Lecture 1:

Probabilistic Notions of Kolmogorov Complexity

[gor Carboni Oliveira

University of Warwick

CIRM - Randomness, Information & Complexity

February/2024

Plan for the Week

Lecture 1 (Monday)

Probabilistic Notions of (Time-Bounded) Kolmogorov Complexity

“Unconditional results & applications to average-case complexity”

Connections to Cryptography and Complexity Theory

“Major questions in complexity are equivalent to statements about Kolmogorov Complexity”
OWEF P vs NP

Lecture 3 (Thursday)

1@ 49 6@ 8 910

SR REEEA LR Connections to Algorithms (explicit constructions, generating primes, etc.)
21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 “« ”

51 52 53 54 55 56 57 58 59 60 Existence of large primes with efficient short descriptions

61 62 63 64 65 66 67 68 69 70

7172 7374 7576 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Kolmogorov Complexity

string x short encoding of x

01001101...0111010111 — 010001110

K(x) = minimum length of a program M that outputs x

Formal Definition:

Let U be a Turing machine.

Kuy(z) = min {|M| : U(M) outputs z}.

M e {0,1}*

We formally define K(x) with respect to a fixed U (time-efficient universal machine)

Formal Definition:

Let U be a Turing machine.

Kuy(z) = min {
M e{0,1}*

M| : U(M) outputs z}.

We formally define K(x) with respect to a fixed U (time-efficient universal machine)

For simplicity, we abuse notation and refer to M directly.

Time-Bounded Kolmogorov Complexity

Kolmogorov complexity:

K(x) = mﬂi/ln {IM] : M outputs x}

Time-Bounded Kolmogorov Complexity

Kolmogorov complexity:

K(x) = mﬂi/ln {IM] : M outputs x}

Levin Kolmogorov complexity:

Kt(x) = %ntl {IM]| + logt : M outputs x within t steps}

Time-Bounded Kolmogorov Complexity

Kolmogorov complexity:

K(x) = mﬂi/ln {IM] : M outputs x}

Levin Kolmogorov complexity:

Kt(x) = %Htl {IM]| + logt : M outputs x within t steps}

t-time-bounded Kolmogorov complexity:

Ki(x) = mﬂi/ln {|M| : M outputs x within t(|x|) steps}

Despite the usefulness of time-bounded Kolmogorov complexity, many basic
guestions remain open:

Is it computationally hard to compute Kt(x)?

Do classical results in Kolmogorov complexity survive in the time-bounded setting?

Do natural objects (e.g., prime numbers) have small Kt or Kt complexity?

Despite the usefulness of time-bounded Kolmogorov complexity, many basic
guestions remain open:

Is it computationally hard to compute Kt(x)?

Do classical results in Kolmogorov complexity survive in the time-bounded setting?

Do natural objects (e.g., prime numbers) have small Kt or Kt complexity?

A more recent theory of probabilistic Kolmogorov complexity provides new insights.

Kt rKt pK?

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pKt to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

Kt rKt pK?

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pKt to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

Probabilistic Notions of Kolmogorov Complexity

ekt

Probabilistic Notions of Kolmogorov Complexity

ekt

Definitions inspired by the notion of pseudodeterministic algorithm:

A randomized algorithm that produces the same output string w.h.p.

Probabilistic Notions of Kolmogorov Complexity

Definitions inspired by the notion of pseudodeterministic algorithm:

A randomized algorithm that produces the same output string w.h.p.

In Kolmogorov complexity terminology: probabilistic decompression

Kt — rKt

rkt complexity @ %

Recall Levin Kolmogorov complexity:

Kt(x) = %irtl{ |[M| + logt : M outputs x in < t steps }

Kt — rKt

rkt complexity

Recall Levin Kolmogorov complexity:

Kt(x) = %irtl{ IM| + logt : M outputs x in < t steps }

Levin Kolmogorov complexity:

Kt(x) = min y t{ IM| + logt : M outputs x in < t steps }

An unconditional lower bound

[s it hard to detect patterns?

rkKt rKt
R§n€ 732.9971

“structured” “random”

An unconditional lower bound

[s it hard to detect patterns?

rkKt rKt
R§n€ 732.99n

“structured” “random”

Theorem [0’19]. Ve > 0, there is no randomised algorithm running in quasi-

polynomial time that accepts strings in RrSK,,ELE and rejects strings in RrZK_tggn

Fixed time bounds: th

Recall t-time-bounded Kolmogorov complexity:

Ki(x) = ml\i/ln {IM] : M outputs x within t(|x|) steps}

Fixed time bounds: th

Recall t-time-bounded Kolmogorov complexity:

Ki(x) = ml\i/ln {IM] : M outputs x within t(|x|) steps}

Randomized t-time-bounded Kolmogorov complexity:

rK'(x) =

min
Randomized M

{IMI : M runs in t(|x|) steps and outputs x with probability > %}

Succinct probabilistic representations

[Lagarias-Odlyzko’87] == For every large n, there is an n-bit prime p,, with Kt(p,) < 5 + o(n).

Recall: Open to show 3 primes of Kt complexity < n/2.

Succinct probabilistic representations

[Lagarias-Odlyzko’87] == For every large n, there is an n-bit prime p,, with Kt(p,) < 5 + o(n).

Recall: Open to show 3 primes of Kt complexity < n/2.

Theorem [O-Santhanam’17,0’19]. Ve > 0, for infinitely many values of n,
3 n-bit prime p,, such that rKt(p,) < n°®.

Succinct probabilistic representations

[Lagarias-Odlyzko’87] == For every large n, there is an n-bit prime p,, with Kt(p,) < 5 + o(n).

Recall: Open to show 3 primes of Kt complexity < n/2.

Theorem [O-Santhanam’17,0’19]. Ve > 0, for infinitely many values of n,
3 n-bit prime p,, such that rKt(p,) < n°®.

! running time can be exponential

Succinct probabilistic representations

[Lagarias-Odlyzko’87] == For every large n, there is an n-bit prime p,, with Kt(p,) < 5 + o(n).
Recall: Open to show 3 primes of Kt complexity < n/2.

Theorem [O-Santhanam’17,0’19]. Ve > 0, for infinitely many values of n,
3 n-bit prime p,, such that rKt(p,) < n°®.

! running time can be exponential

Theorem [Lu-O-Santhanam’21]. Ve > 0, for infinitely many values of n,
3 n-bit prime ¢,, such that erD]Y((;ﬂ) < nc.
succinct and efficient representation

pK"*

Probabilistic t-time-bounded Kolmogorov complexity [coidberg-kabanets-Lu-0"22):

pKf(x) = min{ k : Pr [3M € {0,1}*s.t. M(w) outputs x within t(|x|) steps] = 2}

o8]

k we{0,1}txD
t

For most w there exists a small program M that outputs x given w

Probabilistic t-time-bounded Kolmogorov complexity [coidberg-kabanets-Lu-0"22):

pK*

pKf(x) = mkin

fi

Pr
we{0,1}txD

[3 M € {0,1}* s.t. M(w) outputs x within t(|x|) steps] =

2

o8]

}

f

For most w there exists a small program M that outputs x given w

Randomized t-time-bounded Kolmogorov complexity:

rKt(x) = mkin{ k : 3 t(|x]) time program M € {0,1}% s.t. Pr

randomness of M

[M outputs x| >

WIN

}

A

There exists a fixed small (randomized) program that outputs x w.h.p over its internal randomness

Kt rKt pK?

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pKt to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

Kt rKt pK?

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pKt to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

Probabilistic Kolmogorov Complexity

K'(x) <k

Resembles NP

e S \

N\

M € {0,1}*

Sends a program M € {0,1}*

Runs M for t(|x]|) steps to
recover x

Probabilistic Kolmogorov Complexity

rK'(x) <k

Resembles MA

Sends a randomized
program M € {0,1}¥

Runs M for t(|x]|) steps to
recover x with high probability

Probabilistic Kolmogorov Complexity

pK'(x) <k

Shared randomness w € {0,1}*

Resembles AM

Sends a program M € {0,1}%,
based on w

Runs M (w) for t(]|x|) steps to
recover x

Time-Bounded Kolmogorov Complexity

Proposition: For every x and t,

K(x) < pK'(x) < rK'(x) < K'(x)

AM =2 MA 2 NP

Time-Bounded Kolmogorov Complexity

Proposition: For every x and t,

K(x) < pK'(x) < rK'(x) < K'(x)

AM =2 MA 2 NP

Proposition: For every x and t,

KPolY(®) (x) < rK'(x) + O(logt) if E Z i. 0. SIZE| 29|

Derandomizing MA (to NP)

KPolY® (x) < pK!(x) + O(logt) if E € i.0. NSIZE| 22|

Derandomizing AM (to NP)

rkPolY(®) (x) < pKi(x) + O(logt) if BPE & i.0. NSIZE[22("]

Converting AM to MA

Under strong circuit lower bound assumptions:

KpOIy(IL‘) ~ eroly (,CU) ~ prOIy(gj) (up to O(logn) additive terms)

—> Probabilistic theory sheds light on classical time-bounded Kolm. complexity

Under strong circuit lower bound assumptions:

KpOIy({L‘) ~ eroly (;U) ~~ prOIy(gj) (up to O(logn) additive terms)

—> Probabilistic theory sheds light on classical time-bounded Kolm. complexity

But theory can be independently developed (unconditional results, simpler proofs, new
applications, etc.)

Kt rKt pK?

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pKt to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

Kt rKt pK?

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pKt to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

Average-case Complexity

A problem L is solvable in average-case polynomial time w.r.t a distribution family

D = {D,,}, if there is a poly-time algorithm A such that:

. xggn[A(x; 1%) = L(x)| < 1/k,

. A(x; 1") € {L(x), L} for every x in Support(D) —

(L,D) € AvgP

Average-case Complexity

A problem L is solvable in average-case polynomial time w.r.t a distribution family

D = {D,,}, if there is a poly-time algorithm A such that:

. xggn[A(x; 1%) = L(x)| < 1/k,

. A(x; 1") € {L(x), L} for every x in Support(D) —

(L,D) € AvgP

A language L is solvable in randomized average-case polynomial time w.r.t a distribution
family D = {D,, },, if there is a poly-time randomized algorithm A such that:

© P [A(n19) = L] < 1/k,

. A(x; 1k) € {L(x), L} w.h.p over A, for every x in Support(D)

—| (L, D) € AvgBPP

Worst-case Running Times for Average-case Problems

i solvable _

polynomial time w.r.t to all poly-time
samplable distributions, what can we
say about the time needed to solve L

J

g worst case?

Worst-case Running Times for Average-case Problems

Theorem (Antunes-Fortnow’09): Under a strong derandomization assumption,
The following statements are equivalent for every language L:

For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

For every polynomial t, L is solvable by some algorithm that runs in time
E(x)— :
20(K- () ~K(<)+l°g 1%1) on every input x.

Kt(x) — K(x) is called the t-computational depth of x

Worst-case Running Times for Average-case Problems

E = DTIME[29()] does not have 2°(") circuits with ¥ oracle gates

Theorem (Antunes-Fortnow’09): Under a strong derandomization assumption,
The following statements are equivalent for every language L:

For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

For every polynomial t, L is solvable by some algorithm that runs in time
E(x)— :
20(K- () -K(<)+l°g 1%1) on every input x.

Kt(x) — K(x) is called the t-computational depth of x

Worst-case Running Times for Average-case Problems

The following statements are equivalent for every language L:

For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

For every polynomial t, L is solvable by some algorithm that runs in time
20(pKt(x){K(x)+1°g ¥1) on every input x.

N

pKt(x) — K(x) is the t-probabilistic computational depth of x

A useful ingredient of the proof

For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

For every polynomial t, L is solvable by some algorithm that runs in time
20(PK ()-K()+log Ix]) on every input x.

A useful ingredient of the proof

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

(Informal) For every polynomial t, L can be solved in polynomial-time on average with

respectto //f(y) = 9—pK' ()

* For every polynomial t, L is solvable by some algorithm that runs in time
20(PK ()-K()+log Ix]) on every input x.

A useful ingredient of the proof

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

(Informal) For every polynomial t, L can be solved in polynomial-time on average with

respectto //f(y) = 9—pK' ()

* For every polynomial t, L is solvable by some algorithm that runs in time
20(PK ()-K()+log Ix]) on every input x.

I”

The link between samplable distributions and the “universal” distribution is

obtained by a “Coding Theorem”

Optimal coding theorem for pKt

[Lu-O-Zimand’22]

Coding Theorem in
Kolmogorov Complexity

An object x can be sampled x admits a representation
with probability o — of length =~ log(1/6)

We want an efficient version of the coding lemma.

Optimal coding theorem for pKt

[Lu-O-Zimand’22]

Coding Theorem in
Kolmogorov Complexity

An object x can be sampled x admits a representation
with probability o — of length =~ log(1/6)

We want an efficient version of the coding lemma.

Theorem [Lu-Oliveira-Zimand’22]:

For every poly-time-samplable distribution {D,,} over {0,1}", and every

X € support(D,,)
1

Dy, (x)

pKPolY (x) < log() + O0(logn)

Proof sketch: Coding Theorem for pK® (acepting antunes-rortnow)

Let A(1™) be a poly-time sampler. Suppose it outputs = € {0,1}" with probability 9.

Goal: pK'(z) <log(1/d) + O(logn), where t(n) = poly(n)

(For most random strings w, the string = has a short description given w)

input r € {0, 13 of sampler A Consider a random hash function H: {0,1}* — {0,1}™.
Pry[for no z € {0.1}* we have A(H(z)) = 2] < (1 — (5)2k <1/10

(if we let k =log(1/4d) + 100)

Claim. For most H, x has a short description given H

/

d-fraction of strings lead to x

Issue: Efficiency (H can be of exponential size) (Fix: Efficiently derandomize construction of H)

Back to equivalence result

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

@ Optimal Coding Theorem for pKt

(Informal) For every polynomial t, L can be solved in polynomial-time on average with
to..
respectto ;f () = 2 PK'(2)

Time-bounded variant of result from
Kolmogorov complexity

* For every polynomial t, L is solvable by some algorithm that runs in time
20(PK ()-K()+log Ix]) on every input x.

Kt rKt pK?

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pKt to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

Kt rKt pK?

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pKt to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

Worst-case to Average-case Reductions

Is NP solvable in average-
case polynomial time?

DistNP is the set of (L, D), where L € NP
and D is poly-time samplable.

Is DistNP < AvgP?

Worst-case to Average-case Reductions

\
Does worst-case hardness

of NP imply average-case
hardness of NP?

V y
| ?

NP 4P| mossm) | DistNP E AvgP

T

This is called a worst-case to average-case reduction.

Worst-case to Average-case Reductions

?
DistNP C AvgP | s | NP =P

Theorem (Ben-David, Chor, Goldreich, Luby’ 92):

DistNP < AvgP imples NP € DTIME|29("™)]

Worst-case to Average-case Reductions

?
DistNP C AVEP | wessssss) | NP =P

Theorem (Ben-David, Chor, Goldreich, Luby’ 92):

DistNP < AvgP imples NP € DTIME|29("™)]

Open to show DistPH < AvgP implies NP <
DTIME[2°(™)]

for nearly 30 years.

Worst-case to Average-case Reductions

Theorem (Hirahara’21):

DistNP € AvgP

—

C DTIME[20(/legn) |

Extensions to NP and

DistZ, € AvgP imples NP € DTIME[20(%/logn) |

DistPH < AvgP imples PH € DTIME[ZO("/ log ")]

Worst-case to Average-case Reductions

Theorem (Hirahara’21):

DistNP € AvgP

—

C DTIME[20(/legn) |

Extensions to NP and

DistZ, € AvgP imples NP € DTIME[20(%/logn) |

Theorem (Goldberg-Kabanets-Lu-0’22):

DistNP € AvgBPP

—

DistPH < AvgP imples PH € DTIME[ZO("/ log ")]

C RTIME|20(/logn) |

DistE, C AvgBPP imples NP € RTIME([20(/logn) |

DistPH C AvgBPP imples PH € BPTIME|20(®/logn) |

DistPH € AvgBPP

NP € BPTIME|20(%/logn) |

DistPH € AvgBPP

NP € BPTIME|20(%/logn) |

DistPH S AvgBPP | = | NP C BPTIME[ZO("/ logn)]

Recall the equivalence:

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

* For every polynomial t, L is solvable by some algorithm that runs in time
20(PK*)-K()+log |x]) op every input x.

Interested in the quantity pK*(x) — K(x)
Exercise: There is x of length n such that pK‘(x) — K(x) >n — Clogn

Perhaps in our application we can get an exponent that is less than pK®(x) — K(x) ?

DistPH S AvgBPP | = | NP C BPTIME[ZO("/ logn)]

Recall the equivalence:

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

* For every polynomial t, L is solvable by some algorithm that runs in time
20(pKt(x)‘If(x)+l°g X1) on every input x.

Term K(x) derived from the Language Compression Theorem for K

“If A'is a decidable subset of {0,1}", then for every stringy in A, K(y) < log |A| + O(log n)”

Similarly to the Coding Theorem, perhaps we can establish Language Compression for pKrelv?

DistPH S AvgBPP | = | NP C BPTIME[ZO("/ logn)]

Recall the equivalence:

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

* For every polynomial t, L is solvable by some algorithm that runs in time
20(pKt(x)‘If(x)+l°g X1) on every input x.

Term K(x) derived from the Language Compression Theorem for K

“If A'is a deeidable subset of {0,1}", then for every stringy in A, ¥y} < log |A| + O(log n)”
“has complexity t” pKPoY(®) (y) < log |A| + O(log n)

Similarly to the Coding Theorem, perhaps we can establish Language Compression for pKrev?

DistPH S AvgBPP | = | NP C BPTIME[ZO("/ logn)]

Recall the equivalence:

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

* For every polynomial t, L is solvable by some algorithm that runs in time
20(PK*)-K()+log |x]) op every input x.

This idea can improve the time bound to 20(PK‘()-pKPO¥ () +log |x])
Language Compression for pKP°Y is not known...

But it can be established for every set A in NP under the assumption that DistPH S AvgBPP.
(even for A in AM)

DistPH S AvgBPP | = | NP C BPTIME[ZO("/ logn)]

Fix Lin NP. For every input x, and for every polynomial ¢,
)t
We can decide if x isin Lin time ZO(pK (x)=pK" (x)+log |x|)

It remains to understand the bound pKt(x) — pK® (x), for an arbitrary x.

(Crucial Point: We can use different values of t in this upper bound!)

pK!(x) — pK* (x)

K" (x) pK*(x)

n/?2

pK!(x) — pK* (x)

pK.tc(x) pK;(X)
n/?2
pK (x) pK*(x)
& 9

n/?2

pK!(x) — pK* (x)

pK® (x) pK*(x)
9 9
n/?2
£, =t°
pK":(x)
O

n/?2

pK!(x) — pK* (x)

pK® (x) pK*(x)
9 9
1 n/?2
t, =t
pK% (x) pK%i(x)
() ()
1 n/?2

By considering time bounds of the form t, poly(t), poly(poly(t)), ..., the difference in pK
complexity is small for some consecutive pair of time bounds.

Lemma. [Hirahara] For every = € {0, 1}, there is ¢ € [n, 2°(*/1°8™)] quch that

pK'(z) — pK (2) = O(n/logn).

Kt rKt pK?

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pKt to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

Main Reference for Lecture 1:

Theory and Applications of Probabilistic Kolmogorov Complexity [Lu-0’22]

Bulletin of EATCS No 137 (The Computational Complexity Column), 2022.

Thank you

