Lecture 1:

Probabilistic Notions of Kolmogorov Complexity

Igor Carboni Oliveira

University of Warwick

CIRM - Randomness, Information \& Complexity
February/2024

Plan for the Week

Lecture 1 (Monday)

Probabilistic Notions of (Time-Bounded) Kolmogorov Complexity
"Unconditional results \& applications to average-case complexity"

Lecture 2 (Tuesday)

Connections to Cryptography and Complexity Theory
"Major questions in complexity are equivalent to statements about Kolmogorov Complexity"

```
OWF P vs NP
```


Lecture 3 (Thursday)

$\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$ 21222324252627282930 31323334353637383940 41424344454647484950 $\begin{array}{lllllll}51 & 52 & 53 & 54 & 55 & 56 & 57 \\ 58 & 59 & 60\end{array}$ 61626364656667686970 71727374757677787980 81828384858687888990 $\begin{array}{llllll} \\ 91 & 92 & 93 & 94 & 95 & 96 \\ 97 & 98 & 99 & 100\end{array}$

Connections to Algorithms (explicit constructions, generating primes, etc.)
"Existence of large primes with efficient short descriptions"

Kolmogorov Complexity

$\mathrm{K}(x)=$ minimum length of a program M that outputs x

Formal Definition:

Let U be a Turing machine.

$$
\mathrm{K}_{U}(x)=\min _{M \in\{0,1\}^{*}}\{|M|: U(M) \text { outputs } x\}
$$

We formally define $\mathrm{K}(x)$ with respect to a fixed U (time-efficient universal machine)

Formal Definition:

Let U be a Turing machine.

$$
\mathrm{K}_{U}(x)=\min _{M \in\{0,1\}^{*}}\{|M|: U(M) \text { outputs } x\}
$$

We formally define $\mathrm{K}(x)$ with respect to a fixed U (time-efficient universal machine)

For simplicity, we abuse notation and refer to M directly.

Time-Bounded Kolmogorov Complexity

Kolmogorov complexity:

$$
\mathrm{K}(x)=\min _{M}\{|M|: M \text { outputs } x\}
$$

Time-Bounded Kolmogorov Complexity

Kolmogorov complexity:

$$
\mathrm{K}(x)=\min _{M}\{|M|: M \text { outputs } x\}
$$

Levin Kolmogorov complexity:

$$
\mathrm{Kt}(x)=\min _{M, t}\{|M|+\log t: M \text { outputs } x \text { within } t \text { steps }\}
$$

Time-Bounded Kolmogorov Complexity

Kolmogorov complexity:

$$
K(x)=\min _{M}\{|M|: M \text { outputs } x\}
$$

Levin Kolmogorov complexity:

$$
\operatorname{Kt}(x)=\min _{M, t}\{|M|+\log t: M \text { outputs } x \text { within } t \text { steps }\}
$$

t-time-bounded Kolmogorov complexity:

$$
\mathrm{K}^{t}(x)=\min _{M}\{|M|: M \text { outputs } x \text { within } t(|x|) \text { steps }\}
$$

Despite the usefulness of time-bounded Kolmogorov complexity, many basic questions remain open:

Is it computationally hard to compute $\mathrm{Kt}(\mathrm{x})$?

Do classical results in Kolmogorov complexity survive in the time-bounded setting?

Do natural objects (e.g., prime numbers) have small K^{t} or Kt complexity?

Despite the usefulness of time-bounded Kolmogorov complexity, many basic questions remain open:

Is it computationally hard to compute $\mathrm{Kt}(\mathrm{x})$?

Do classical results in Kolmogorov complexity survive in the time-bounded setting?

Do natural objects (e.g., prime numbers) have small K^{t} or Kt complexity?

A more recent theory of probabilistic Kolmogorov complexity provides new insights.

Overview of this lecture

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pK^{t} to average-case complexity:

1. Worst-case complexity of easy-on-average problems
2. Worst-case to average-case reductions

Overview of this lecture

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pK^{t} to average-case complexity:

1. Worst-case complexity of easy-on-average problems
2. Worst-case to average-case reductions

Probabilistic Notions of Kolmogorov Complexity

Probabilistic Notions of Kolmogorov Complexity

Definitions inspired by the notion of pseudodeterministic algorithm:
A randomized algorithm that produces the same output string w.h.p.

Probabilistic Notions of Kolmogorov Complexity

Definitions inspired by the notion of pseudodeterministic algorithm:

A randomized algorithm that produces the same output string w.h.p.

In Kolmogorov complexity terminology: probabilistic decompression

rKt complexity

Recall Levin Kolmogorov complexity:

$$
\operatorname{Kt}(x)=\min _{M, t}\{|M|+\log t: M \text { outputs } x \text { in } \leq t \text { steps }\}
$$

rKt complexity

Recall Levin Kolmogorov complexity:

$$
\operatorname{Kt}(x)=\min _{M, t}\{|M|+\log t: M \text { outputs } x \text { in } \leq t \text { steps }\}
$$

Randomized Levin Kolmogorov complexity:

$$
\operatorname{rKt}(x)=\min _{\text {Randomized } M, t}\left\{|M|+\log t: M \text { outputs } x \text { in } \leq t \text { steps with probability } \geq \frac{2}{3}\right\}
$$

An unconditional lower bound Is it hard to detect patterns?

$$
\mathcal{R}_{\geq .99 r}^{r K t}
$$

"structured"

An unconditional lower bound Is it hard to detect patterns?

Theorem [O'19]. $\forall \varepsilon>0$, there is no randomised algorithm running in quasipolynomial time that accepts strings in $\mathcal{R}_{\leq n^{\varepsilon}}^{\mathrm{KKt}}$ and rejects strings in $\mathcal{R}_{\geq .99 n}^{\mathrm{KKt}}$

Fixed time bounds: rK^{t}

Recall t-time-bounded Kolmogorov complexity:

$$
\mathrm{K}^{t}(x)=\min _{M}\{|M|: M \text { outputs } x \text { within } t(|x|) \text { steps }\}
$$

Fixed time bounds: rK^{t}

Recall t-time-bounded Kolmogorov complexity:

$$
\mathrm{K}^{t}(x)=\min _{M}\{|M|: M \text { outputs } x \text { within } t(|x|) \text { steps }\}
$$

Randomized t-time-bounded Kolmogorov complexity:

$$
\mathrm{rK}^{\mathrm{t}}(x)=\min _{\text {Randomized } M}\left\{|M|: M \text { runs in } t(|x|) \text { steps and outputs } x \text { with probability } \geq \frac{2}{3}\right\}
$$

Succinct probabilistic representations

[Lagarias-Odlyzko' 87$] \Longrightarrow$ For every large n, there is an n-bit prime p_{n} with $\operatorname{Kt}\left(p_{n}\right) \leq \frac{n}{2}+o(n)$.
Recall: Open to show \exists primes of Kt complexity $<n / 2$.

Succinct probabilistic representations

[Lagarias-Odlyzko'87] \Longrightarrow For every large n, there is an n-bit prime p_{n} with $\operatorname{Kt}\left(p_{n}\right) \leq \frac{n}{2}+o(n)$.
Recall: Open to show \exists primes of Kt complexity $<n / 2$.

Theorem [O-Santhanam'17, $\left.\mathbf{O}^{\prime} 19\right] . \forall \varepsilon>0$, for infinitely many values of n, $\exists n$-bit prime p_{n} such that $\operatorname{rKt}\left(p_{n}\right) \leq n^{\varepsilon}$.

Succinct probabilistic representations

[Lagarias-Odlyzko'87] \Longrightarrow For every large n, there is an n-bit prime p_{n} with $\operatorname{Kt}\left(p_{n}\right) \leq \frac{n}{2}+o(n)$.
Recall: Open to show \exists primes of Kt complexity $<n / 2$.

Theorem [O-Santhanam'17, $\left.\mathbf{O}^{\prime} 19\right] . \forall \varepsilon>0$, for infinitely many values of n, $\exists n$-bit prime p_{n} such that $\operatorname{rKt}\left(p_{n}\right) \leq n^{\varepsilon}$.
\uparrow running time can be exponential

Succinct probabilistic representations

[Lagarias-Odlyzko'87] \Longrightarrow For every large n, there is an n-bit prime p_{n} with $\operatorname{Kt}\left(p_{n}\right) \leq \frac{n}{2}+o(n)$.
Recall: Open to show \exists primes of Kt complexity $<n / 2$.

Theorem [O-Santhanam'17, $\mathbf{O}^{\mathbf{\prime}} 19$]. $\forall \varepsilon>0$, for infinitely many values of n, $\exists n$-bit prime p_{n} such that $\operatorname{rKt}\left(p_{n}\right) \leq n^{\varepsilon}$.

Theorem [Lu-O-Santhanam'21]. $\forall \varepsilon>0$, for infinitely many values of n, $\exists n$-bit prime q_{n} such that $\mathrm{rK}^{\text {poly }}\left(q_{n}\right) \leq n^{\varepsilon}$.

pK^{t}

Probabilistic t-time-bounded Kolmogorov complexity [Goldberg-kabanets-Lu-0'22]:

$$
\begin{gathered}
\operatorname{pK}^{t}(x)=\min _{k}\left\{k: \operatorname{Pr}_{w \in\{0,1\} t(|x|)}\left[\exists M \in\{0,1\}^{k} \text { s.t. } M(w) \text { outputs } x \text { within } t(|x|) \text { steps }\right] \geq \frac{2}{3}\right\} \\
\text { For most } w \text { there exists a small program } M \text { that outputs } x \text { given } w
\end{gathered}
$$

pK^{t}

Probabilistic t-time-bounded Kolmogorov complexity [Goldberg-kabanets-Lu-0'22]:

$$
\left.\operatorname{pK}^{t}(x)=\min _{k}\left\{k: \operatorname{Pr}_{w \in\{\mathbf{0}, \mathbf{1}\}}\{(|x|)] M \in\{0,1\}^{k} \text { s.t. } M(w) \text { outputs } x \text { within } t(|x|) \text { steps }\right] \geq \frac{2}{3}\right\}
$$

For most w there exists a small program M that outputs x given w

Randomized t-time-bounded Kolmogorov complexity:

$$
\begin{aligned}
\operatorname{rK}^{t}(x)= & \min _{k}\left\{k: \exists t(|x|) \text { time program } M \in\{0,1\}^{k} \text { s.t. } \underset{\text { randomness of } M}{\operatorname{Pr}}[M \text { outputs } x] \geq \frac{2}{3}\right\} \\
& \text { There exists a fixed small (randomized) program that outputs } x \text { w.h.p over its internal randomness }
\end{aligned}
$$

Overview of this lecture rKt $\mathrm{rK}^{t} \mathrm{pK}^{t}$

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pK^{t} to average-case complexity:

1. Worst-case complexity of easy-on-average problems
2. Worst-case to average-case reductions

Overview of this lecture

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pK^{t} to average-case complexity:

1. Worst-case complexity of easy-on-average problems
2. Worst-case to average-case reductions

Probabilistic Kolmogorov Complexity

$$
\mathrm{K}^{\mathrm{t}}(x) \leq k
$$

Resembles NP

$M \in\{0,1\}^{k}$

Sends a program $M \in\{0,1\}^{k}$

```
Runs \(M\) for \(t(|x|)\) steps to recover \(x\)
```


Probabilistic Kolmogorov Complexity

\square
\square
$\mathrm{rK}^{\mathrm{t}}(x) \leq k$

```
Resembles MA
```


> Sends a randomized program $M \in\{0,1\}^{k}$

Probabilistic Kolmogorov Complexity

\square
\square
\square

Shared randomness $w \in\{0,1\}^{t}$

$M \in\{0,1\}^{k}$

$\mathrm{pK}^{\mathrm{t}}(x) \leq k$
Sends a program $M \in\{0,1\}^{k}$,
Runs $M(w)$ for $t(|x|)$ steps to based on w

Time-Bounded Kolmogorov Complexity

Proposition: For every x and t,

Time-Bounded Kolmogorov Complexity

Proposition: For every x and t,

Proposition: For every x and t,

$$
\begin{aligned}
& \mathrm{K}^{\operatorname{poly}(t)}(x) \leq \mathrm{rK}^{t}(x)+O(\log t) \text { if } \mathrm{E} \nsubseteq \text { i. o. SIZE }\left[2^{\Omega(n)}\right] \\
& \mathrm{K}^{\text {poly }(t)}(x) \leq \mathrm{pK}^{t}(x)+O(\log t) \text { if } \mathrm{E} \nsubseteq \text { i. o. NSIZE }\left[2^{\Omega(n)}\right] \\
& \mathrm{rK}^{\text {poly }(t)}(x) \leq \mathrm{pK}^{t}(x)+O(\log t) \text { if BPE } \nsubseteq \text { i. o. NSIZE }\left[2^{\Omega(n)}\right]
\end{aligned}
$$

Derandomizing MA (to NP)
Derandomizing AM (to NP)

Converting AM to MA

Under strong circuit lower bound assumptions:

$$
\mathrm{K}^{\text {poly }}(x) \approx \mathrm{rK}^{\text {poly }}(x) \approx \mathrm{pK}^{\text {poly }}(x) \quad(\text { up to } O(\log n) \text { additive terms })
$$

\Longrightarrow Probabilistic theory sheds light on classical time-bounded Kolm. complexity

Under strong circuit lower bound assumptions:

$$
\mathrm{K}^{\text {poly }}(x) \approx \mathrm{rK}^{\text {poly }}(x) \approx \mathrm{pK}^{\text {poly }}(x) \quad(\text { up to } O(\log n) \text { additive terms })
$$

\Longrightarrow Probabilistic theory sheds light on classical time-bounded Kolm. complexity

But theory can be independently developed (unconditional results, simpler proofs, new applications, etc.)

Overview of this talk

Probabilistic notions and some recent advances

■
Probabilistic versus deterministic

Two applications of pK^{t} to average-case complexity:

1. Worst-case complexity of easy-on-average problems
2. Worst-case to average-case reductions

Overview of this talk

Probabilistic notions and some recent advances

\square
Probabilistic versus deterministic

Two applications of pK^{t} to average-case complexity:

1. Worst-case complexity of easy-on-average problems
2. Worst-case to average-case reductions

Average-case Complexity

A problem L is solvable in average-case polynomial time w.r.t a distribution family $D=\left\{D_{n}\right\}_{n}$ if there is a poly-time algorithm A such that:

- $\operatorname{Pr}_{x \sim D_{n}}\left[\mathrm{~A}\left(x ; 1^{k}\right) \neq L(x)\right] \leq 1 / k$,
- $\mathrm{A}\left(x ; 1^{k}\right) \in\{L(x), \perp\}$ for every x in Support(D) $\longrightarrow(L, D) \in$ AvgP

Average-case Complexity

A problem L is solvable in average-case polynomial time w.r.t a distribution family $D=\left\{D_{n}\right\}_{n}$ if there is a poly-time algorithm A such that:

- $\operatorname{Pr}_{x \sim D_{n}}\left[\mathrm{~A}\left(x ; 1^{k}\right) \neq L(x)\right] \leq 1 / k$,
- $\mathrm{A}\left(x ; 1^{k}\right) \in\{L(x), \perp\}$ for every x in Support(D) $\longrightarrow(L, D) \in$ AvgP

A language L is solvable in randomized average-case polynomial time w.r.t a distribution family $D=\left\{D_{n}\right\}_{n}$ if there is a poly-time randomized algorithm A such that:

- $\operatorname{Pr}_{\mathrm{A}, x \sim D_{n}}\left[\mathrm{~A}\left(x ; 1^{k}\right) \neq L(x)\right] \leq 1 / k$,
- $\mathrm{A}\left(x ; 1^{k}\right) \in\{L(x), \perp\}$ w.h.p over A , for every x in Support(D) $(L, D) \in$ AvgBPP

Worst-case Running Times for Average-case Problems

If L is solvable in average-case polynomial time w.r.t to all poly-time samplable distributions, what can we say about the time needed to solve L in the worst case?

Worst-case Running Times for Average-case Problems

Theorem (Antunes-Fortnow’09): Under a strong derandomization assumption, The following statements are equivalent for every language L :

- For every P-samplable distribution D, L can be solved in polynomial-time on average with respect to D.
- For every polynomial t, L is solvable by some algorithm that runs in time $2^{O\left(\mathrm{~K}^{t}(x)-K(x)+\log |x|\right)}$ on every input x.
$\mathrm{K}^{t}(x)-\mathrm{K}(x)$ is called the t-computational depth of x

Worst-case Running Times for Average-case Problems

Theorem (Antunes-Fortnow'09): Under a strong derandomization assumption, The following statements are equivalent for every language L :

- For every P-samplable distribution D, L can be solved in polynomial-time on average with respect to D.
- For every polynomial t, L is solvable by some algorithm that runs in time $2^{O\left(\mathrm{~K}^{t}(x)-\mathrm{K}(x)+\log |x|\right)}$ on every input x.
$\mathrm{K}^{t}(x)-\mathrm{K}(x)$ is called the t-computational depth of x

Worst-case Running Times for Average-case Problems

Theorem (Lu-O-Zimand'22):

The following statements are equivalent for every language L :

- For every P-samplable distribution D, L can be solved in polynomial-time on average with respect to D.
- For every polynomial t, L is solvable by some algorithm that runs in time $2^{O\left(\mathrm{pK}^{t}(x)-K(x)+\log |x|\right)}$ on every input x.
$\mathrm{pK}^{t}(x)-\mathrm{K}(x)$ is the t-probabilistic computational depth of x

A useful ingredient of the proof

- For every P-samplable distribution $\boldsymbol{D}, \mathrm{L}$ can be solved in polynomial-time on average with respect to D.
- For every polynomial t, L is solvable by some algorithm that runs in time $2^{O\left(\mathrm{pK}^{t}(x)-\mathrm{K}(x)+\log |x|\right)}$ on every input x.

A useful ingredient of the proof

- For every P-samplable distribution \mathbf{D}, L can be solved in polynomial-time on average with respect to D.

$$
\hat{g}
$$

(Informal) For every polynomial t, L can be solved in polynomial-time on average with respect to $\mu^{t}(x)=2^{-\mathrm{pK}^{t}(x)}$

- For every polynomial t, L is solvable by some algorithm that runs in time $2^{O\left(\mathrm{pK}^{t}(x)-\mathrm{K}(x)+\log |x|\right)}$ on every input x.

A useful ingredient of the proof

- For every P-samplable distribution D, L can be solved in polynomial-time on average with respect to D.
部
(Informal) For every polynomial t, L can be solved in polynomial-time on average with respect to $\mu^{t}(x)=2^{-\mathrm{pK}^{t}(x)}$

$$
\sqrt{5}
$$

- For every polynomial t, L is solvable by some algorithm that runs in time $2^{O\left(\mathrm{pK}^{t}(x)-\mathrm{K}(x)+\log |x|\right)}$ on every input x.

The link between samplable distributions and the "universal" distribution is obtained by a "Coding Theorem"

Optimal coding theorem for pK^{t}

[Lu-O-Zimand'22]
Coding Theorem in Kolmogorov Complexity $\begin{aligned} & \text { An object } x \text { can be sampled } \\ & \text { with probability } \delta\end{aligned} \quad \Longrightarrow \quad \begin{aligned} & x \text { admits a representation } \\ & \text { of length } \approx \log (1 / \delta)\end{aligned}$

We want an efficient version of the coding lemma.

Optimal coding theorem for pK^{t}

[Lu-O-Zimand'22]

An object x can be sampled with probability δ

x admits a representation of length $\approx \log (1 / \delta)$

We want an efficient version of the coding lemma.

Theorem [Lu-Oliveira-Zimand'22]:
For every poly-time-samplable distribution $\left\{D_{n}\right\}$ over $\{0,1\}^{n}$, and every $x \in \operatorname{support}\left(D_{n}\right)$

$$
\mathrm{pK}^{\text {poly }}(x) \leq \log \left(\frac{1}{D_{n}(x)}\right)+\mathrm{O}(\log n)
$$

Proof sketch: Coding Theorem for $\mathrm{pK}^{\mathrm{t}} \quad$ (adapting Antunes fortrow)

Let $A\left(1^{n}\right)$ be a poly-time sampler. Suppose it outputs $x \in\{0,1\}^{n}$ with probability δ.
Goal: $\mathrm{pK}^{t}(x) \leq \log (1 / \delta)+O(\log n)$, where $t(n)=\operatorname{poly}(n)$
(For most random strings \boldsymbol{w}, the string x has a short description given \boldsymbol{w})

δ-fraction of strings lead to x

Consider a random hash function $\boldsymbol{H}:\{0,1\}^{k} \rightarrow\{0,1\}^{m}$.
$\operatorname{Pr}_{\boldsymbol{H}}\left[\right.$ for no $z \in\{0,1\}^{k}$ we have $\left.A(\boldsymbol{H}(z))=x\right] \leq(1-\delta)^{2^{k}} \leq 1 / 10$
(if we let $k=\log (1 / \delta)+100$)

Claim. For most \boldsymbol{H}, x has a short description given \boldsymbol{H}

Issue: Efficiency (H can be of exponential size) (Fix: Efficiently derandomize construction of \boldsymbol{H})

Back to equivalence result

- For every P-samplable distribution D, L can be solved in polynomial-time on average with respect to D.

(Informal) For every polynomial t, L can be solved in polynomial-time on average with respect to $\mu^{t}(x)=2^{-\mathrm{pK}^{t}(x)}$

Time-bounded variant of result from
Kolmogorov complexity

- For every polynomial t, L is solvable by some algorithm that runs in time $2^{O\left(\mathrm{pK}^{t}(x)-\mathrm{K}(x)+\log |x|\right)}$ on every input x.

Overview of this lecture

Probabilistic notions and some recent advances

■
Probabilistic versus deterministic

Two applications of pK^{t} to average-case complexity:

- 1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions

Overview of this lecture

Probabilistic notions and some recent advances
\square Probabilistic versus deterministic

Two applications of pK^{t} to average-case complexity:
\checkmark 1. Worst-case complexity of easy-on-average problems
2. Worst-case to average-case reductions

Worst-case to Average-case Reductions

Is NP solvable in averagecase polynomial time?

DistNP is the set of (L, D), where $L \in \mathbf{N P}$ and D is poly-time samplable.

Is DistNP \subseteq AvgP?

Worst-case to Average-case Reductions

Worst-case to Average-case Reductions

Theorem (Ben-David, Chor, Goldreich, Luby' 92):
DistNP \subseteq AvgP imples NP \subseteq DTIME $\left[2^{O(n)}\right]$

Worst-case to Average-case Reductions

Theorem (Ben-David, Chor, Goldreich, Luby' 92):
DistNP $\subseteq A v g P$ imples NP \subseteq DTIME $\left[2^{O(n)}\right]$

Open to show DistPH \subseteq AvgP implies NP \subseteq DTIME[2 ${ }^{o(n)}$]
for nearly 30 years.

Worst-case to Average-case Reductions

Theorem (Hirahara'21):
DistNP \subseteq AvgP \rightarrow UP \subseteq DTIME $\left.2^{O(n / \log n)}\right]$

Extensions to NP and PH:

Dist $\Sigma_{2} \subseteq$ AvgP imples NP \subseteq DTIME $\left[\mathbf{2}^{0(n / \log n)}\right]$
DistPH \subseteq AvgP imples PH \subseteq DTIME $\left[2^{o(n / \log n)}\right]$

Worst-case to Average-case Reductions

Theorem (Hirahara'21):
DistNP \subseteq AvgP \rightarrow UP \subseteq DTIME[$\left.2^{0(n / \log n)}\right]$

Extensions to NP and PH:

Dist $\Sigma_{2} \subseteq$ AvgP imples NP \subseteq DTIME $\left[2^{0(n / \log n)}\right]$

DistPH \subseteq AvgP imples PH \subseteq DTIME $\left[2^{O(n / \log n)}\right]$

Theorem (Goldberg-Kabanets-Lu-O'22):

$$
\text { DistNP } \subseteq \text { AvgBPP } \rightarrow U P \subseteq \operatorname{RTIME[2}\left[2^{o(n / \log n)}\right]
$$

Dist $\Sigma_{2} \subseteq$ AvgBPP imples NP \subseteq RTIME $\left[2^{O(n / \log n)}\right]$
DistPH \subseteq AvgBPP imples PH \subseteq BPTIME $\left[2^{\boldsymbol{O}(n / \log n)}\right]$

DistPH \subseteq AvgBPP $\rightarrow \mathrm{NP} \subseteq \mathrm{BPTIME}\left[2^{O(n / \log n)}\right]$

DistPH \subseteq AvgBPP $\rightarrow \mathrm{NP} \subseteq \mathrm{BPTIME}\left[2^{0(n / \log n)}\right]$

Recall the equivalence:

- For every P-samplable distribution D, L can be solved in polynomial-time on average with respect to D.
- For every polynomial t, L is solvable by some algorithm that runs in time $2^{O\left(\mathrm{pK}^{t}(x)-\mathrm{K}(x)+\log |x|\right)}$ on every input x.

Interested in the quantity $\mathrm{pK}^{t}(x)-\mathrm{K}(x)$
Exercise: There is x of length n such that $\mathrm{pK}^{t}(x)-\mathrm{K}(x)>n-\mathrm{C} \log n$

Perhaps in our application we can get an exponent that is less than $\mathrm{pK}^{t}(x)-\mathrm{K}(x)$?

DistPH \subseteq AvgBPP $\rightarrow \mathrm{NP} \subseteq$ BPTIME[2 $\left.2^{O(n / \log n)}\right]$

Recall the equivalence:

- For every P-samplable distribution D, L can be solved in polynomial-time on average with respect to D.
- For every polynomial t, L is solvable by some algorithm that runs in time $2^{O\left(\mathrm{pK}^{t}(x)-\mathrm{K}(x)+\log |x|\right)}$ on every input x.

Term $\mathrm{K}(x)$ derived from the Language Compression Theorem for K
"If A is a decidable subset of $\{0,1\}^{n}$, then for every string y in $A, K(y)<\log |A|+O(\log n)$ "

Similarly to the Coding Theorem, perhaps we can establish Language Compression for pKpoly?

DistPH \subseteq AvgBPP $\rightarrow \mathrm{NP} \subseteq$ BPTIME[2 $\left.2^{O(n / \log n)}\right]$

Recall the equivalence:

- For every P-samplable distribution D, L can be solved in polynomial-time on average with respect to D.
- For every polynomial t, L is solvable by some algorithm that runs in time $2^{O\left(\mathrm{pK}^{t}(x)-\mathrm{K}(x)+\log |x|\right)}$ on every input x.

Term $\mathrm{K}(x)$ derived from the Language Compression Theorem for K
"If A is a decidable subset of $\{0,1\}^{n}$, then for every string y in $A, K(y)<\log |A|+O(\log n)$ "
"has complexity t "

$$
\mathrm{pK}^{\mathrm{poly}(t)}(\mathrm{y})<\log |\mathrm{A}|+\mathrm{O}(\log \mathrm{n})
$$

Similarly to the Coding Theorem, perhaps we can establish Language Compression for pKpoly?

DistPH \subseteq AvgBPP \rightarrow NP \subseteq BPTIME $\left[2^{0(n / \log n)}\right]$

Recall the equivalence:

- For every P-samplable distribution D, L can be solved in polynomial-time on average with respect to D.
- For every polynomial t, L is solvable by some algorithm that runs in time $2^{O}\left(\mathrm{pK}^{t}(x)-\mathrm{K}(x)+\log |x|\right)$ on every input x.

This idea can improve the time bound to $2^{O\left(\mathrm{pK}^{t}(x)-\mathrm{pK}\right.}{ }^{\text {poly(t) }(x)+\log |x|)}$

Language Compression for $\mathrm{pK}^{\text {poly }}$ is not known...
But it can be established for every set A in NP under the assumption that DistPH \subseteq AvgBPP. (even for A in $\mathbf{A M}$)

```
DistPH \subseteqAvgBPP }->\mathrm{ NP ¢ BPTIME[2 [2(n/logn)
```

Fix L in NP. For every input x, and for every polynomial t,

We can decide if x is in L in time $2^{O}\left(\mathrm{pK}^{t}(x)-\mathrm{pK}^{t^{c}}(x)+\log |x|\right)$

It remains to understand the bound $\mathrm{pK}^{t}(x)-\mathrm{pK}^{t^{c}}(x)$, for an arbitrary x.
(Crucial Point: We can use different values of t in this upper bound!)

$$
\mathrm{pK}^{t}(x)-\mathrm{pK}^{\mathrm{t}^{c}}(x)
$$

$$
\mathrm{pK}^{t}(x)-\mathrm{p} \mathrm{~K}^{t}(x)
$$

$$
\mathrm{pK}^{t}(x)-\mathrm{p} \mathrm{~K}^{t}(x)
$$

$$
\mathrm{pK}^{t}(x)-\mathrm{pK}^{\mathrm{K}^{t}}(x)
$$

By considering time bounds of the form $t, \operatorname{poly}(\mathrm{t})$, $\operatorname{poly}(\operatorname{poly}(\mathrm{t})), \ldots$, the difference in $\mathbf{p K}$ complexity is small for some consecutive pair of time bounds.

Lemma. [Hirahara] For every $x \in\{0,1\}^{n}$, there is $t \in\left[n, 2^{o(n / \log n)}\right]$ such that

$$
\mathrm{pK}^{t}(x)-\mathrm{pK}^{t^{c}}(x)=O(n / \log n)
$$

Probabilistic notions and some recent advances
\square Probabilistic versus deterministic

\square
Two applications of pK^{t} to average-case complexity:
(1. Worst-case complexity of easy-on-average problems
(2. Worst-case to average-case reductions

Main Reference for Lecture 1:

Theory and Applications of Probabilistic Kolmogorov Complexity [Lu-O'22]

Bulletin of EATCS No 137 (The Computational Complexity Column), 2022.

Thank you

