>1</mark>00
- <mark>₩5</mark> =0011100<mark>0</mark>11

< 回 > < 回 > < 回 >

CS Rote sequences generated by pseudopalindromic closures omitting the following patterns:

```
 \{ (ab, EE) : a, b \in \{0, 1\} \} \cup \{ (a\overline{a}, RR) : a \in \{0, 1\} \} \cup \\ \{ (aa, RE) : a \in \{0, 1\} \}
```

#### Example:



$$w_2 = 000$$

- $w_3 = 0011$
- $w_4 = 0011 \frac{1}{1} 00$
- <mark>₩5</mark> =0011100<mark>0</mark>11
- $w_6 = 001110001100011100$

CS Rote sequences generated by pseudopalindromic closures omitting the following patterns:

$$\begin{array}{l} \{(ab, EE) : a, b \in \{0, 1\}\} \cup \{(a\overline{a}, RR) : a \in \{0, 1\}\} \cup \\ \{(aa, RE) : a \in \{0, 1\}\} \end{array}$$

#### Example:

- $\Delta = \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \dots$  $\Theta = \mathbf{R} \quad \mathbf{R} \quad \mathbf{E} \quad \mathbf{R} \quad \mathbf{E} \quad \mathbf{R} \quad \dots$ 
  - w<sub>1</sub> = 0
  - $w_2 = 00$
  - $w_3 = 0011$
  - $w_4 = 0011 \frac{1}{1} 00$
  - <mark>₩5</mark> =0011100<mark>0</mark>11
  - $w_6 = 001110001100011100$

Can we use the longest

pseudopalindromic prefixes

followed by distinct letters

to obtain attractors

of pseudopalindromic prefixes

of Rote sequences?

#### Theorem [Dvořáková L., Hendrychová V., 2023]

Assume  $(\Delta, \Theta)$  is the directive bisequence of a standard CS Rote sequence w, and  $w_n$  contains both letters. Then

• If  $w_n$  is antipalindromic,  $w_n$  has an attractor  $\Gamma = \{|w_i|, |w_{n-1}|\}$ , where  $w_i$  is the longest antipalindromic prefix followed by  $\overline{\Delta[n]}$  in w.

#### Theorem [Dvořáková L., Hendrychová V., 2023]

Assume  $(\Delta, \Theta)$  is the directive bisequence of a standard CS Rote sequence w, and  $w_n$  contains both letters. Then

- If  $w_n$  is antipalindromic,  $w_n$  has an attractor  $\Gamma = \{|w_i|, |w_{n-1}|\}$ , where  $w_i$  is the longest antipalindromic prefix followed by  $\overline{\Delta[n]}$  in w.
- If w<sub>n</sub> is palindromic and w<sub>n-1</sub> is antipalindromic, w<sub>n</sub> has an attractor Γ = {|w<sub>j</sub>|, |w<sub>n-1</sub>|}, where w<sub>j</sub> is the longest palindromic prefix followed by Δ[n] in w.

く 伺 ト く ヨ ト く ヨ ト

#### Theorem [Dvořáková L., Hendrychová V., 2023]

Assume  $(\Delta, \Theta)$  is the directive bisequence of a standard CS Rote sequence w, and  $w_n$  contains both letters. Then

- If  $w_n$  is antipalindromic,  $w_n$  has an attractor  $\Gamma = \{|w_i|, |w_{n-1}|\}$ , where  $w_i$  is the longest antipalindromic prefix followed by  $\overline{\Delta[n]}$  in w.
- If w<sub>n</sub> is palindromic and w<sub>n-1</sub> is antipalindromic, w<sub>n</sub> has an attractor Γ = {|w<sub>j</sub>|, |w<sub>n-1</sub>|}, where w<sub>j</sub> is the longest palindromic prefix followed by Δ[n] in w.
- So If  $w_n$  is palindromic and  $w_{n-1}$  is palindromic,  $w_n$  has the same attractor as  $w_{n-1}$ .

 $\rightarrow$  The form of attractor depends not only on the current closure, but also on the preceding one.

イロト イポト イヨト イヨト

# Example: Attractor of Rote sequence

"LPPn" = longest palindromic prefix followed by n

"LAP n" = longest antipalindromic prefix followed by nExample:



イロト 不得 トイヨト イヨト

# Example: Attractor of Rote sequence

"LPPn" = longest palindromic prefix followed by n

"LAP n" = longest antipalindromic prefix followed by n**Example:** 



イロト 不得 トイヨト イヨト

# Example: Attractor of Rote sequence

"LPPn" = longest palindromic prefix followed by n

"LAPn" = longest antipalindromic prefix followed by n

- Example:



## 1 Motivation

- 2 String attractors overview
- 3 Palindromic closures and Sturmian sequences
- Pseudopalindromic closures and Rote sequences

### 5 Open questions

・ 同 ト ・ ヨ ト ・ ヨ ト

- What are the attractors of prefixes of generalized pseudostandard sequences?
  - i.e. what if we don't omit any (anti)palindromic combinations in the generating bisequence?

- What are the attractors of prefixes of generalized pseudostandard sequences?
  - i.e. what if we don't omit any (anti)palindromic combinations in the generating bisequence?
  - For Thue-Morse word min. size 4
  - For pseudostandard sequences (only E closures) min. size 3
  - But generally it is unknown

- What are the attractors of prefixes of generalized pseudostandard sequences?
  - i.e. what if we don't omit any (anti)palindromic combinations in the generating bisequence?
  - For Thue-Morse word min. size 4
  - For pseudostandard sequences (only E closures) min. size 3
  - But generally it is unknown
- What about attractors of (generalized) pseudostandard sequences over **larger alphabets**?

- What are the attractors of prefixes of generalized pseudostandard sequences?
  - i.e. what if we don't omit any (anti)palindromic combinations in the generating bisequence?
  - For Thue-Morse word min. size 4
  - For pseudostandard sequences (only E closures) min. size 3
  - But generally it is unknown
- What about attractors of (generalized) pseudostandard sequences over **larger alphabets**?
- How does the minimum attractor size affect the **form of examined words compressed** by dictionary compressors? Do they also remain constant?
## Thank you for your attention!