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Plan for the Week

Lecture 1 (Monday)

Probabilistic Notions of (Time-Bounded) Kolmogorov Complexity

“Unconditional results & applications to average-case complexity”

Connections to Cryptography and Complexity Theory

“Major questions in complexity are equivalent to statements about Kolmogorov Complexity”
OWEF P vs NP

Lecture 3 (Thursday)
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Kolmogorov Complexity

string x short encoding of x

01001101...0111010111 — 010001110

K(x) = minimum length of a program M that outputs x



Formal Definition:

Let U be a Turing machine.

Kuy(z) = min {|M| : U(M) outputs z}.

M e {0,1}*

We formally define K(x) with respect to a fixed U  (time-efficient universal machine)



Formal Definition:

Let U be a Turing machine.

Kuy(z) = min {
M e{0,1}*

M| : U(M) outputs z}.

We formally define K(x) with respect to a fixed U  (time-efficient universal machine)

For simplicity, we abuse notation and refer to M directly.
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Kolmogorov complexity:

K(x) = mﬂi/ln {IM] : M outputs x}
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Time-Bounded Kolmogorov Complexity

Kolmogorov complexity:

K(x) = mﬂi/ln {IM] : M outputs x}

Levin Kolmogorov complexity:

Kt(x) = %Htl {IM]| + logt : M outputs x within t steps}

t-time-bounded Kolmogorov complexity:

Ki(x) = mﬂi/ln {|M| : M outputs x within t(|x|) steps}




Despite the usefulness of time-bounded Kolmogorov complexity, many basic
guestions remain open:

Is it computationally hard to compute Kt(x)?

Do classical results in Kolmogorov complexity survive in the time-bounded setting?

Do natural objects (e.g., prime numbers) have small Kt or Kt complexity?



Despite the usefulness of time-bounded Kolmogorov complexity, many basic
guestions remain open:

Is it computationally hard to compute Kt(x)?

Do classical results in Kolmogorov complexity survive in the time-bounded setting?

Do natural objects (e.g., prime numbers) have small Kt or Kt complexity?

A more recent theory of probabilistic Kolmogorov complexity provides new insights.
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Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pKt to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions
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Probabilistic Notions of Kolmogorov Complexity

Definitions inspired by the notion of pseudodeterministic algorithm:

A randomized algorithm that produces the same output string w.h.p.

In Kolmogorov complexity terminology: probabilistic decompression



Kt — rKt

rkt complexity @ %

Recall Levin Kolmogorov complexity:

Kt(x) = %irtl{ |[M| + logt : M outputs x in < t steps }




Kt — rKt

rkt complexity

Recall Levin Kolmogorov complexity:

Kt(x) = %irtl{ IM| + logt : M outputs x in < t steps }

Levin Kolmogorov complexity:

Kt(x) = min y t{ IM| + logt : M outputs x in < t steps }




An unconditional lower bound

[s it hard to detect patterns?

rkKt rKt
R§n€ 732.9971

“structured” “random”




An unconditional lower bound

[s it hard to detect patterns?

rkKt rKt
R§n€ 732.99n

“structured” “random”

Theorem [0’19]. Ve > 0, there is no randomised algorithm running in quasi-

polynomial time that accepts strings in RrSK,,ELE and rejects strings in RrZK_tggn
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Recall t-time-bounded Kolmogorov complexity:
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Fixed time bounds: th

Recall t-time-bounded Kolmogorov complexity:

Ki(x) = ml\i/ln {IM] : M outputs x within t(|x|) steps}

Randomized t-time-bounded Kolmogorov complexity:

rK'(x) =

min
Randomized M

{IMI : M runs in t(|x|) steps and outputs x with probability > %}




Succinct probabilistic representations

[Lagarias-Odlyzko’87] == For every large n, there is an n-bit prime p,, with Kt(p,) < 5 + o(n).

Recall: Open to show 3 primes of Kt complexity < n/2.
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Succinct probabilistic representations

[Lagarias-Odlyzko’87] == For every large n, there is an n-bit prime p,, with Kt(p,) < 5 + o(n).
Recall: Open to show 3 primes of Kt complexity < n/2.

Theorem [O-Santhanam’17,0’19]. Ve > 0, for infinitely many values of n,
3 n-bit prime p,, such that rKt(p,) < n°®.

! running time can be exponential

Theorem [Lu-O-Santhanam’21]. Ve > 0, for infinitely many values of n,
3 n-bit prime ¢,, such that erD]Y((;ﬂ) < nc.
succinct and efficient representation



pK"*

Probabilistic t-time-bounded Kolmogorov complexity [coidberg-kabanets-Lu-0"22):

pKf(x) = min{ k : Pr  [3M € {0,1}*s.t. M(w) outputs x within t(|x|) steps] = 2}

o8]

k we{0,1}txD
t

For most w there exists a small program M that outputs x given w




Probabilistic t-time-bounded Kolmogorov complexity [coidberg-kabanets-Lu-0"22):

pK*

pKf(x) = mkin

fi

Pr
we{0,1}txD

[3 M € {0,1}* s.t. M(w) outputs x within t(|x|) steps] =

2

o8]

}

f

For most w there exists a small program M that outputs x given w

Randomized t-time-bounded Kolmogorov complexity:

rKt(x) = mkin{ k : 3 t(|x]) time program M € {0,1}% s.t. Pr

randomness of M

[M outputs x| >

WIN

}

A

There exists a fixed small (randomized) program that outputs x w.h.p over its internal randomness
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Probabilistic Kolmogorov Complexity
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e S \
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Sends a program M € {0,1}*

Runs M for t(|x]|) steps to
recover x




Probabilistic Kolmogorov Complexity

rK'(x) <k

Resembles MA

Sends a randomized
program M € {0,1}¥

Runs M for t(|x]|) steps to
recover x with high probability




Probabilistic Kolmogorov Complexity

pK'(x) <k

Shared randomness w € {0,1}*

Resembles AM

Sends a program M € {0,1}%,
based on w

Runs M (w) for t(]|x|) steps to
recover x




Time-Bounded Kolmogorov Complexity

Proposition: For every x and t,

K(x) < pK'(x) < rK'(x) < K'(x)

AM =2 MA 2 NP




Time-Bounded Kolmogorov Complexity

Proposition: For every x and t,

K(x) < pK'(x) < rK'(x) < K'(x)

AM =2 MA 2 NP

Proposition: For every x and t,

KPolY(®) (x) < rK'(x) + O(logt) if E Z i. 0. SIZE| 29|

Derandomizing MA (to NP)

KPolY® (x) < pK!(x) + O(logt) if E € i.0. NSIZE| 22|

Derandomizing AM (to NP)

rkPolY(®) (x) < pKi(x) + O(logt) if BPE & i.0. NSIZE[22("]

Converting AM to MA




Under strong circuit lower bound assumptions:

KpOIy(IL‘) ~ eroly (,CU) ~ prOIy(gj) (up to O(logn) additive terms)

—> Probabilistic theory sheds light on classical time-bounded Kolm. complexity



Under strong circuit lower bound assumptions:

KpOIy({L‘) ~ eroly (;U) ~~ prOIy(gj) (up to O(logn) additive terms)

—> Probabilistic theory sheds light on classical time-bounded Kolm. complexity

But theory can be independently developed (unconditional results, simpler proofs, new
applications, etc.)
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Average-case Complexity

A problem L is solvable in average-case polynomial time w.r.t a distribution family

D = {D,,}, if there is a poly-time algorithm A such that:

. xggn[A(x; 1%) = L(x)| < 1/k,

. A(x; 1") € {L(x), L} for every x in Support(D) —

(L,D) € AvgP




Average-case Complexity

A problem L is solvable in average-case polynomial time w.r.t a distribution family

D = {D,,}, if there is a poly-time algorithm A such that:

. xggn[A(x; 1%) = L(x)| < 1/k,

. A(x; 1") € {L(x), L} for every x in Support(D) —

(L,D) € AvgP

A language L is solvable in randomized average-case polynomial time w.r.t a distribution
family D = {D,, },, if there is a poly-time randomized algorithm A such that:

© P [A(n19) = L] < 1/k,

. A(x; 1k) € {L(x), L} w.h.p over A, for every x in Support(D)

—| (L, D) € AvgBPP




Worst-case Running Times for Average-case Problems

i solvable _

polynomial time w.r.t to all poly-time
samplable distributions, what can we
say about the time needed to solve L

J

g worst case?




Worst-case Running Times for Average-case Problems

Theorem (Antunes-Fortnow’09): Under a strong derandomization assumption,
The following statements are equivalent for every language L:

For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

For every polynomial t, L is solvable by some algorithm that runs in time
E(x)— :
20(K- () ~K(<)+l°g 1%1) on every input x.

Kt(x) — K(x) is called the t-computational depth of x




Worst-case Running Times for Average-case Problems

E = DTIME[29()] does not have 2°(") circuits with ¥ oracle gates

Theorem (Antunes-Fortnow’09): Under a strong derandomization assumption,
The following statements are equivalent for every language L:
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For every polynomial t, L is solvable by some algorithm that runs in time
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Worst-case Running Times for Average-case Problems

The following statements are equivalent for every language L:

For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

For every polynomial t, L is solvable by some algorithm that runs in time
20(pKt(x){K(x)+1°g ¥1) on every input x.

N

pKt(x) — K(x) is the t-probabilistic computational depth of x




A useful ingredient of the proof

For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

For every polynomial t, L is solvable by some algorithm that runs in time
20(PK ()-K()+log Ix]) on every input x.
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A useful ingredient of the proof

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

(Informal) For every polynomial t, L can be solved in polynomial-time on average with

respectto //f(y) = 9—pK' ()

* For every polynomial t, L is solvable by some algorithm that runs in time
20(PK ()-K()+log Ix]) on every input x.

I”

The link between samplable distributions and the “universal” distribution is

obtained by a “Coding Theorem”




Optimal coding theorem for pKt

[Lu-O-Zimand’22]

Coding Theorem in
Kolmogorov Complexity

An object x can be sampled x admits a representation
with probability o — of length =~ log(1/6)

We want an efficient version of the coding lemma.



Optimal coding theorem for pKt

[Lu-O-Zimand’22]

Coding Theorem in
Kolmogorov Complexity

An object x can be sampled x admits a representation
with probability o — of length =~ log(1/6)

We want an efficient version of the coding lemma.

Theorem [Lu-Oliveira-Zimand’22]:

For every poly-time-samplable distribution {D,,} over {0,1}", and every

X € support(D,,)
1

Dy, (x)

pKPolY (x) < log( ) + O0(logn)




Proof sketch: Coding Theorem for pK®  (acepting antunes-rortnow)

Let A(1™) be a poly-time sampler. Suppose it outputs = € {0,1}" with probability 9.

Goal: pK'(z) <log(1/d) + O(logn), where t(n) = poly(n)

(For most random strings w, the string = has a short description given w)

input r € {0, 13 of sampler A Consider a random hash function H: {0,1}* — {0,1}™.
Pry[for no z € {0.1}* we have A(H(z)) = 2] < (1 — (5)2k <1/10

(if we let k =log(1/4d) + 100)

Claim. For most H, x has a short description given H

/

d-fraction of strings lead to x

Issue: Efficiency (H can be of exponential size) (Fix: Efficiently derandomize construction of H)



Back to equivalence result

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

@ Optimal Coding Theorem for pKt

(Informal) For every polynomial t, L can be solved in polynomial-time on average with
to..
respectto ;f () = 2 PK'(2)

Time-bounded variant of result from
Kolmogorov complexity

* For every polynomial t, L is solvable by some algorithm that runs in time
20(PK ()-K()+log Ix]) on every input x.
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Worst-case to Average-case Reductions

Is NP solvable in average-
case polynomial time?

DistNP is the set of (L, D), where L € NP
and D is poly-time samplable.

Is DistNP < AvgP?




Worst-case to Average-case Reductions

\
Does worst-case hardness

of NP imply average-case
hardness of NP?

V y
| ?

NP 4P| mossm) | DistNP E AvgP

T

This is called a worst-case to average-case reduction.




Worst-case to Average-case Reductions

?
DistNP C AvgP | s | NP =P

Theorem (Ben-David, Chor, Goldreich, Luby’ 92):

DistNP < AvgP imples NP € DTIME|29("™)]




Worst-case to Average-case Reductions

?
DistNP C AVEP | wessssss) | NP =P

Theorem (Ben-David, Chor, Goldreich, Luby’ 92):

DistNP < AvgP imples NP € DTIME|29("™)]

Open to show DistPH < AvgP implies NP <
DTIME[2°(™)]

for nearly 30 years.



Worst-case to Average-case Reductions

Theorem (Hirahara’21):

DistNP € AvgP

—

C DTIME[20(/legn) |

Extensions to NP and

DistZ, € AvgP imples NP € DTIME[20(%/logn) |

DistPH < AvgP imples PH € DTIME[ZO("/ log ")]




Worst-case to Average-case Reductions

Theorem (Hirahara’21):

DistNP € AvgP

—

C DTIME[20(/legn) |

Extensions to NP and

DistZ, € AvgP imples NP € DTIME[20(%/logn) |

Theorem (Goldberg-Kabanets-Lu-0’22):

DistNP € AvgBPP

—

DistPH < AvgP imples PH € DTIME[ZO("/ log ")]

C RTIME|20(/logn) |

DistE, C AvgBPP imples NP € RTIME([20(/logn) |

DistPH C AvgBPP imples PH € BPTIME|20(®/logn) |




DistPH € AvgBPP

NP € BPTIME|20(%/logn) |




DistPH € AvgBPP

NP € BPTIME|20(%/logn) |




DistPH S AvgBPP | = | NP C BPTIME[ZO("/ logn)]

Recall the equivalence:

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

* For every polynomial t, L is solvable by some algorithm that runs in time
20(PK*)-K()+log |x]) op every input x.

Interested in the quantity pK*(x) — K(x)
Exercise: There is x of length n such that pK‘(x) — K(x) >n — Clogn

Perhaps in our application we can get an exponent that is less than pK®(x) — K(x) ?




DistPH S AvgBPP | = | NP C BPTIME[ZO("/ logn)]

Recall the equivalence:

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

* For every polynomial t, L is solvable by some algorithm that runs in time
20(pKt(x)‘If(x)+l°g X1) on every input x.

Term K(x) derived from the Language Compression Theorem for K

“If A'is a decidable subset of {0,1}", then for every stringy in A, K(y) < log |A| + O(log n)”

Similarly to the Coding Theorem, perhaps we can establish Language Compression for pKrelv?




DistPH S AvgBPP | = | NP C BPTIME[ZO("/ logn)]

Recall the equivalence:

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

* For every polynomial t, L is solvable by some algorithm that runs in time
20(pKt(x)‘If(x)+l°g X1) on every input x.

Term K(x) derived from the Language Compression Theorem for K

“If A'is a deeidable subset of {0,1}", then for every stringy in A, ¥y} < log |A| + O(log n)”
“has complexity t” pKPoY(®) (y) < log |A| + O(log n)

Similarly to the Coding Theorem, perhaps we can establish Language Compression for pKrev?




DistPH S AvgBPP | = | NP C BPTIME[ZO("/ logn)]

Recall the equivalence:

* For every P-samplable distribution D, L can be solved in polynomial-time on average
with respect to D.

* For every polynomial t, L is solvable by some algorithm that runs in time
20(PK*)-K()+log |x]) op every input x.

This idea can improve the time bound to 20(PK‘()-pKPO¥ () +log |x] )
Language Compression for pKP°Y is not known...

But it can be established for every set A in NP under the assumption that DistPH S AvgBPP.
(even for A in AM)



DistPH S AvgBPP | = | NP C BPTIME[ZO("/ logn)]

Fix Lin NP. For every input x, and for every polynomial ¢,
)t
We can decide if x isin Lin time ZO(pK (x)=pK" (x)+log |x| )

It remains to understand the bound pKt(x) — pK® (x), for an arbitrary x.

(Crucial Point: We can use different values of t in this upper bound!)



pK!(x) — pK* (x)

K" (x) pK*(x)

n/?2



pK!(x) — pK* (x)

pK.tc(x) pK;(X)
n/?2
pK (x) pK*(x)
& 9

n/?2




pK!(x) — pK* (x)

pK® (x) pK*(x)
9 9
n/?2
£, =t°
pK":(x)
O

n/?2



pK!(x) — pK* (x)

pK® (x) pK*(x)
9 9
1 n/?2
t, =t
pK% (x) pK%i(x)
() ()
1 n/?2

By considering time bounds of the form t, poly(t), poly(poly(t)), ..., the difference in pK
complexity is small for some consecutive pair of time bounds.

Lemma. [Hirahara] For every = € {0, 1}, there is ¢ € [n, 2°(*/1°8™)] quch that

pK'(z) — pK (2) = O(n/logn).



Kt rKt pK?

Probabilistic notions and some recent advances

Probabilistic versus deterministic

Two applications of pKt to average-case complexity:

1. Worst-case complexity of easy-on-average problems

2. Worst-case to average-case reductions



Main Reference for Lecture 1:

Theory and Applications of Probabilistic Kolmogorov Complexity [Lu-0’22]

Bulletin of EATCS No 137 (The Computational Complexity Column), 2022.

Thank you



