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Plan for the Week
Lecture 1 (Monday)

Lecture 2 (Tuesday)

Lecture 3 (Thursday)

Probabilistic Notions of (Time-Bounded) Kolmogorov Complexity

Connections to Cryptography and Complexity Theory

Connections to Algorithms (explicit constructions, generating primes, etc.)

“Major questions in complexity are equivalent to statements about Kolmogorov Complexity”

“Existence of large primes with efficient short descriptions”

P vs NPOWF

“Unconditional results & applications to average-case complexity”
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What this lecture is about

Computational Complexity Theory versus Kolmogorov Complexity Theory

NP vs BPP

DistNP vs HeurBPP

Existence of OWFs

Theory of 
Time-Bounded

Kolmogorov 
Complexity

Based on joint work with Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, and Mikito Nanashima
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Key principles of Kolmogorov complexity

Incompressibility

Symmetry of Information (SoI)

Coding

Language Compression

Q. Do these principles survive 
in the time-bounded setting?

(even predates the P vs NP problem [Levin’03])

Equivalences to main conjectures 
of complexity theory

Results:
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Almost complete picture, but fully understanding the role of Symmetry of Information 
remains a mystery
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Background and Main Result

(Focus on Symmetry of Information and OWFs)
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01001101…0111010111 010001110

string 𝑥 short encoding of 𝑥

Kolmogorov Complexity

"minimum length of a program that recovers 𝑥”

K 𝑥 =min
𝑀

𝑀 ∶ 𝑈(𝑀) outputs 𝑥

Kolmogorov Complexity:
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01001101…0111010111 010001110

string 𝑥 short encoding of 𝑥

Kolmogorov Complexity

"minimum length of a program that recovers 𝑥 given 𝑦”

K 𝑥 | 𝑦 = min
𝑀

𝑀 ∶ 𝑈(𝑀, 𝑦) outputs 𝑥

Conditional Kolmogorov Complexity:
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K𝑡 𝑥 = min
𝑀

𝑀 ∶ 𝑈(𝑀) outputs 𝑥 within 𝑡 𝑥 steps

𝑡-time-bounded Kolmogorov complexity:

Time-Bounded Kolmogorov Complexity
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Symmetry of Information

K 𝑥, 𝑦 ≲ K 𝑥 + K 𝑦 | 𝑥
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K 𝑥, 𝑦 ≳ K 𝑥 + K 𝑦 | 𝑥

Symmetry of information (SoI) for time-unbounded Kolmogorov complexity:

K 𝑥, 𝑦 ≲ K 𝑥 + K 𝑦 | 𝑥

Symmetry of Information
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K 𝑥, 𝑦 ≳ K 𝑥 + K 𝑦 | 𝑥

Symmetry of information (SoI) for time-unbounded Kolmogorov complexity:

K 𝑥, 𝑦 ≲ K 𝑥 + K 𝑦 | 𝑥

K 𝑥 + K 𝑦 | 𝑥 ≈ K 𝑥, 𝑦 ≈ K 𝑦 + K 𝑥 | 𝑦

Symmetry of Information
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K 𝑥, 𝑦 ≳ K 𝑥 + K 𝑦 | 𝑥

Symmetry of information (SoI) for time-unbounded Kolmogorov complexity:

K 𝑥, 𝑦 ≲ K 𝑥 + K 𝑦 | 𝑥

K 𝑥 + K 𝑦 | 𝑥 ≈ K 𝑥, 𝑦 ≈ K 𝑦 + K 𝑥 | 𝑦

K 𝑥 − K 𝑥 | 𝑦 ≈ K 𝑦 − K 𝑦 | 𝑥

Symmetry of Information
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K 𝑥, 𝑦 ≳ K 𝑥 + K 𝑦 | 𝑥

Symmetry of information (SoI) for time-unbounded Kolmogorov complexity:

K 𝑥, 𝑦 ≲ K 𝑥 + K 𝑦 | 𝑥

K 𝑥 + K 𝑦 | 𝑥 ≈ K 𝑥, 𝑦 ≈ K 𝑦 + K 𝑥 | 𝑦

H 𝑿 − H 𝑿 | 𝒀 = H 𝒀 − H 𝒀 | 𝑿
SoI Principle in Shannon’s 
Information Theory

K 𝑥 − K 𝑥 | 𝑦 ≈ K 𝑦 − K 𝑦 | 𝑥

Symmetry of Information
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K 𝑥, 𝑦 ≳ K 𝑥 + K 𝑦 | 𝑥

Symmetry of information (SoI) for time-unbounded Kolmogorov complexity:

K 𝑥, 𝑦 ≲ K 𝑥 + K 𝑦 | 𝑥

K𝑡 𝑥, 𝑦 ≥ Kpoly 𝑡 𝑥 + Kpoly 𝑡 𝑦 | 𝑥 − 𝑂(log 𝑡 𝑥 + 𝑦 )

Does symmetry of information hold in the time-bounded setting, for K𝑡?

Symmetry of Information
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Symmetry of Information and One-Way Functions

12

Definition (One-Way Functions):

An efficiently computable function 𝑓: 0,1 𝑛 → 0,1 𝑛 is a one-way 

function if for every probabilistic polynomial-time algorithm 𝐴,

Pr
𝑥∼ 0,1 𝑛

𝐴 𝑓 𝑥 ∈ 𝑓−1 𝑓(𝑥) ≤ 1/𝑛𝜔(1)



Symmetry of Information and One-Way Functions

12

Definition (One-Way Functions):

An efficiently computable function 𝑓: 0,1 𝑛 → 0,1 𝑛 is a one-way 

function if for every probabilistic polynomial-time algorithm 𝐴,

Pr
𝑥∼ 0,1 𝑛

𝐴 𝑓 𝑥 ∈ 𝑓−1 𝑓(𝑥) ≤ 1/𝑛𝜔(1)

OWFs are both necessary and 
sufficient for:

- Private-key encryption [GM84, HILL99]
- Pseudorandom generators [HILL99]
- Authentication schemes [FS90]
- Pseudorandom functions [GGM84]
- Digital signatures [Rompel90]
- Commitment schemes [Naor90]
- Coin-tossing [Blum84]

….



Symmetry of Information and One-Way Functions

Theorem [Longpré-Watanabe’95]:

No symmetry of information for K𝑡One-way functions exist
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Definition (One-Way Functions):

An efficiently computable function 𝑓: 0,1 𝑛 → 0,1 𝑛 is a one-way 

function if for every probabilistic polynomial-time algorithm 𝐴,

Pr
𝑥∼ 0,1 𝑛

𝐴 𝑓 𝑥 ∈ 𝑓−1 𝑓(𝑥) ≤ 1/𝑛𝜔(1)

?



Symmetry of Information and One-Way Functions
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• Average-case symmetry of information? --- Consider “average” pairs (𝑥, 𝑦)

• Probabilistic versions of time-bounded Kolmogorov complexity?

Two key points:

Definition (One-Way Functions):

An efficiently computable function 𝑓: 0,1 𝑛 → 0,1 𝑛 is a one-way 

function if for every probabilistic polynomial-time algorithm 𝐴,

Pr
𝑥∼ 0,1 𝑛

𝐴 𝑓 𝑥 ∈ 𝑓−1 𝑓(𝑥) ≤ 1/𝑛𝜔(1)



Probabilistic Versions of Kolmogorov Complexity

There exists a fixed small (randomized) program that outputs 𝑥 w.h.p over its internal randomness

rK𝑡 𝑥 = min
𝑘

𝑘 ∶ ∃ 𝑡 𝑥 time program𝑀 ∈ 0,1 𝑘 s. t. 𝐏𝐫
𝐫𝐚𝐧𝐝𝐨𝐦𝐧𝐞𝐬𝐬 𝐨𝐟 𝑴

𝑀 outputs 𝑥 ≥ 𝟐
𝟑

Randomized 𝑡-time-bounded Kolmogorov complexity:
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Probabilistic Versions of Kolmogorov Complexity

For most 𝒘, there exists a small program, which can depend on 𝒘, that outputs 𝑥 given 𝒘

pK𝑡 𝑥 = min
𝑘

𝑘 ∶ 𝐏𝐫
𝒘∈ 𝟎,𝟏 𝒕 𝒙

∃ 𝑀 ∈ 0,1 𝑘 s. t.𝑀(𝑤) outputs 𝑥 within 𝑡 𝑥 steps ≥ 𝟐
𝟑

Probabilistic 𝑡-time-bounded Kolmogorov complexity:

There exists a fixed small (randomized) program that outputs 𝑥 w.h.p over its internal randomness

rK𝑡 𝑥 = min
𝑘

𝑘 ∶ ∃ 𝑡 𝑥 time program𝑀 ∈ 0,1 𝑘 s. t. 𝐏𝐫
𝐫𝐚𝐧𝐝𝐨𝐦𝐧𝐞𝐬𝐬 𝐨𝐟 𝑴

𝑀 outputs 𝑥 ≥ 𝟐
𝟑

Randomized 𝑡-time-bounded Kolmogorov complexity:
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Symmetry of Information and One-Way Functions

Theorem:

“Average-case” SoI for 

pKpoly holds

One-way functions do not exist

The following are equivalent:

• One-way functions do not exist.

• For every poly-time-samplable distribution {𝐷𝑛} over 0,1 𝑛 × 0,1 𝑛, constant 

𝑐 ≥ 0, and sufficiently large 𝑡 ≥ poly(𝑛), there are infinitely many 𝑛 such that

Pr
(𝑥,𝑦)∼𝐷𝑛

pK𝑡 𝑥, 𝑦 ≥ pK𝑡 𝑥 + pK𝑡 𝑦 | 𝑥 − log 𝑡(𝑛) ≥ 1 − 1/𝑛𝑐
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Symmetry of Information and One-Way Functions

Theorem:

“Average-case” SoI for 

pKpoly holds

One-way functions do not exist

The following are equivalent:

• Infinitely-often one-way functions do not exist.

• For every poly-time-samplable distribution {𝐷𝑛} over 0,1 𝑛 × 0,1 𝑛, constant 

𝑐 ≥ 0, and sufficiently large 𝑡 ≥ poly(𝑛), and for all but finitely many 𝑛,

Pr
(𝑥,𝑦)∼𝐷𝑛

pK𝑡 𝑥, 𝑦 ≥ pK𝑡 𝑥 + pK𝑡 𝑦 | 𝑥 − log 𝑡(𝑛) ≥ 1 − 1/𝑛𝑐
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Relevance to the foundations of cryptography

Failure of symmetry of information
for a non-negligible fraction of pairs (x,y) of strings 

produced by a samplable distribution is all we need to 
construct key cryptographic primitives and protocols
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What about rKpoly ?
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Symmetry of Information and One-Way Functions

Theorem:

“Average-case” SoI for 

rKquasipoly holds

Quasipoly-time secure one-way 
functions do not exist

The following are equivalent:

• Quasipoly-time secure one-way functions do not exist.

• For every poly-time-samplable distribution {𝐷𝑛} over 0,1 𝑛 × 0,1 𝑛, constant 

𝑐 ≥ 0, and sufficiently large 𝑡 ≥ quasipoly(𝑛), there are infinitely many 𝑛 such 

that

Pr
(𝑥,𝑦)∼𝐷𝑛

rK𝑡 𝑥, 𝑦 ≥ rK𝑡 𝑥 + rK𝑡 𝑦 | 𝑥 − log 𝑡(𝑛) ≥ 1 − 1/ exp logc 𝑛
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Techniques (pKpoly)
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Map of Proofs for pK𝗉𝗈𝗅𝗒

1. ∄ One-Way Function

3. Conditional Coding 2. Symmetry of Information

4. Language Compression

(average-case)

(average-case)

(average-case)

21



Map of Proofs for pK𝗉𝗈𝗅𝗒

1. ∄ One-Way Function

3. Conditional Coding 2. Symmetry of Information

4. Language Compression

(average-case)

(average-case)

(average-case)

Similar to [LW95]
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Map of Proofs for pK𝗉𝗈𝗅𝗒

1. ∄ One-Way Function

3. Conditional Coding 2. Symmetry of Information

4. Language Compression

(average-case)

(average-case)

(average-case)

21



Coding Theorem

A computable distribution 𝐷 that 
samples 𝑥 with probability 𝐷(𝑥)

K(𝑥) ≲ log
1

𝐷(𝑥)

Coding theorem for time-unbounded Kolmogorov complexity:
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Coding Theorem

We don’t have a coding theorem for 𝐊𝐩𝐨𝐥𝐲

A computable distribution 𝐷 that 
samples 𝑥 with probability 𝐷(𝑥)

K(𝑥) ≲ log
1

𝐷(𝑥)

Coding theorem for time-unbounded Kolmogorov complexity:

22



Coding Theorem

We don’t have a coding theorem for 𝐊𝐩𝐨𝐥𝐲

A computable distribution 𝐷 that 
samples 𝑥 with probability 𝐷(𝑥)

K(𝑥) ≲ log
1

𝐷(𝑥)

Coding theorem for time-unbounded Kolmogorov complexity:

An efficiently samplable distribution 𝐷
that samples 𝑥 with probability 𝐷(𝑥)

Kpoly(𝑥) ≲ log
1

𝐷(𝑥)

?
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Coding Theorem

Theorem [Lu-Oliveira-Zimand’22]:

For every poly-time-samplable distribution {𝐷𝑛} over 0,1 𝑛, and every 

𝑥 ∈ support(𝐷𝑛)

pKpoly 𝑥 ≤ log
1

𝐷𝑛 𝑥
+ O(log 𝑛)
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Coding Theorem

Theorem [Lu-Oliveira-Zimand’22]:

For every poly-time-samplable distribution {𝐷𝑛} over 0,1 𝑛, and every 

𝑥 ∈ support(𝐷𝑛)

pKpoly 𝑥 ≤ log
1

𝐷𝑛 𝑥
+ O(log 𝑛)

K 𝑥 ≳ log 1/𝐷𝑛(𝑥) w. h. p over 𝑥 ∼ 𝐷𝑛

Incompressibility (extension of counting argument):

23



Coding Theorem

Theorem [Lu-Oliveira-Zimand’22]:

For every poly-time-samplable distribution {𝐷𝑛} over 0,1 𝑛, and every 

𝑥 ∈ support(𝐷𝑛)

pKpoly 𝑥 ≤ log
1

𝐷𝑛 𝑥
+ O(log 𝑛)

K 𝑥 ≳ log 1/𝐷𝑛(𝑥) w. h. p over 𝑥 ∼ 𝐷𝑛

Incompressibility (extension of counting argument):

pKpoly 𝑥 ≈ log 1/𝐷𝑛(𝑥) w. h. p over 𝑥 ∼ 𝐷𝑛

Corollary:
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Conditional Coding

Definition (Conditional Coding for pK):

For every poly-time-samplable distribution {𝐷𝑛} over 0,1 𝑛 × 0,1 𝑛, and 

every 𝑥, 𝑦 ∈ support(𝐷𝑛)

pKpoly 𝑥 𝑦) ≲ log
1

𝐷𝑛 𝑥 𝑦)
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Conditional Coding

Definition (Conditional Coding for pK):

For every poly-time-samplable distribution {𝐷𝑛} over 0,1 𝑛 × 0,1 𝑛, and 

every 𝑥, 𝑦 ∈ support(𝐷𝑛)

pKpoly 𝑥 𝑦) ≲ log
1

𝐷𝑛 𝑥 𝑦)

Definition (Average-Case Conditional Coding for pK):

For every poly-time-samplable distribution {𝐷𝑛} over 0,1 𝑛 × 0,1 𝑛, 

Pr
(𝑥,𝑦)∼𝐷𝑛

pKpoly 𝑥 𝑦) ≲ log
1

𝐷𝑛 𝑥 𝑦)
≥ 1 −

1

poly(𝑛)
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Lemma:

Conditional Coding and SoI

Average-case conditional coding 

holds

Average-case SoI

holds
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Lemma:

Conditional Coding and SoI

Average-case conditional coding 

holds

Average-case SoI

holds
Proof:

Pr
(𝑥,𝑦)∼𝐷𝑛

pKpoly 𝑥 𝑦) ≲ log
1

𝐷 𝑥 𝑦)
≥ 1 − 1/𝑛𝑂(1)

Pr
(𝑥,𝑦)∼𝐷𝑛

pKpoly 𝑥, 𝑦 ≳ pKpoly 𝑦 + pKpoly 𝑥 | 𝑦 ≥ 1 − 1/𝑛𝑂(1)
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Lemma:

Conditional Coding and SoI

Average-case conditional coding 

holds

Average-case SoI

holds
Proof:

pKpoly 𝑥 𝑦) ≲ log
1

𝐷 𝑥 𝑦)

𝑥, 𝑦 ∼ 𝐷

pKpoly 𝑥, 𝑦 ≳ pKpoly 𝑦 + pKpoly 𝑥 | 𝑦

25



Lemma:

Conditional Coding and SoI

Average-case SoI

holds
Proof:

pKpoly 𝑥 𝑦) ≲ log
1

𝐷 𝑥 𝑦)

𝑥, 𝑦 ∼ 𝐷

pKpoly 𝑥, 𝑦 ≳ pKpoly 𝑦 + pKpoly 𝑥 | 𝑦

Average-case conditional coding 

holds
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Lemma:

Conditional Coding and SoI

Average-case conditional coding 

holds

Average-case SoI
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Proof:
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1
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𝐷 2 (𝑦)

𝐷(𝑥, 𝑦) Because 𝐷 𝑥 𝑦) =
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Lemma:

Conditional Coding and SoI
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pKpoly 𝑥 𝑦) ≲ log
𝐷 2 (𝑦)

𝐷(𝑥, 𝑦)

Because by coding theorem, pKpoly 𝑥, 𝑦 ≈ log
1

𝐷 𝑥,𝑦

and pKpoly 𝑦 ≈ log
1

𝐷(2) 𝑦
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Map of Proofs for pK𝗉𝗈𝗅𝗒

1. ∄ One-Way Function

3. Conditional Coding 2. Symmetry of Information

4. Language Compression

(average-case)

(average-case)

(average-case)
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Lemma:

OWFs and Average-Case Conditional Coding

Infinitely-often one-way 

functions do not exist
Average-case conditional coding 

holds

pKpoly 𝑥 𝑦) ≲ log
1

𝐷 𝑥 𝑦)

Proof Sketch: Assume we can invert OWFs, we want to show w.h.p over 𝑥, 𝑦 ∼ 𝐷

27



Lemma:

OWFs and Average-Case Conditional Coding

Infinitely-often one-way 

functions do not exist
Average-case conditional coding 

holds

pKpoly 𝑥 𝑦) ≲ log
1

𝐷 𝑥 𝑦)

Proof Sketch: Assume we can invert OWFs, we want to show w.h.p over 𝑥, 𝑦 ∼ 𝐷

Theorem (Extrapolators) [Impagliazzo-Luby’89, Impagliazzo-Levin’90]:

Efficiently sample 𝐷 ⋅ 𝑦) (approximately) for 

most 𝑦 ∼ 𝐷(2)
One-way functions do not exist

27



Lemma:

OWFs and Average-Case Conditional Coding

Infinitely-often one-way 

functions do not exist
Average-case conditional coding 

holds

pKpoly 𝑥 𝑦) ≲ log
1

𝐷 𝑥 𝑦)

• Use the efficient extrapolator as a proxy for the conditional distribution

• Apply the original coding theorem!
Idea:

Proof Sketch: Assume we can invert OWFs, we want to show w.h.p over 𝑥, 𝑦 ∼ 𝐷

Theorem (Extrapolators) [Impagliazzo-Luby’89, Impagliazzo-Levin’90]:

Efficiently sample 𝐷 ⋅ 𝑦) (approximately) for 

most 𝑦 ∼ 𝐷(2)
One-way functions do not exist

27



If infinitely-often OWFs do not exist, then for every poly-time-samplable {𝐷𝑛} over 

0,1 𝑛 × 0,1 𝑛 and 𝑐 > 0, there is a poly-time randomized algorithm EXT, such that 

for all 𝑛

Pr
𝑦∼𝐷𝑛

(2)
L1 EXT 𝑦 , 𝐷𝑛 ⋅ 𝑦) ≤

1

𝑛𝑐
≥ 1 −

1

𝑛𝑐

Theorem [Impagliazzo-Luby’89, Impagliazzo-Levin’90]:

Efficient simulation of 𝐷 ⋅ 𝑦) for most 𝑦

∼ 𝐷(2)

One-way functions do not exist

Extrapolation
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Lemma:

OWFs and Average-Case Conditional Coding

Infinitely-often one-way 

functions do not exist
Average-case conditional coding 

holds

Proof Sketch:

• W.h.p over 𝑦 ∼ 𝐷(2), we have L1 EXT 𝑦 , 𝐷𝑛 ⋅ 𝑦) is small.

• EXT 𝑦 runs polynomial-time, so it yields some poly-time-samplable

distribution 𝐷𝑦
′

• We can show L1 𝐷𝑦
′ , 𝐷𝑛 ⋅ 𝑦) implies 𝐷𝑦

′ 𝑥 ≈ 𝐷𝑛 𝑥 𝑦) for most 𝑥 ∼

𝐷 ⋅ 𝑦)

• By the original coding theorem for pKpoly, for most (𝑥, 𝑦) ∼ 𝐷

• pKpoly 𝑥 𝑦) ≲ log
1

𝐷𝑦
′ 𝑥

≈ log
1

𝐷𝑛 𝑥 | 𝑦
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Techniques (rKquasipoly)

Key Difficulty: We don’t have a coding theorem for rKpoly

30



Main Technique for rKquasi𝗉𝗈𝗅𝗒 (Key Perspective: Meta-Complexity)
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General Theory
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Capturing average-case complexity

Theorem [This Work]:

“Independent” Average-case 

Conditional Coding for 

pKpoly holds

DistNP ⊆ HeurBPP
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Capturing average-case complexity

Theorem [This Work]:

“Independent” Average-case 

Conditional Coding for 

pKpoly holds

DistNP ⊆ HeurBPP

The following are equivalent:

• DistNP ⊆ HeurBPP .

• For every poly-time-samplable distributions {𝐷𝑛} over 0,1 𝑛 × 0,1 𝑛 and 

{𝐶𝑛} over 0,1 𝑛, and for every polynomial q, there is a polynomial p such 

that for all large enough 𝑛

Pr
𝑦~𝐶𝑛, 𝑥∼𝐷𝑛(.|𝑦)

pK𝑝(𝑛) 𝑥 | 𝑦 ≤ log
1

𝐷𝑛 𝑥 𝑦)
+ log 𝑝(𝑛) ≥ 1 − 1/𝑞(𝑛)
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Open Problems
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1. Understand the role of SoI in complexity theory: 
Is there a natural computational assumption equivalent to worst-case SoI?

2. Applications of these characterizations?
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Thank you

Paper: “A duality between OWFs and average-case symmetry of information” 

(2023)

(Joint work with S. Hirahara, R. Ilango, Z. Lu, and M. Nanashima)

Main Reference for Lecture 2:
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Conditional Coding
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Language Compression
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Symmetry of Information
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