
Lecture 1:

Probabilistic Notions of Kolmogorov Complexity

CIRM - Randomness, Information & Complexity

February/2024

Igor Carboni Oliveira

University of Warwick

1

Plan for the Week
Lecture 1 (Monday)

Lecture 2 (Tuesday)

Lecture 3 (Thursday)

Probabilistic Notions of (Time-Bounded) Kolmogorov Complexity

Connections to Cryptography and Complexity Theory

Connections to Algorithms (explicit constructions, generating primes, etc.)

“Major questions in complexity are equivalent to statements about Kolmogorov Complexity”

“Existence of large primes with efficient short descriptions”

P vs NPOWF

“Unconditional results & applications to average-case complexity”

2

01001101…0111010111 010001110

string 𝑥 short encoding of 𝑥

Kolmogorov Complexity

K 𝑥 = minimum length of a program M that outputs 𝑥

3

(time-efficient universal machine)

4

(time-efficient universal machine)

4

Time-Bounded Kolmogorov Complexity

K 𝑥 = min
𝑀

𝑀 ∶ 𝑀 outputs 𝑥

Kolmogorov complexity:

5

Time-Bounded Kolmogorov Complexity

K 𝑥 = min
𝑀

𝑀 ∶ 𝑀 outputs 𝑥

Kolmogorov complexity:

Kt 𝑥 = min
𝑀, 𝑡

𝑀 + log 𝑡 ∶ 𝑀 outputs 𝑥 within 𝑡 steps

Levin Kolmogorov complexity:

5

K𝑡 𝑥 = min
𝑀

𝑀 ∶ 𝑀 outputs 𝑥 within 𝑡 𝑥 steps

𝑡-time-bounded Kolmogorov complexity:

Time-Bounded Kolmogorov Complexity

K 𝑥 = min
𝑀

𝑀 ∶ 𝑀 outputs 𝑥

Kolmogorov complexity:

Kt 𝑥 = min
𝑀, 𝑡

𝑀 + log 𝑡 ∶ 𝑀 outputs 𝑥 within 𝑡 steps

Levin Kolmogorov complexity:

5

Despite the usefulness of time-bounded Kolmogorov complexity, many basic
questions remain open:

Do natural objects (e.g., prime numbers) have small Kt or Kt complexity?

Is it computationally hard to compute Kt(x)?

Do classical results in Kolmogorov complexity survive in the time-bounded setting?

6

Despite the usefulness of time-bounded Kolmogorov complexity, many basic
questions remain open:

A more recent theory of probabilistic Kolmogorov complexity provides new insights.

Do natural objects (e.g., prime numbers) have small Kt or Kt complexity?

Is it computationally hard to compute Kt(x)?

Do classical results in Kolmogorov complexity survive in the time-bounded setting?

6

Overview of this lecture

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

7

Overview of this lecture

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

7

Probabilistic Notions of Kolmogorov Complexity

8

Probabilistic Notions of Kolmogorov Complexity

Definitions inspired by the notion of pseudodeterministic algorithm:

A randomized algorithm that produces the same output string w.h.p.

8

Probabilistic Notions of Kolmogorov Complexity

Definitions inspired by the notion of pseudodeterministic algorithm:

A randomized algorithm that produces the same output string w.h.p.

In Kolmogorov complexity terminology: probabilistic decompression

8

rKt complexity

Kt 𝑥 = min
𝑀, 𝑡

𝑀 + log 𝑡 ∶ 𝑀 outputs 𝑥 in ≤ 𝑡 steps

Recall Levin Kolmogorov complexity:

9

rKt complexity

Kt 𝑥 = min
𝑀, 𝑡

𝑀 + log 𝑡 ∶ 𝑀 outputs 𝑥 in ≤ 𝑡 steps

Recall Levin Kolmogorov complexity:

rKt 𝑥 = min
Randomized 𝑀, 𝑡

𝑀 + log 𝑡 ∶ 𝑀 outputs 𝑥 in ≤ 𝑡 steps with probability ≥ 2
3

Randomized Levin Kolmogorov complexity:

9

An unconditional lower bound

Is it hard to detect patterns?

10

An unconditional lower bound

Is it hard to detect patterns?

10

Fixed time bounds:

Recall 𝑡-time-bounded Kolmogorov complexity:

K𝑡 𝑥 = min
𝑀

𝑀 ∶ 𝑀 outputs 𝑥 within 𝑡 𝑥 steps

11

K𝑡 𝑥 = min
𝑀

𝑀 ∶ 𝑀 outputs 𝑥 within 𝑡 𝑥 steps

Recall 𝑡-time-bounded Kolmogorov complexity:

rKt 𝑥 = min
Randomized 𝑀

𝑀 ∶ 𝑀 runs in 𝑡 𝑥 steps and outputs 𝑥 with probability ≥ 2
3

Randomized 𝑡-time-bounded Kolmogorov complexity:

Fixed time bounds:

11

Succinct probabilistic representations

12

Succinct probabilistic representations

12

Succinct probabilistic representations

running time can be exponential

12

Succinct probabilistic representations

running time can be exponential

succinct and efficient representation

12

pK𝑡 𝑥 = min
𝑘

𝑘 ∶ 𝐏𝐫
𝒘∈ 𝟎,𝟏 𝒕 𝒙

∃ 𝑀 ∈ 0,1 𝑘 s. t.𝑀(𝑤) outputs 𝑥 within 𝑡 𝑥 steps ≥ 𝟐
𝟑

Probabilistic 𝑡-time-bounded Kolmogorov complexity [Goldberg-Kabanets-Lu-O’22]:

13

For most 𝒘 there exists a small program 𝑀 that outputs 𝑥 given 𝒘

rK𝑡 𝑥 = min
𝑘

𝑘 ∶ ∃ 𝑡 𝑥 time program𝑀 ∈ 0,1 𝑘 s. t. 𝐏𝐫
𝐫𝐚𝐧𝐝𝐨𝐦𝐧𝐞𝐬𝐬 𝐨𝐟 𝑴

𝑀 outputs 𝑥 ≥ 𝟐
𝟑

Randomized 𝑡-time-bounded Kolmogorov complexity:

For most 𝒘 there exists a small program 𝑀 that outputs 𝑥 given 𝒘

There exists a fixed small (randomized) program that outputs 𝑥 w.h.p over its internal randomness

pK𝑡 𝑥 = min
𝑘

𝑘 ∶ 𝐏𝐫
𝒘∈ 𝟎,𝟏 𝒕 𝒙

∃ 𝑀 ∈ 0,1 𝑘 s. t.𝑀(𝑤) outputs 𝑥 within 𝑡 𝑥 steps ≥ 𝟐
𝟑

Probabilistic 𝑡-time-bounded Kolmogorov complexity [Goldberg-Kabanets-Lu-O’22]:

13

Overview of this lecture

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

14

Overview of this lecture

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

14

Probabilistic Kolmogorov Complexity

Kt 𝑥 ≤ 𝑘

rKt 𝑥 ≤ 𝑘

pKt 𝑥 ≤ 𝑘

Resembles NP

Resembles MA

Resembles AM

𝑀 ∈ 0,1 𝑘

Runs 𝑀 for 𝑡(|𝑥|) steps to
recover 𝑥

Sends a program 𝑀 ∈ 0,1 𝑘

15

Probabilistic Kolmogorov Complexity

Kt 𝑥 ≤ 𝑘

rKt 𝑥 ≤ 𝑘

pKt 𝑥 ≤ 𝑘

Resembles NP

Resembles MA

Resembles AM

𝑀 ∈ 0,1 𝑘

Runs 𝑀 for 𝑡(|𝑥|) steps to
recover 𝑥 with high probability

Sends a randomized
program 𝑀 ∈ 0,1 𝑘

15

Probabilistic Kolmogorov Complexity

Kt 𝑥 ≤ 𝑘

rKt 𝑥 ≤ 𝑘

pKt 𝑥 ≤ 𝑘

Resembles NP

Resembles MA

Resembles AM

𝑀 ∈ 0,1 𝑘

Runs 𝑀(𝑤) for 𝑡(|𝑥|) steps to
recover 𝑥

Sends a program 𝑀 ∈ 0,1 𝑘,
based on 𝒘

Shared randomness 𝑤 ∈ 0,1 𝑡

15

Time-Bounded Kolmogorov Complexity

K 𝑥 ≲ pKt 𝑥 ≤ rKt 𝑥 ≤ Kt 𝑥

Proposition: For every 𝑥 and 𝑡,

AM ⊇ MA ⊇ NP

16

Time-Bounded Kolmogorov Complexity

Proposition: For every 𝑥 and 𝑡,

Kpoly(𝑡) 𝑥 ≤ rK𝑡 𝑥 + 𝑂(log 𝑡) if E ⊈ i. o. 𝐒𝐈𝐙𝐄 𝟐𝛀(𝒏)

Proposition: For every 𝑥 and 𝑡,

Kpoly(𝑡) 𝑥 ≤ pK𝑡 𝑥 + 𝑂(log 𝑡) if E ⊈ i. o. 𝐍𝐒𝐈𝐙𝐄 𝟐𝛀(𝒏)

rKpoly(𝑡) 𝑥 ≤ pK𝑡 𝑥 + 𝑂(log 𝑡) if BPE ⊈ i. o. 𝐍𝐒𝐈𝐙𝐄 𝟐𝛀(𝒏)

Derandomizing MA (to NP)

Derandomizing AM (to NP)

Converting AM to MA

K 𝑥 ≲ pKt 𝑥 ≤ rKt 𝑥 ≤ Kt 𝑥

AM ⊇ MA ⊇ NP

16

17

But theory can be independently developed (unconditional results, simpler proofs, new
applications, etc.)

17

Overview of this talk

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

18

Overview of this talk

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

18

Average-case Complexity

• Pr
𝑥∼𝐷𝑛

A 𝑥; 1𝑘 ≠ 𝐿(𝑥) ≤ 1/𝑘,

• A 𝑥; 1𝑘 ∈ {𝐿(𝑥), ⊥} for every 𝑥 in Support(D) (𝐿, 𝐷) ∈ AvgP

A problem 𝐿 is solvable in average-case polynomial time w.r.t a distribution family
𝐷 = {𝐷𝑛}𝑛 if there is a poly-time algorithm A such that:

19

Average-case Complexity

• Pr
𝑥∼𝐷𝑛

A 𝑥; 1𝑘 ≠ 𝐿(𝑥) ≤ 1/𝑘,

• A 𝑥; 1𝑘 ∈ {𝐿(𝑥), ⊥} for every 𝑥 in Support(D)

A problem 𝐿 is solvable in average-case polynomial time w.r.t a distribution family
𝐷 = {𝐷𝑛}𝑛 if there is a poly-time algorithm A such that:

(𝐿, 𝐷) ∈ AvgP

• Pr
A, 𝑥∼𝐷𝑛

A 𝑥; 1𝑘 ≠ 𝐿(𝑥) ≤ 1/𝑘,

• A 𝑥; 1𝑘 ∈ {𝐿(𝑥), ⊥} w.h.p over A, for every 𝑥 in Support(D)

A language 𝐿 is solvable in randomized average-case polynomial time w.r.t a distribution
family 𝐷 = {𝐷𝑛}𝑛 if there is a poly-time randomized algorithm A such that:

(𝐿, 𝐷) ∈ AvgBPP

19

Worst-case Running Times for Average-case Problems

If L is solvable in average-case

polynomial time w.r.t to all poly-time

samplable distributions, what can we

say about the time needed to solve L

in the worst case?

20

Worst-case Running Times for Average-case Problems

• For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

• For every polynomial t, 𝐿 is solvable by some algorithm that runs in time

2𝑂 K𝑡 𝑥 −K 𝑥 +log |𝑥| on every input 𝑥.

Theorem (Antunes-Fortnow’09): Under a strong derandomization assumption,

The following statements are equivalent for every language 𝐿:

K𝑡 𝑥 − K 𝑥 is called the 𝑡-computational depth of 𝑥

21

Worst-case Running Times for Average-case Problems

• For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

• For every polynomial t, 𝐿 is solvable by some algorithm that runs in time

2𝑂 K𝑡 𝑥 −K 𝑥 +log |𝑥| on every input 𝑥.

Theorem (Antunes-Fortnow’09): Under a strong derandomization assumption,

The following statements are equivalent for every language 𝐿:

K𝑡 𝑥 − K 𝑥 is called the 𝑡-computational depth of 𝑥

21

Worst-case Running Times for Average-case Problems

Theorem (Lu-O-Zimand’22):
The following statements are equivalent for every language 𝐿:

pK𝑡 𝑥 − K 𝑥 is the 𝑡-probabilistic computational depth of 𝑥

• For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

• For every polynomial t, 𝐿 is solvable by some algorithm that runs in time

2𝑂 pK𝑡 𝑥 −K 𝑥 +log |𝑥| on every input 𝑥.

22

A useful ingredient of the proof

• For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

• For every polynomial t, 𝐿 is solvable by some algorithm that runs in time

2𝑂 pK𝑡 𝑥 −K 𝑥 +log |𝑥| on every input 𝑥.

23

A useful ingredient of the proof

• For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

• For every polynomial t, 𝐿 is solvable by some algorithm that runs in time

2𝑂 pK𝑡 𝑥 −K 𝑥 +log |𝑥| on every input 𝑥.

(Informal) For every polynomial t, L can be solved in polynomial-time on average with
respect to

23

A useful ingredient of the proof

The link between samplable distributions and the “universal” distribution is
obtained by a “Coding Theorem”

• For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

• For every polynomial t, 𝐿 is solvable by some algorithm that runs in time

2𝑂 pK𝑡 𝑥 −K 𝑥 +log |𝑥| on every input 𝑥.

(Informal) For every polynomial t, L can be solved in polynomial-time on average with
respect to

23

Optimal coding theorem for pKt

Coding Theorem in
Kolmogorov Complexity

We want an efficient version of the coding lemma.

[Lu-O-Zimand’22]

24

Optimal coding theorem for pKt

Coding Theorem in
Kolmogorov Complexity

We want an efficient version of the coding lemma.

[Lu-O-Zimand’22]

24

Theorem [Lu-Oliveira-Zimand’22]:

For every poly-time-samplable distribution {𝐷𝑛} over 0,1 𝑛, and every

𝑥 ∈ support(𝐷𝑛)

pKpoly 𝑥 ≤ log
1

𝐷𝑛 𝑥
+ O(log 𝑛)

Proof sketch: Coding Theorem for pKt
(adapting Antunes-Fortnow)

25

Back to equivalence result

• For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

• For every polynomial t, 𝐿 is solvable by some algorithm that runs in time

2𝑂 pK𝑡 𝑥 −K 𝑥 +log |𝑥| on every input 𝑥.

(Informal) For every polynomial t, L can be solved in polynomial-time on average with
respect to

Optimal Coding Theorem for pKt

Time-bounded variant of result from
Kolmogorov complexity

26

Overview of this lecture

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

27

Overview of this lecture

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

27

Worst-case to Average-case Reductions

DistNP is the set of (𝐿, 𝐷), where 𝐿 ∈ NP
and 𝐷 is poly-time samplable.

Is NP solvable in average-
case polynomial time?

Is DistNP ⊆ AvgP?

28

Worst-case to Average-case Reductions

Does worst-case hardness
of NP imply average-case
hardness of NP?

DistNP ⊈ AvgPNP ≠ P
?

This is called a worst-case to average-case reduction.

29

Worst-case to Average-case Reductions

NP = PDistNP ⊆ AvgP
?

Theorem (Ben-David, Chor, Goldreich, Luby’ 92):

DistNP ⊆ AvgP imples NP ⊆ 𝐃𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏)

30

Worst-case to Average-case Reductions

NP = PDistNP ⊆ AvgP
?

Theorem (Ben-David, Chor, Goldreich, Luby’ 92):

Open to show DistPH ⊆ AvgP implies NP ⊆

DTIME[𝟐𝒐(𝒏)]
for nearly 30 years.

DistNP ⊆ AvgP imples NP ⊆ 𝐃𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏)

30

Worst-case to Average-case Reductions

Theorem (Hirahara’21):

Dist𝚺𝟐 ⊆ AvgP imples NP ⊆ 𝐃𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)

DistPH ⊆ AvgP imples PH ⊆ 𝐃𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)

UP ⊆ 𝐃𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)DistNP ⊆ AvgP

Extensions to NP and PH:

31

Worst-case to Average-case Reductions

Theorem (Hirahara’21):

Dist𝚺𝟐 ⊆ AvgP imples NP ⊆ 𝐃𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)

DistPH ⊆ AvgP imples PH ⊆ 𝐃𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)

Dist𝚺𝟐 ⊆ AvgBPP imples NP ⊆ 𝐑𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)

DistPH ⊆ AvgBPP imples PH ⊆ 𝐁𝐏𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)

UP ⊆ 𝐃𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)DistNP ⊆ AvgP

Theorem (Goldberg-Kabanets-Lu-O’22):

UP ⊆ 𝐑𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)DistNP ⊆ AvgBPP

Extensions to NP and PH:

31

NP ⊆ 𝐁𝐏𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)DistPH ⊆ AvgBPP

32

NP ⊆ 𝐁𝐏𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)DistPH ⊆ AvgBPP

32

NP ⊆ 𝐁𝐏𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)DistPH ⊆ AvgBPP

Interested in the quantity pK𝑡 𝑥 − K 𝑥

Exercise: There is 𝑥 of length 𝑛 such that pK𝑡 𝑥 − K 𝑥 > 𝑛 − C log 𝑛

Perhaps in our application we can get an exponent that is less than pK𝑡 𝑥 − K 𝑥 ?

• For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

• For every polynomial t, 𝐿 is solvable by some algorithm that runs in time

2𝑂 pK𝑡 𝑥 −K 𝑥 +log |𝑥| on every input 𝒙.

Recall the equivalence:

32

NP ⊆ 𝐁𝐏𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)DistPH ⊆ AvgBPP

Term K 𝑥 derived from the Language Compression Theorem for K

• For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

• For every polynomial t, 𝐿 is solvable by some algorithm that runs in time

2𝑂 pK𝑡 𝑥 −K 𝑥 +log |𝑥| on every input 𝒙.

Recall the equivalence:

“If A is a decidable subset of {0,1}n, then for every string y in A, K(y) < log |A| + O(log n) ”

Similarly to the Coding Theorem, perhaps we can establish Language Compression for pKpoly?

33

NP ⊆ 𝐁𝐏𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)DistPH ⊆ AvgBPP

Term K 𝑥 derived from the Language Compression Theorem for K

• For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

• For every polynomial t, 𝐿 is solvable by some algorithm that runs in time

2𝑂 pK𝑡 𝑥 −K 𝑥 +log |𝑥| on every input 𝒙.

Recall the equivalence:

“If A is a decidable subset of {0,1}n, then for every string y in A, K(y) < log |A| + O(log n) ”

Similarly to the Coding Theorem, perhaps we can establish Language Compression for pKpoly?

“has complexity 𝑡” pKpoly(𝑡) y < log |A| + O(log n)

33

NP ⊆ 𝐁𝐏𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)DistPH ⊆ AvgBPP

This idea can improve the time bound to 2𝑂 pK𝑡 𝑥 −pKpoly(𝑡) 𝑥 +log |𝑥|

• For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

• For every polynomial t, 𝐿 is solvable by some algorithm that runs in time

2𝑂 pK𝑡 𝑥 −K 𝑥 +log |𝑥| on every input 𝒙.

Recall the equivalence:

Language Compression for pKpoly is not known…

But it can be established for every set A in NP under the assumption that DistPH ⊆ AvgBPP.

(even for A in AM)

34

NP ⊆ 𝐁𝐏𝐓𝐈𝐌𝐄 𝟐𝑶(𝒏/ 𝐥𝐨𝐠 𝒏)DistPH ⊆ AvgBPP

Fix L in NP. For every input 𝑥, and for every polynomial 𝑡,

2𝑂 pK𝑡 𝑥 −pK𝑡
c

𝑥 +log |𝑥|We can decide if 𝑥 is in L in time

It remains to understand the bound pK𝑡 𝑥 − pK𝑡c 𝑥 , for an arbitrary 𝑥.

(Crucial Point: We can use different values of t in this upper bound!)

35

pK𝑡 𝑥 − pK𝑡
c

𝑥

1 nn/2

pK𝑡 𝑥pK𝑡
c

𝑥

36

pK𝑡 𝑥 − pK𝑡
c

𝑥

1 nn/2

pK𝑡 𝑥pK𝑡
c

𝑥

1 nn/2

pK𝑡 𝑥pK𝑡
c

𝑥

36

pK𝑡 𝑥 − pK𝑡
c

𝑥

1 nn/2

pK𝑡 𝑥pK𝑡
c

𝑥

1 nn/2

pK𝑡1 𝑥

𝑡1 = 𝑡c

36

pK𝑡 𝑥 − pK𝑡
c

𝑥

1 nn/2

pK𝑡 𝑥pK𝑡
c

𝑥

1 nn/2

pK𝑡1 𝑥

𝑡1 = 𝑡c

pK𝑡
𝑐

𝑥1

By considering time bounds of the form t, poly(t), poly(poly(t)), …, the difference in pK
complexity is small for some consecutive pair of time bounds.

36

Summary

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

37

Thank you

Main Reference for Lecture 1:

Theory and Applications of Probabilistic Kolmogorov Complexity [Lu-O’22]

Bulletin of EATCS No 137 (The Computational Complexity Column), 2022.

38

