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Plan for the Week

Lecture 1 (Monday)

Probabilistic Notions of (Time-Bounded) Kolmogorov Complexity

“Unconditional results & applications to average-case complexity”

Connections to Cryptography and Complexity Theory

“Major questions in complexity are equivalent to statements about Kolmogorov Complexity”
OWEF P vs NP

Lecture 3 (Thursday)
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61 62 63 64 65 66 67 68 69 70

7172 7374 7576 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100




What this lecture is about

Computational Complexity Theory versus Kolmogorov Complexity Theory

NP vs BPP Theory of
Time-Bounded

DistNP vs HeurBPP
Kolmogorov

Existence of OWFs Complexity

Based on joint work with Shuichi Hirahara, Rahul llango, Zhenjian Lu, and Mikito Nanashima



Key principles of Kolmogorov complexity

Q. Do these principles survive

Incompressibility in the time-bounded setting?

Symmetry of Information (Sol) (even predates the P vs NP problem [Levin’03])

Coding Results:

Equivalences to main conjectures
Language Compression of complexity theory




—)

Average-case conditional coding

A1.0.0WFs Average-case conditional language
compression
Average-case Sol
Worst-case conditional coding
NP € BPP * Worst-case Sol

Worst-case conditional language
compression

(NP < AvgBPP suffices)

NP € HeurBPP

“Independent average-case”
conditional coding

“Independent average-case”
conditional language compression

 “Independent average-
case” Sol

Almost complete picture, but fully understanding the role of Symmetry of Information

remains a mystery




Background and Main Result

(Focus on Symmetry of Information and OWFs)



Kolmogorov Complexity

string x short encoding of x

01001101...0111010111

010001110

A 4

Kolmogorov Complexity:

K(x) = mﬂi/ln {IM| : U(M) outputs x}

"minimum length of a program that recovers x”




Kolmogorov Complexity

string x short encoding of x

01001101...0111010111

010001110

A 4

Conditional Kolmogorov Complexity:

K(x|y) = ml\i/ln {IM|: UM, y) outputs x}

"minimum length of a program that recovers x given y”




Time-Bounded Kolmogorov Complexity

t-time-bounded Kolmogorov complexity:

Kt (x) = mni/ln {IM]| : U(M) outputs x within t(|x|) steps}




Symmetry of Information

K(x,y) s K(x) + K(y | x)




Symmetry of Information

K(x,y) s K(x) + K(y | x)

Symmetry of information (Sol) for time-unbounded Kolmogorov complexity:

K(x,y) = K(x) + K(y | x)




Symmetry of Information

K(x,y) s K(x) + K(y | x)

Symmetry of information (Sol) for time-unbounded Kolmogorov complexity:

K(x,y) = K(x) + K(y | x)

K(x) + K(y | x) = K(x,y) = K(y) + K(x | y)




Symmetry of Information

K(x,y) s K(x) + K(y | x)

Symmetry of information (Sol) for time-unbounded Kolmogorov complexity:

K(x,y) = K(x) + K(y | x)

K(x) + ~ K(x,y) = + K(x | y)

K(x) —K(x |y) = -




Symmetry of Information

K(x,y) s K(x) + K(y | x)

Symmetry of information (Sol) for time-unbounded Kolmogorov complexity:

K(x,y) = K(x) + K(y | x)

K(x) + ~ K(x,y) = + K(x | y)

K(x) —K(x |y) = -

Sol Principle in Shannon’s

H(X) - H(X | ¥) = H(Y) — H(¥ | X) Information Theory




Symmetry of Information

K(x,y) s K(x) + K(y | x)

Symmetry of information (Sol) for time-unbounded Kolmogorov complexity:

K(x,y) = K(x) + K(y | x)

Does symmetry of information hold in the time-bounded setting, for Kt?

K*(x,y) = KPOYO () + KPOY O (y | x) — 0(log t(Ix] + ly])




Symmetry of Information and One-Way Functions

Definition (One-Way Functions):

An efficiently computable function £:{0,1}" - {0,1}" is a one-way
function if for every probabilistic polynomial-time algorithm A,

Pr [A(f(0) € fTH(F ()] < 1/n®®




Symmetry of Information and One-Way Functions

Definition (One-Way Functic

OWFs are both necessary and
sufficient for:

An efficiently compu

functioniffor every - _ private-key encryption [GM84, HILL99)]

- Pseudorandom generators [HILL99]
- Authentication schemes [FS90]

- Pseudorandom functions [GGM84]
- Digital signatures [Rompel90]

P

- Commitment schemes [Naor90]
- Coin-tossing [Blum84]



Symmetry of Information and One-Way Functions

Definition (One-Way Functions):

An efficiently computable function £:{0,1}"* — {0,1}" is a one-way
function if for every probabilistic polynomial-time algorithm A,

Pr [A(f(0) € fTH(F ()] < 1/n®®

Theorem [Longpre-Watanabe’95]:

One-way functions exist No symmetry of information for K¢

—
4=
7



Symmetry of Information and One-Way Functions

Definition (One-Way Functions):

An efficiently computable function £:{0,1}" - {0,1}" is a one-way
function if for every probabilistic polynomial-time algorithm A,

Pr [A(f(0) € fTH(F ()] < 1/n®®

Two key points:

symmetry of information? --- Consider “average” pairs (x,y)

* Probabilistic versions of time-bounded Kolmogorov complexity?



Probabilistic Versions of Kolmogorov Complexity @%
). -/

of

Randomized t-time-bounded Kolmogorov complexity:

rkt(x) = mkin{ k : 3 t(|x|) time program M € {0,1}* s.t. Pr [M outputs x] =

randomness of M

}

wliN

There exists a fixed small (randomized) program that outputs x w.h.p over its internal randomness



Probabilistic Versions of Kolmogorov Complexity @}
). -/

(4

Randomized t-time-bounded Kolmogorov complexity: ‘

rkt(x) = mkin{ k : 3 t(|x|) time program M € {0,1}* s.t. Pr [M outputs x] =

randomness of M

}

wliN

There exists a fixed small (randomized) program that outputs x w.h.p over its internal randomness

Probabilistic t-time-bounded Kolmogorov complexity:

pKf(x) = mkin{ k : Pr [3 M €{0,1}* s.t. M(w) outputs x within t(|x]|) steps] > %}

we{0,1}¢0xD)

For most w, there exists a small program, which can depend on w, that outputs x given w



Symmetry of Information and One-Way Functions

Theorem:;

One-way functions do not exist

)

¢ ” Sol for

pKP°Y holds

The following are equivalent:

* One-way functions do not exist.

* For every poly-time-samplable distribution {D,,} over {0,1}" x {0,1}", constant
c = 0, and sufficiently large t = poly(n), there are infinitely many n such that

Pr [pK'(x,y) = pK'(x) + pK*(y | x) —logt(n)] =1 —1/n°




Symmetry of Information and One-Way Functions

Theorem:;

One-way functions do not exist

)

¢ ” Sol for

pKP°Y holds

The following are equivalent:

 Infinitely-often one-way functions do not exist.

* For every poly-time-samplable distribution {D,,} over {0,1}" x {0,1}", constant
c = 0, and sufficiently large t > poly(n), and for all but finitely many n,

Pr [pK'(x,y) = pK'(x) + pK*(y | x) —logt(n)] =1 —1/n°




Relevance to the foundations of cryptography

Failure of symmetry of information
for a non-negligible fraction of pairs (x,y) of strings
produced by a samplable distribution is all we need to
construct key cryptographic primitives and protocols



What about rKrely ?



Symmetry of Information and One-Way Functions

Theorem:;

Quasipoly-time secure one-way

“ ” Sol for

)

functions do not exist

rKIuasipoly Rolds

The following are equivalent:

e Quasipoly-time secure one-way functions do not exist.

* For every poly-time-samplable distribution {D,,} over {0,1}" x {0,1}", constant
c = 0, and sufficiently large t > quasipoly(n), there are infinitely many n such
that




Techniques (pKreW)



Map of Proofs for pKPoY

1. 7 One-Way Functign

[3. Conditional Coding

(average-case)

4. Language Compressiol

1

(average-case)

2. Symmetry of Information

(average-case)



Map of Proofs for pKPoY

1. 7 One-Way Functign

Similar to [LW95]

4. Language Compression

(average-case)

[3. Conditional Coding 2. Symmetry of Information
(average-case) ~ v (average-case)




Map of Proofs for pKPoY

1. 7 One-Way Functign

[3. Conditional Coding

(average-case)

4. Language Compressiol

(average-case)

2. Symmetry of Information

(average-case)



Coding Theorem

Coding theorem for time-unbounded Kolmogorov complexity:

A computable distribution D that
samples x with probability D (x)

—)

K(x) < log<

D(x)

)




Coding Theorem

Coding theorem for time-unbounded Kolmogorov complexity:

A computable distribution D that
samples x with probability D (x)

—)

We don’t have a coding theorem for KP°Y

K(x) < log<

D(x)

)




Coding Theorem

Coding theorem for time-unbounded Kolmogorov complexity:

A computable distribution D that
samples x with probability D (x)

—)

We don’t have a coding theorem for KP°Y

An efficiently samplable distribution D
that samples x with probability D (x)

?

—)

1
K(x) < log <D (x))

KPoY (x) < log ( 0O

)




Coding Theorem

Theorem [Lu-Oliveira-Zimand’22]:

For every poly-time-samplable distribution {D,,} over {0,1}"*, and every
x € support(D,,)

pKPolY (x) < log< ) + O(logn)

Dy, (x)




Coding Theorem

Theorem [Lu-Oliveira-Zimand’22]:

For every poly-time-samplable distribution {D,,} over {0,1}"*, and every
x € support(D,,)

pKPolY (x) < log< ) + O(logn)

Dy, (x)

Incompressibility (extension of counting areument):

K(x) = log(1/D,,(x)) w.h.p over x ~ D,




Coding Theorem

Theorem [Lu-Oliveira-Zimand’22]:

For every poly-time-samplable distribution {D,,} over {0,1}"*, and every
x € support(D,,)

pKPolY (x) < log< ) + O(logn)

Dy, (x)

Incompressibility (extension of counting areument):

K(x) = log(1/D,,(x)) w.h.p over x ~ D,

Corollary:

pKPolY (x) = log(1/D,(x)) w.h.p over x ~ D,




Conditional Coding

Definition (Conditional Coding for pK):

For every poly-time-samplable distribution {D,,} over {0,1}"* x {0,1}", and
every (x,y) € support(D,,)

pKPY (x |y) S 108(

)
Dn(x|y)




Conditional Coding

Definition (Conditional Coding for pK):

For every poly-time-samplable distribution {D,,} over {0,1}"* x {0,1}", and
every (x,y) € support(D,,)

pKPOY(x | y) S 10g<

)
Dn(x|y)

Definition ( Conditional Coding for pK):

For every poly-time-samplable distribution {D,} over {0,1}" x {0,1}",

1 1
Pr |pKPY(x|y) < log (D 1 y)) ] >1 - Doy (1)
n




Lemma:

Conditional Coding and Sol

Average-case conditional coding

holds

)

Average-case Sol

holds




Conditional Coding and Sol

Average-case Sol

holds

Lemma:
Average-case conditional coding ‘
holds
Proof:
Pr  |pKPY(x|y) < log ! >1—1/n%M
(%,y)~Dn D(x|y)




Lemma:

Proof:

Conditional Coding and Sol

Average-case conditional coding
holds

—

1
PKPOY (x | y) < log ( Ies y))

_______________________________________________

Average-case Sol

holds




Lemma:

Proof:

Conditional Coding and Sol

Average-case conditional coding
holds

—

1
pKPW (x | y) < log <D(x | y)>

_______________________________________________

Average-case Sol

holds




Lemma:

Proof:

Conditional Coding and Sol

Average-case conditional coding
holds

—

1
pKPW (x | y) < log <D(x | y)>

_______________________________________________

Average-case Sol

holds




Conditional Coding and Sol

Lemma:

Average-case conditional coding
holds

Proof:

—

1
pKPOY(x | ) 5 log ( Ies y))

D® (y)>

KPol(x | y) S lo <
PRI = 08\ 5 y)

_______________________________________________

Average-case Sol

Because D(x | y) =

holds

D(x.y)
D@ (y)




Lemma:

Proof:

Conditional Coding and Sol

Average-case conditional coding

holds

—

1
PKPOY (x | y) < log ( Ies y))

Dm@))

KPol(x | y) S lo <
PRI = 8\ 5 y)

1 1
Kpoly <1 —1
P (1) = log <D (x, y)) = (D @) (y)

)

_______________________________________________

Average-case Sol

Because D(x | y) =

holds

D(x.y)
D@ (y)




Lemma:

Proof:

Conditional Coding and Sol

Average-case conditional coding

holds

—

1
PKPOY (x | y) < log ( Ies y))

D® (y)>

KPol(x | y) S lo <
PRI = 108\ D )

1 1
Kpoly < —1
b Ccly) = log (D(x, y)) o8 (D(Z) (v)

)

pKPOY (x | y) < pKPOY (x,y) — pKPOY(y)

Average-case Sol

Because D(x | y) =

holds

D(x.y)
D@ (y)

Because by coding theorem, pKP°Y (x,y) ~ log(
and pKPol (y) = log(

1
D@ (y)

) for most

1
D(x,y)

)



Lemma:

Proof:

Conditional Coding and Sol

Average-case conditional coding

holds

—

1
PKPOY (x | y) < log ( Ies y))

D® (y)>

KPol(x | y) S lo (
PRI = 108\ D )

1 1
Kpoly < —1
P Cely) = log (D(x, y)) o8 (D@(y)

)

Because by coding theorem, pKP°Y (x,y) ~ log(

pKPOY (x | y) < pKPOY (x,y) — pKPOY(y)

Average-case Sol

Because D(x | y) =

and pKPol (y) = log(

holds

D(xy) |
D@ (y)

1
D@ (y)

) for most

1
D(x,y)

)



Map of Proofs for pKPoY

1. 7 One-Way Functign

[3. Conditional Coding

(average-case)

4. Language Compressiol

(average-case)

2. Symmetry of Information

(average-case)



OWFs and Average-Case Conditional Coding

Lemma:

Infinitely-often one-way
functions do not exist

—)

Average-case conditional coding

holds

Proof Sketch: Assume we can invert OWFs, we want to show w.h.p over (x,y) ~ D

PKPY (x | y) < log (

)
D(x|y)




OWFs and Average-Case Conditional Coding

Lemma:

Infinitely-often one-way
functions do not exist

‘ Average-case conditional coding

holds

Proof Sketch: Assume we can invert OWFs, we want to show w.h.p over (x,y) ~ D

PKPY (x | y) < log (

)
D(x|y)

Theorem (Extrapolators) [Impagliazzo-Luby’89, Impagliazzo-Levin’90]:

One-way functions do not exist

=)

Efficiently sample D(- | y) (approximately) for
most y ~ D(?)




OWFs and Average-Case Conditional Coding

Lemma:

Infinitely-often one-way
functions do not exist

‘ Average-case conditional coding

holds

Proof Sketch: Assume we can invert OWFs, we want to show w.h.p over (x,y) ~ D

PKPY (x | y) < log (

)
D(x|y)

Theorem (Extrapolators) [Impagliazzo-Luby’89, Impagliazzo-Levin’90]:

One-way functions do not exist

=)

Efficiently sample D(- | y) (approximately) for
most y ~ D(?)

ldea:

» Use the efficient extrapolator as a proxy for the conditional distribution
» Apply the original coding theorem!




Extrapolation

Theorem [Impagliazzo-Luby’89, Impagliazzo-Levin’90]:

One-way functions do not exist

=)

Efficient simulation of D(- | y) for most y

~ D@

for all n

(2)
y~Dy

1 1
Pr, L EXTO), D, C Iy < —| 21—

If infinitely-often OWFs do not exist, then for every poly-time-samplable {D,,} over
{0,1}" x {0,1}" and c > 0, there is a poly-time randomized algorithm EXT, such that

nC




OWFs and Average-Case Conditional Coding

Lemma:
Infinitely-often one-way
functions do not exist
Proof Sketch:

—)

Average-case conditional coding

holds

« W.h.povery ~ D@, we have L,(EXT(y), D,,(: | ¥)) is small.




OWFs and Average-Case Conditional Coding

Lemma:
Infinitely-often one-way
functions do not exist
Proof Sketch:

—)

Average-case conditional coding

holds

« W.h.povery ~ D@, we have L,(EXT(y), D,,(: | ¥)) is small.

EXT(y) runs polynomial-time, so it yields some poly-time-samplable

distribution D3’,




OWFs and Average-Case Conditional Coding

Lemma:
Infinitely-often one-way
functions do not exist
Proof Sketch:

—)

Average-case conditional coding

holds

W.h.p over y ~ D®) we have L, (EXT(y), D,,(: | v)) is small.
EXT(y) runs polynomial-time, so it yields some poly-time-samplable

distribution D3’,

We can show L, (D}, D,,(: | y)) implies D), (x) ~ D, (x| y) for most x ~

D( [y)




OWFs and Average-Case Conditional Coding

Lemma:
Infinitely-often one-way
functions do not exist
Proof Sketch:

—)

Average-case conditional coding

holds

W.h.p over y ~ D®) we have L, (EXT(y), D,,(: | v)) is small.
EXT(y) runs polynomial-time, so it yields some poly-time-samplable

distribution D3’,

We can show L, (D}, D,,(- | y)) implies D}, (x) ~ D, (x| y) for most x

~D(|y)

By the original coding theorem for pKP°Y, for most (x,y) ~ D

« pKPUY(x|y) s log(

)~ e ()




Techniques (rKavasieoly)

Key Difficulty: We don’t have a coding theorem for rKrely



Main Technique for rKauasiPoly  (Key Perspective: Meta-Complexity)

Quasipoly-time secure one- '

way functions do not exist

\ [llango-Ren-Santhanam’22]

uasipoly-time algorithm for ] .
Q ) P .y - Generator construction with
approximating K(x | y) on average

(A distinguisher!) rKauasipoly raconstruction

 ‘/

rK9uasipoly (x| ) < K(x | y) + polylog(n)
for almost all (x,y) ~ D

“Average-case” Sol for rKauasipoly ho|ds

'y




General Theory



—)

A4 i.0.O0WFs

Average-case conditional coding

Average-case conditional language
compression

Average-case Sol




—)

Average-case conditional coding

A 1.0.0WFs Average-case conditional language
compression
Average-case Sol
Worst-case conditional coding
NP € BPP * Worst-case Sol

Worst-case conditional language
compression

(NP < AvgBPP suffices)




—)

Average-case conditional coding

A 1.0.0WFs Average-case conditional language
compression
Average-case Sol
Worst-case conditional coding
NP € BPP * Worst-case Sol

Worst-case conditional language
compression

(NP < AvgBPP suffices)

NP € HeurBPP

“Independent average-case”
conditional coding

“Independent average-case”
conditional language compression

 “Independent average-
case” Sol




) )

Average-case conditional coding

A 1.0.0WFs Average-case conditional language
compression
Average-case Sol
Worst-case conditional coding

NP € BPP

NP € HeurBPP

Worst-case conditional language * Worst-case Sol
compression (NP < AvgBPP suffices)

“Independent average-case”
conditional coding  “Independent average-

n
“Independent average-case” case” Sol
conditional language compression




Capturing average-case complexity

Theorem [This Work]:

DistNP € HeurBPP

)

‘Independent” Average-case
Conditional Coding for

pKP°Y holds




Capturing average-case complexity

Theorem [This Work]:

: ' ' ‘Independent” Average-case
C . .
DistNP < HeurBPP Conditional Coding for

nKPOY holds

The following are equivalent:
* DistNP € HeurBPP .

* For every poly-time-samplable distributions {D,,} over {0,1}" x {0,1}" and
{C,,} over {0,1}", and for every polynomial q, there is a polynomial p such
that for all large enough n

1
Pr pKPM(x | y) < log (D ] y)) + logp(m)| =1-1/q(n)

y~Cn, X~Dp(.|y)




Open Problems



) —)

* Average-case conditional coding
A i.0. OWFs .

Average-case conditional language
compression

* Average-case Sol

* Worst-case conditional coding

NP < BPP - Worst-case conditional language |° Worst-case Sol _
compression (NP € AvgBPP suffices)
* “Independent average-case”
NP € HeurBPP conditional coding * “Independent average-
case” Sol

* “Independent average-case”
conditional language compression

1. Understand the role of Sol in complexity theory:
Is there a natural computational assumption equivalent to worst-case Sol?

2. Applications of these characterizations?



Main Reference for Lecture 2:
Paper: “A duality between OWFs and average-case symmetry of information”

(2023)

(Joint work with S. Hirahara, R. llango, Z. Lu, and M. Nanashima)

Thank you



1.

Conditional Coding

(Worst-Case Conditional Coding) There exists a polynomial p such that for all n, and

(x,y) € Support(D,,)

pKP™ (2 | y) < log +log p(n).

D,(x | y)

(Independent Average-Case Conditional Coding) Let {D, },.cn and {C,},en be sam-
plable distribution families, where each D,, is over {0,1}" x {0,1}", and each C,, is over the
support of the second half of D,,. For every polynomial g, there exists a polynomial p such
that for all n,

1
q(n)

Pr [pr ") (2| y) < log

+ log p(n ] > 1 —
y~Crn,z~Dn(-|y) ()

Dn(ﬂf‘ ‘ y)

(Average-Case Conditional Coding) Let {D,},cn be samplable distribution family,
where each D,, is over {0, 1} x {0,1}". For every polynomial ¢, there exists a polynomial p
such that for all n,

1
q(n)

Pr {pr(”)(y | ) < log

+ log p(n } > 1 -
(m:y)N“Dn ( )

1
Dn(x | y)



Language Compression

. (Worst-Case Language Compression) Let L C {{0,1}" x {0,1}"},cx be a polynomial-

time computable set. There exists a polynomial p such that for all n, and y € {0,1}",

v €L, = pKI"(z|y) <log|L,| + logp(n).

. (Independent Average-Case Language Compression) Let L C {{0,1}" x {0,1}"},.en

be a recursively enumerable set. Let {D,, },,en and {C,, } ,en be samplable distribution families,
where each D,, is over {0,1}" x {0, 1}", and each C, is over the support of the second half of
D,,. For every polynomial ¢, there exists a polynomial p such that for all n,

Pr [r€L, = pKI™(a|y) <log|Ly| +logp(n)]| > 1-

y~Cr,2~Dn (-|y) q(n)

(Average-Case Language Compression) Let L C {{0,1}" x {0,1}"},cn be a recursively
enumerable set. Let {D,, },,en be samplable distribution family, where each D,, is over {0, 1}" x
{0,1}". For every polynomial g, there exists a polynomial p such that for all n,

Pr [:I:GL. — pKP" (2 | y) < log|L,| +logp(n)| > 1 — :
L y (| y) < log|Ly[ + logp(n) )



L.

Symmetry of Information

(Worst-Case Symmetry of Information) There exists a polynomial p such that for all
t > 2n and for all n and all z,y € {0,1}",

pK' (2, y) > pKP (x| y) + pKPY (1) — log p(t).

.

(Independent Average-Case Symmetry of Information) Let {D,, },,cx and {C,, },.en be
samplable distribution families, where each D, is over {0,1}" x {0,1}", and each C,, is over
the support of the second half of D,,. For every polynomial ¢, there exists a polynomial p
such that for every computable time bound ¢: N — N with ¢(n) > p(n) and for all n,

1
q(n)

PI. Kf(-rl) .1 > Kf(?i.) T | + Kf(-;l) , o logt n > 1 o
y~Cop,x~Dy(-|y) |:p ( 'J) =P ( | J) P (U) ( ):| =

(Average-Case Symmetry of Information) Let {D,, },,cry be samplable distribution fam-
ily, where each D,, is over {0, 1}" x {0,1}". For every polynomial ¢, there exists a polynomial
p such that for every computable time bound ¢: N — N with #(n) > p(n) and for all n,

1
q(n)

D [pKt(n)(% y) = pK'" (& | y) + pK'" (y) — log t(ﬂ-)] 21-
z,y)~Dn



