Lecture 2:

Complexity Theory Through the Lens of Kolmogorov Complexity

Igor Carboni Oliveira

University of Warwick

CIRM - Randomness, Information & Complexity

February/2024

Plan for the Week

Lecture 1 (Monday)

Probabilistic Notions of (Time-Bounded) Kolmogorov Complexity

"Unconditional results & applications to average-case complexity"

Lecture 2 (Tuesday)

OWF

Connections to Cryptography and Complexity Theory

"Major questions in complexity are **equivalent** to statements about Kolmogorov Complexity"

Lecture 3 (Thursday)

P vs NP

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

 21
 22
 23
 24
 25
 26
 27
 28
 29
 30

 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 41
 42
 43
 44
 45
 46
 47
 48
 49
 50

 51
 52
 53
 54
 55
 56
 57
 58
 59
 60

 61
 62
 63
 64
 65
 66
 67
 68
 69
 70

 71
 72
 73
 74
 75
 76
 77
 78
 79
 80

 81
 82
 83
 84
 85
 86
 87
 88
 89
 90

 91
 92
 93
 94
 95
 96
 97
 98
 91
 100

 </tbr>

Connections to Algorithms (explicit constructions, generating primes, etc.)

"Existence of large primes with efficient short descriptions"

What this lecture is about

Computational Complexity Theory versus Kolmogorov Complexity Theory

Based on joint work with Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, and Mikito Nanashima

Key principles of Kolmogorov complexity

Incompressibility

Q. Do these principles survive in the **time-bounded** setting?

Symmetry of Information (Sol)

(even predates the P vs NP problem [Levin'03])

Coding

Language Compression

Results:

Equivalences to main conjectures of complexity theory

∄ i. o. OWFs	Average-case conditional coding	
	• Average-case conditional language compression	
	Average-case Sol	
NP ⊆ BPP	Worst-case conditional coding	
	Worst-case conditional language compression	 Worst-case Sol (NP ⊆ AvgBPP suffices)
NP ⊆ HeurBPP	 "Independent average-case" conditional coding 	 "Independent average-
	 "Independent average-case" conditional language compression 	case" Sol

Almost complete picture, but fully understanding the role of **Symmetry of Information** remains a mystery

Background and Main Result

(Focus on Symmetry of Information and OWFs)

Kolmogorov Complexity

Kolmogorov Complexity:

 $K(x) = \min_{M} \{ |M| : U(M) \text{ outputs } x \}$

"minimum length of a program that recovers x"

Kolmogorov Complexity

<u>Conditional</u> Kolmogorov Complexity:

$$K(x \mid y) = \min_{M} \{ |M| : U(M, y) \text{ outputs } x \}$$

"minimum length of a program that recovers x given y"

Time-Bounded Kolmogorov Complexity

<u>*t*-time-bounded</u> Kolmogorov complexity:

$$K^{t}(x) = \min_{M} \{|M| : U(M) \text{ outputs } x \text{ within } t(|x|) \text{ steps} \}$$

 $K(x, y) \lesssim K(x) + K(y \mid x)$

 $K(x, y) \lesssim K(x) + K(y \mid x)$

Symmetry of information (SoI) for time-unbounded Kolmogorov complexity:

 $K(x, y) \gtrsim K(x) + K(y \mid x)$

 $K(x, y) \lesssim K(x) + K(y \mid x)$

Symmetry of information (SoI) for time-unbounded Kolmogorov complexity:

 $K(x, y) \gtrsim K(x) + K(y \mid x)$

$$K(x) + K(y \mid x) \approx K(x, y) \approx K(y) + K(x \mid y)$$

 $K(x, y) \lesssim K(x) + K(y \mid x)$

Symmetry of information (SoI) for time-unbounded Kolmogorov complexity:

 $K(x, y) \gtrsim K(x) + K(y \mid x)$

 $K(x) + K(y \mid x) \approx K(x, y) \approx K(y) + K(x \mid y)$

 $K(x) - K(x \mid y) \approx K(y) - K(y \mid x)$

 $K(x, y) \lesssim K(x) + K(y \mid x)$

Symmetry of information (SoI) for time-unbounded Kolmogorov complexity:

 $K(x, y) \gtrsim K(x) + K(y \mid x)$

 $K(x) + K(y \mid x) \approx K(x, y) \approx K(y) + K(x \mid y)$

 $K(x) - K(x \mid y) \approx K(y) - K(y \mid x)$

 $H(X) - H(X \mid Y) = H(Y) - H(Y \mid X)$

Sol Principle in Shannon's Information Theory

$K(x, y) \lesssim K(x) + K(y \mid x)$

Symmetry of information (SoI) for time-unbounded Kolmogorov complexity:

 $K(x, y) \gtrsim K(x) + K(y \mid x)$

Does symmetry of information hold in the time-bounded setting, for K^t ?

 $K^{t}(x, y) \ge K^{\text{poly}(t)}(x) + K^{\text{poly}(t)}(y \mid x) - O(\log t(|x| + |y|))$

Definition (One-Way Functions):

An efficiently computable function $f: \{0,1\}^n \rightarrow \{0,1\}^n$ is a one-way function if for every probabilistic polynomial-time algorithm A,

 $\Pr_{\substack{x \sim \{0,1\}^n}} \left[A(f(x)) \in f^{-1}(f(x)) \right] \le 1/n^{\omega(1)}$

Definition (One-Way Function

An efficiently compute function if for every preserved and the second se

P *x~*{0 **OWFs** are both **necessary** and **sufficient** for:

- Private-key encryption [GM84, HILL99]
- Pseudorandom generators [HILL99]
- Authentication schemes [FS90]
- Pseudorandom functions [GGM84]
- Digital signatures [Rompel90]
- Commitment schemes [Naor90]
- Coin-tossing [Blum84]

Definition (One-Way Functions):

An efficiently computable function $f: \{0,1\}^n \to \{0,1\}^n$ is a one-way function if for every probabilistic polynomial-time algorithm A,

 $\Pr_{\substack{x \sim \{0,1\}^n}} \left[A(f(x)) \in f^{-1}(f(x)) \right] \le 1/n^{\omega(1)}$

Theorem [Longpré-Watanabe'95]:

One-way functions exist \checkmark No symmetry of information for K^t

Definition (One-Way Functions):

An efficiently computable function $f: \{0,1\}^n \to \{0,1\}^n$ is a one-way function if for every probabilistic polynomial-time algorithm A,

 $\Pr_{\substack{x \sim \{0,1\}^n}} \left[A(f(x)) \in f^{-1}(f(x)) \right] \le 1/n^{\omega(1)}$

Two key points:

- Average-case symmetry of information? --- Consider "average" pairs (x, y)
- **Probabilistic** versions of time-bounded Kolmogorov complexity?

Randomized *t*-time-bounded Kolmogorov complexity:

$$rK^{t}(x) = \min_{k} \left\{ k : \exists t(|x|) \text{ time program } M \in \{0,1\}^{k} \text{ s.t. } \Pr_{\text{randomness of } M}[M \text{ outputs } x] \ge \frac{2}{3} \right\}$$

There exists a **fixed** small (randomized) program that outputs x w.h.p over its internal randomness

Randomized *t*-time-bounded Kolmogorov complexity:

$$rK^{t}(x) = \min_{k} \left\{ k : \exists t(|x|) \text{ time program } M \in \{0,1\}^{k} \text{ s.t. } \Pr_{\text{randomness of } M}[M \text{ outputs } x] \ge \frac{2}{3} \right\}$$

There exists a **fixed** small (randomized) program that outputs x w.h.p over its internal randomness

Probabilistic *t*-time-bounded Kolmogorov complexity:

 $pK^{t}(x) = \min_{k} \left\{ k : \Pr_{w \in \{0,1\}^{t}(|x|)} [\exists M \in \{0,1\}^{k} \text{ s.t. } M(w) \text{ outputs } x \text{ within } t(|x|) \text{ steps}] \ge \frac{2}{3} \right\}$

For most w, there exists a small program, which can depend on w, that outputs x given w

Theorem:

The following are equivalent:

- One-way functions do not exist.
- For every poly-time-samplable distribution $\{D_n\}$ over $\{0,1\}^n \times \{0,1\}^n$, constant $c \ge 0$, and sufficiently large $t \ge poly(n)$, there are infinitely many n such that

 $\Pr_{(x,y)\sim D_n} [pK^t(x,y) \ge pK^t(x) + pK^t(y \mid x) - \log t(n)] \ge 1 - 1/n^c$

Theorem:

The following are equivalent:

- Infinitely-often one-way functions do not exist.
- For every poly-time-samplable distribution $\{D_n\}$ over $\{0,1\}^n \times \{0,1\}^n$, constant $c \ge 0$, and sufficiently large $t \ge poly(n)$, and for all but finitely many n,

 $\Pr_{(x,y)\sim D_n} [pK^t(x,y) \ge pK^t(x) + pK^t(y \mid x) - \log t(n)] \ge 1 - 1/n^c$

Relevance to the foundations of cryptography

Failure of symmetry of information

for a non-negligible fraction of pairs (*x*,*y*) of strings produced by a **samplable distribution** is all we need to construct key cryptographic primitives and protocols

What about **rK**^{poly} ?

Theorem:

Quasipoly-time secure one-way functions do not exist

"Average-case" Sol for rK^{quasipoly} holds

The following are equivalent:

- Quasipoly-time secure one-way functions do not exist.
- For every poly-time-samplable distribution $\{D_n\}$ over $\{0,1\}^n \times \{0,1\}^n$, constant $c \ge 0$, and sufficiently large $t \ge quasipoly(n)$, there are infinitely many n such that

 $\frac{\Pr[rK^{t}(x,y) \ge rK^{t}(x) + rK^{t}(y \mid x) - \log t(n)] \ge 1 - 1/\exp(\log^{c} n)}{(x,y) \sim D_{n}}$

Techniques (pK^{poly})

Coding theorem for time-unbounded Kolmogorov complexity:

A computable distribution D that samples x with probability D(x)

 $K(x) \lesssim \log\left(\frac{1}{D(x)}\right)$

<u>Coding theorem for time-unbounded Kolmogorov complexity:</u>

A computable distribution D that samples x with probability D(x)

$$K(x) \lesssim \log\left(\frac{1}{D(x)}\right)$$

We don't have a coding theorem for K^{poly}

<u>Coding theorem for time-unbounded Kolmogorov complexity:</u>

A computable distribution D that samples x with probability D(x)

$$\mathbf{K}(x) \lesssim \log\left(\frac{1}{D(x)}\right)$$

We don't have a coding theorem for K^{poly}

An efficiently samplable distribution Dthat samples x with probability D(x)

Theorem [Lu-Oliveira-Zimand'22]:

For every poly-time-samplable distribution $\{D_n\}$ over $\{0,1\}^n$, and every $x \in \text{support}(D_n)$ $pK^{\text{poly}}(x) \le \log\left(\frac{1}{D_n(x)}\right) + O(\log n)$

Theorem [Lu-Oliveira-Zimand'22]:

For every poly-time-samplable distribution $\{D_n\}$ over $\{0,1\}^n$, and every $x \in \text{support}(D_n)$ $pK^{\text{poly}}(x) \le \log\left(\frac{1}{D_n(x)}\right) + O(\log n)$

Incompressibility (extension of counting argument):

 $K(x) \ge \log(1/D_n(x))$ w.h.p over $x \sim D_n$

<u>Theorem</u> [Lu-Oliveira-Zimand'22]:

For every poly-time-samplable distribution $\{D_n\}$ over $\{0,1\}^n$, and every $x \in \text{support}(D_n)$ $pK^{\text{poly}}(x) \le \log\left(\frac{1}{D_n(x)}\right) + O(\log n)$

Incompressibility (extension of counting argument):

 $K(x) \ge \log(1/D_n(x))$ w.h.p over $x \sim D_n$

Corollary:

 $pK^{poly}(x) \approx \log(1/D_n(x))$ w.h.p over $x \sim D_n$

Conditional Coding

Definition (Conditional Coding for pK):

For every poly-time-samplable distribution $\{D_n\}$ over $\{0,1\}^n \times \{0,1\}^n$, and every $(x, y) \in \text{support}(D_n)$ $pK^{\text{poly}}(x \mid y) \leq \log\left(\frac{1}{D_n(x \mid y)}\right)$

Conditional Coding

Definition (Conditional Coding for pK):

For every poly-time-samplable distribution $\{D_n\}$ over $\{0,1\}^n \times \{0,1\}^n$, and every $(x, y) \in \text{support}(D_n)$ $pK^{\text{poly}}(x \mid y) \leq \log\left(\frac{1}{D_n(x \mid y)}\right)$

Definition (Average-Case Conditional Coding for pK):

For every poly-time-samplable distribution
$$\{D_n\}$$
 over $\{0,1\}^n \times \{0,1\}^n$,

$$\Pr_{(x,y)\sim D_n}\left[pK^{\text{poly}}(x \mid y) \leq \log\left(\frac{1}{D_n(x \mid y)}\right)\right] \geq 1 - \frac{1}{\text{poly}(n)}$$

Lemma:

$$\Pr_{(x,y)\sim D_n}\left[pK^{\text{poly}}(x\mid y) \lesssim \log\left(\frac{1}{D(x\mid y)}\right)\right] \ge 1 - 1/n^{O(1)}$$

 $\Pr_{(x,y)\sim D_n}\left[pK^{\text{poly}}(x,y) \gtrsim pK^{\text{poly}}(y) + pK^{\text{poly}}(x \mid y)\right] \ge 1 - 1/n^{O(1)}$

$$pK^{poly}(x, y) \gtrsim pK^{poly}(y) + pK^{poly}(x \mid y)$$

Lemma:

Infinitely-often one-way functions do not exist

Average-case conditional coding holds

<u>Proof Sketch</u>: Assume we can invert OWFs, we want to show w.h.p over $(x, y) \sim D$

$$pK^{poly}(x \mid y) \leq \log\left(\frac{1}{D(x \mid y)}\right)$$

Lemma:

Infinitely-often one-way functions do not exist

Average-case conditional coding holds

Proof Sketch: Assume we can invert OWFs, we want to show w.h.p over $(x, y) \sim D$

$$pK^{poly}(x \mid y) \lesssim \log\left(\frac{1}{D(x \mid y)}\right)$$

<u>**Theorem</u>** (Extrapolators) [Impagliazzo-Luby'89, Impagliazzo-Levin'90]:</u>

One-way functions do not exist

Efficiently sample
$$D(\cdot | y)$$
 (approximately) for
most $y \sim D^{(2)}$

Lemma:

Infinitely-often one-way functions do not exist

Average-case conditional coding holds

<u>Proof Sketch</u>: Assume we can invert OWFs, we want to show w.h.p over $(x, y) \sim D$

$$pK^{poly}(x \mid y) \lesssim \log\left(\frac{1}{D(x \mid y)}\right)$$

<u>**Theorem</u>** (Extrapolators) [Impagliazzo-Luby'89, Impagliazzo-Levin'90]:</u>

One-way functions do not exist

```
Efficiently sample D(\cdot | y) (approximately) for
most y \sim D^{(2)}
```

Idea:

- Use the efficient extrapolator as a proxy for the conditional distribution
- Apply the **original** coding theorem!

Extrapolation

<u>Theorem</u> [Impagliazzo-Luby'89, Impagliazzo-Levin'90]:

One-way functions do not exist

If infinitely-often OWFs do not exist, then for every poly-time-samplable $\{D_n\}$ over $\{0,1\}^n \times \{0,1\}^n$ and c > 0, there is a poly-time randomized algorithm EXT, such that for all n

$$\Pr_{y \sim D_n^{(2)}} \left[L_1(\text{EXT}(y), D_n(\cdot \mid y)) \le \frac{1}{n^c} \right] \ge 1 - \frac{1}{n^c}$$

<u>Lemma</u>:

Infinitely-often one-way functions do not exist

Average-case conditional coding holds

- W.h.p over $y \sim D^{(2)}$, we have $L_1(EXT(y), D_n(\cdot | y))$ is small.
- EXT(y) runs polynomial-time, so it yields some poly-time-samplable distribution D'_{y}
- We can show $L_1(D'_y, D_n(\cdot | y))$ implies $D'_y(x) \approx D_n(x | y)$ for most $x \sim D(\cdot | y)$
- By the original coding theorem for pK^{poly} , for most $(x, y) \sim D$

•
$$pK^{poly}(x \mid y) \leq \log\left(\frac{1}{D'_y(x)}\right) \approx \log\left(\frac{1}{D_n(x \mid y)}\right)$$

<u>Lemma</u>:

Infinitely-often one-way functions do not exist

Average-case conditional coding holds

- W.h.p over $y \sim D^{(2)}$, we have $L_1(EXT(y), D_n(\cdot | y))$ is small.
- EXT(y) runs polynomial-time, so it yields some poly-time-samplable distribution D'_y
- We can show $L_1(D'_y, D_n(\cdot | y))$ implies $D'_y(x) \approx D_n(x | y)$ for most $x \sim D(\cdot | y)$
- By the original coding theorem for pK^{poly} , for most $(x, y) \sim D$

•
$$pK^{poly}(x \mid y) \leq \log\left(\frac{1}{D_y'(x)}\right) \approx \log\left(\frac{1}{D_n(x \mid y)}\right)$$

<u>Lemma</u>:

Infinitely-often one-way functions do not exist

Average-case conditional coding holds

- W.h.p over $y \sim D^{(2)}$, we have $L_1(EXT(y), D_n(\cdot | y))$ is small.
- EXT(y) runs polynomial-time, so it yields some poly-time-samplable distribution D'_{y}
- We can show $L_1(D'_y, D_n(\cdot | y))$ implies $D'_y(x) \approx D_n(x | y)$ for most $x \sim D(\cdot | y)$
- By the original coding theorem for pK^{poly} , for most $(x, y) \sim D$

•
$$pK^{poly}(x \mid y) \leq \log\left(\frac{1}{D'_y(x)}\right) \approx \log\left(\frac{1}{D_n(x \mid y)}\right)$$

<u>Lemma</u>:

Infinitely-often one-way functions do not exist

Average-case conditional coding holds

- W.h.p over $y \sim D^{(2)}$, we have $L_1(EXT(y), D_n(\cdot | y))$ is small.
- EXT(y) runs polynomial-time, so it yields some poly-time-samplable distribution D'_{y}
- We can show $L_1(D'_y, D_n(\cdot | y))$ implies $D'_y(x) \approx D_n(x | y)$ for most $x \sim D(\cdot | y)$
- By the original coding theorem for pK^{poly} , for most $(x, y) \sim D$

•
$$pK^{poly}(x \mid y) \leq \log\left(\frac{1}{D'_y(x)}\right) \approx \log\left(\frac{1}{D_n(x \mid y)}\right)$$

Techniques (rK^{quasipoly})

Key Difficulty: We don't have a coding theorem for rK^{poly}

Main Technique for rK^{quasipoly}

(Key Perspective: Meta-Complexity)

General Theory

	Average-case conditional coding	
∄ i. o. OWFs	• Average-case conditional language compression	
	Average-case Sol	

∄ i. o. OWFs	Average-case conditional coding	
	• Average-case conditional language compression	
	Average-case Sol	
NP ⊆ BPP	Worst-case conditional coding	
	Worst-case conditional language compression	 Worst-case Sol (NP ⊆ AvgBPP suffices)

∄ i. o. OWFs	Average-case conditional coding	
	• Average-case conditional language compression	
	Average-case Sol	
	Worst-case conditional coding	
NP ⊆ BPP	 Worst-case conditional language compression 	 Worst-case Sol (NP ⊆ AvgBPP suffices)
NP ⊆ HeurBPP	 "Independent average-case" conditional coding 	 "Independent average-
	 "Independent average-case" conditional language compression 	case" Sol

∄ i. o. OWFs	Average-case conditional coding	
	Average-case conditional language compression	
	Average-case Sol	
	Worst-case conditional coding	
NP ⊆ BPP	 Worst-case conditional language compression 	 Worst-case Sol (NP ⊆ AvgBPP suffices)
NP ⊆ HeurBPP	 "Independent average-case" conditional coding 	 "Independent average-
	 "Independent average-case" conditional language compression 	case" Sol

Capturing average-case complexity

Theorem [This Work]:

 $DistNP \subseteq HeurBPP$

"Independent" Average-case Conditional Coding for

pK^{poly} holds

Capturing average-case complexity

Theorem [This Work]:

- DistNP \subseteq HeurBPP.
- For every poly-time-samplable distributions $\{D_n\}$ over $\{0,1\}^n \times \{0,1\}^n$ and $\{C_n\}$ over $\{0,1\}^n$, and for every polynomial q, there is a polynomial p such that for all large enough n

$$\Pr_{y \sim C_n, x \sim D_n(.|y)} \left[p K^{p(n)}(x \mid y) \le \log \left(\frac{1}{D_n(x \mid y)} \right) + \log p(n) \right] \ge 1 - 1/q(n)$$

Open Problems

∄ i. o. OWFs	Average-case conditional coding	
	Average-case conditional language compression	
	Average-case Sol	
NP ⊆ BPP	Worst-case conditional coding	
	Worst-case conditional language compression	 Worst-case Sol (NP ⊆ AvgBPP suffices)
NP ⊆ HeurBPP	 "Independent average-case" conditional coding 	 "Independent average-
	 "Independent average-case" conditional language compression 	case" Sol

1. Understand the role of **Sol** in complexity theory:

Is there a natural computational assumption equivalent to worst-case **Sol**?

2. Applications of these characterizations?

Main Reference for Lecture 2:

Paper: "A duality between OWFs and average-case symmetry of information" (2023)

(Joint work with S. Hirahara, R. Ilango, Z. Lu, and M. Nanashima)

Thank you

Conditional Coding

1. (Worst-Case Conditional Coding) There exists a polynomial p such that for all n, and $(x, y) \in \text{Support}(\mathcal{D}_n)$

$$\mathsf{pK}^{p(n)}(x \mid y) \le \log \frac{1}{\mathcal{D}_n(x \mid y)} + \log p(n).$$

2. (Independent Average-Case Conditional Coding) Let $\{\mathcal{D}_n\}_{n\in\mathbb{N}}$ and $\{\mathcal{C}_n\}_{n\in\mathbb{N}}$ be samplable distribution families, where each \mathcal{D}_n is over $\{0,1\}^n \times \{0,1\}^n$, and each \mathcal{C}_n is over the support of the second half of \mathcal{D}_n . For every polynomial q, there exists a polynomial p such that for all n,

$$\Pr_{y \sim \mathcal{C}_n, x \sim \mathcal{D}_n(\cdot \mid y)} \left[\mathsf{pK}^{p(n)}(x \mid y) \le \log \frac{1}{\mathcal{D}_n(x \mid y)} + \log p(n) \right] \ge 1 - \frac{1}{q(n)}.$$

3. (Average-Case Conditional Coding) Let $\{\mathcal{D}_n\}_{n\in\mathbb{N}}$ be samplable distribution family, where each \mathcal{D}_n is over $\{0,1\}^n \times \{0,1\}^n$. For every polynomial q, there exists a polynomial psuch that for all n,

$$\Pr_{(x,y)\sim\mathcal{D}_n}\left[\mathsf{pK}^{p(n)}(y\mid x) \le \log\frac{1}{\mathcal{D}_n(x\mid y)} + \log p(n)\right] \ge 1 - \frac{1}{q(n)}$$

Language Compression

1. (Worst-Case Language Compression) Let $L \subseteq \{\{0,1\}^n \times \{0,1\}^n\}_{n \in \mathbb{N}}$ be a polynomialtime computable set. There exists a polynomial p such that for all n, and $y \in \{0,1\}^n$,

$$x \in L_y \implies \mathsf{pK}^{p(n)}(x \mid y) \le \log |L_y| + \log p(n).$$

2. (Independent Average-Case Language Compression) Let $L \subseteq \{\{0,1\}^n \times \{0,1\}^n\}_{n \in \mathbb{N}}$ be a recursively enumerable set. Let $\{\mathcal{D}_n\}_{n \in \mathbb{N}}$ and $\{\mathcal{C}_n\}_{n \in \mathbb{N}}$ be samplable distribution families, where each \mathcal{D}_n is over $\{0,1\}^n \times \{0,1\}^n$, and each \mathcal{C}_n is over the support of the second half of \mathcal{D}_n . For every polynomial q, there exists a polynomial p such that for all n,

$$\Pr_{y \sim \mathcal{C}_n, x \sim \mathcal{D}_n(\cdot | y)} \left[x \in L_y \implies \mathsf{pK}^{p(n)}(x \mid y) \le \log |L_y| + \log p(n) \right] \ge 1 - \frac{1}{q(n)}.$$

3. (Average-Case Language Compression) Let $L \subseteq \{\{0,1\}^n \times \{0,1\}^n\}_{n \in \mathbb{N}}$ be a recursively enumerable set. Let $\{\mathcal{D}_n\}_{n \in \mathbb{N}}$ be samplable distribution family, where each \mathcal{D}_n is over $\{0,1\}^n \times \{0,1\}^n$. For every polynomial q, there exists a polynomial p such that for all n,

$$\Pr_{(x,y)\sim\mathcal{D}_n}\left[x\in L_y\implies \mathsf{pK}^{p(n)}(x\mid y)\leq \log|L_y|+\log p(n)\right]\geq 1-\frac{1}{q(n)}.$$

1. (Worst-Case Symmetry of Information) There exists a polynomial p such that for all $t \ge 2n$ and for all n and all $x, y \in \{0, 1\}^n$,

$$\mathsf{pK}^{t}(x,y) \ge \mathsf{pK}^{p(t)}(x \mid y) + \mathsf{pK}^{p(t)}(y) - \log p(t).$$

2. (Independent Average-Case Symmetry of Information) Let $\{\mathcal{D}_n\}_{n\in\mathbb{N}}$ and $\{\mathcal{C}_n\}_{n\in\mathbb{N}}$ be samplable distribution families, where each \mathcal{D}_n is over $\{0,1\}^n \times \{0,1\}^n$, and each \mathcal{C}_n is over the support of the second half of \mathcal{D}_n . For every polynomial q, there exists a polynomial psuch that for every computable time bound $t: \mathbb{N} \to \mathbb{N}$ with $t(n) \ge p(n)$ and for all n,

$$\Pr_{y \sim \mathcal{C}_n, x \sim \mathcal{D}_n(\cdot \mid y)} \left[\mathsf{pK}^{t(n)}(x, y) \ge \mathsf{pK}^{t(n)}(x \mid y) + \mathsf{pK}^{t(n)}(y) - \log t(n) \right] \ge 1 - \frac{1}{q(n)}.$$

3. (Average-Case Symmetry of Information) Let $\{\mathcal{D}_n\}_{n\in\mathbb{N}}$ be samplable distribution family, where each \mathcal{D}_n is over $\{0,1\}^n \times \{0,1\}^n$. For every polynomial q, there exists a polynomial p such that for every computable time bound $t: \mathbb{N} \to \mathbb{N}$ with $t(n) \ge p(n)$ and for all n,

$$\Pr_{(x,y)\sim\mathcal{D}_n}\left[\mathsf{pK}^{t(n)}(x,y)\ge\mathsf{pK}^{t(n)}(x\mid y)+\mathsf{pK}^{t(n)}(y)-\log t(n)\right]\ge 1-\frac{1}{q(n)}.$$