Lecture 3:

Pseudodeterministic Constructions and rK^{t}

Igor Carboni Oliveira
University of Warwick

CIRM - Randomness, Information \& Complexity
February/2024

Plan for the Week

Lecture 1 (Monday)

Probabilistic Notions of (Time-Bounded) Kolmogorov Complexity
"Unconditional results \& applications to average-case complexity"

Lecture 2 (Tuesday)

Connections to Cryptography and Complexity Theory
"Major questions in complexity are equivalent to statements about Kolmogorov Complexity"

```
OWF P vs NP
```


Lecture 3 (Thursday)

$\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$ 21222324252627282930 31323334353637383940 41424344454647484950 $\begin{array}{lllllll}51 & 52 & 53 & 54 & 55 & 56 & 57 \\ 58 & 59 & 60\end{array}$ 61626364656667686970 71727374757677787980 81828384858687888990 $\begin{array}{llllll} \\ 91 & 92 & 93 & 94 & 95 & 96 \\ 97 & 98 & 99 & 100\end{array}$

Connections to Algorithms (explicit constructions, generating primes, etc.)
"Existence of large primes with efficient short descriptions"

Primes

An integer is a prime if it is only divisible by 1 and itself.
n-bit prime: [$\left.2^{n-1}, 2^{n}-1\right]$, i.e., binary representation of the form $1 x x x x x x x 1$

Two fundamental computational problems about primes:

Primality Testing: check whether a given n-bit integer is prime AKS primality test: solves this problem in deterministic poly (n) time

Prime Generation: find an n-bit prime
Focus of this talk

Challenge

- Generating prime numbers:
- Input: n
- Output: A fixed n-bit prime p_{n}. (i.e., in $\left.\left[2^{n-1}, 2^{n}-1\right]\right)$
- Can we solve this problem deterministically in time poly (n) ?

A simple approach: Cramér

Algorithm Cramér:
For $i \leftarrow 2^{n-1}$ to $2^{n}-1$
If i is prime, Output i and halt

Uses [AKSO4] for checking primality!

State-of-the-art:

$$
p_{k+1}-p_{k}=O\left(\left(p_{k}\right)^{0.525}\right)
$$

Cramér's conjecture: Let p_{k} denote the k-th prime, then $p_{k+1}-p_{k}=O\left(\left(\log p_{k}\right)^{2}\right)$

Under Cramér's conjecture, this algorithm inspects $O\left(n^{2}\right)$ numbers, so it runs in $\operatorname{poly}(n)$ time.

Although Algorithm Cramér is conjectured to run in poly (n) time, the provable guarantee is only $O^{*}\left(2^{0.525 n}\right)$ time [BHP01]

State of the art

Best known algorithm is due to [Lagarias-Odlyzko'87].
[LO87] employs techniques from analytic number theory to approx. count primes in an interval $[a, b]$. It has running time guarantee $2^{n / 2+o(n)}$.

Idea:

Approx. \# primes in each interval in time $2^{n / 2}$

Infinitely Often: Mersenne

Infinitely-Often Algorithms

On infinitely many n, the algorithm outputs a prime of length n.
(already a non-trivial notion!)

Conjecture: There are infinitely many Mersenne primes (primes of the form $2^{n}-1$).

Algorithm Mersenne:
Output string is a sequence of n ones

Under this conjecture, Mersenne is an infinitely-often polynomial-time algorithm for generating primes.

Generalization: Dense Properties

- A property $Q \subseteq\{0,1\}^{*}$ is dense, if for every input length n, $\left|Q \cap\{0,1\}^{n}\right| \geq 2^{n} / \operatorname{poly}(n)$
- PRIMES is dense:
- Prime Number Theorem: there are $\sim N / \ln N$ primes in $[1, N]$
- \mid PRIMES $\cap\{0,1\}^{n} \mid \geq 2^{n} / 100 n$
- Explicit construction problem: For a dense property Q, find a length- n string in Q in $\operatorname{poly}(n)$ time.

```
Algorithm Random:
    Sample }x\leftarrow{0,1\mp@subsup{}}{}{n
        until }x\in
Output x
```

Easy with randomness!
Deterministic algorithms are open

Complexity Theory and Pseudorandomness

$G_{\mathrm{IW}} \subseteq\{0,1\}^{n}:$ The generator from [IW97]

```
Algorithm IW:
For }x\mathrm{ in GIW
    If x is a prime
        Output x and halt
```

Algorithm IW is conjectured to find a prime, but we seem very far from proving this hypothesis

Circuit Lower Bound Hypothesis:
E requires $2^{\Omega(n)}$-size Boolean circuits

Assuming hypothesis, $G_{\text {IW }}$ hits every dense property that is easy to decide

In particular, G_{IW} contains a prime!

State-of-the-art:
E requires $3.1 n-o(n)$ size circuits

Summary

Cramer, Mersenne

Algorithm IW

State of the art

Almost-everywhere / infinitely often poly-time (under conjectures)

Assuming E requires exponential-size circuits, Algorithm IW runs in poly (n) time.

Time Complexity $O\left(2^{0.5 n}\right)$

Can we find a prime in $\operatorname{poly}(n)$ time provably?

Polymath 4: Attempted to use number-theoretic techniques but did not obtain an unconditional improvement.

Relaxing our goal: Pseudodeterminism

Algorithm $\frac{\text { Random }:}{\text { Sample } x \leftarrow\{0,1\}^{n}}$
until $x \in Q$
Output x

> Drawback of Random:
> different primes on different executions

A randomized algorithm is pseudodeterministic if on most of its computational branches it outputs the same answer.

Any bounded observer thinks the algorithm is deterministic.

Literature

Pseudodeterminism was first defined and studied in:

Eran Gat and Shafi Goldwasser [GG11]:

"Probabilistic search algorithms with unique answers and their cryptographic applications".

Query complexity [GGR13], [GIPS21, CDM23]
Streaming algorithms [GGMW20], [BKKS23]
Parallel computation [GG17], [GG21]
Learning algorithms [OS18]
Kolmogorov complexity [O19, LOS21]

Space complexity [GL19]
Proof systems [GGH18], [GGH19]
Computational algebra [Gro15]
Approximation algorithms [DPV18]
and more [BB18], [Gol19], [DPWV22], [WDP+22], [CPW23], ...

Gat-Goldwasser (2011):

Is there an efficient pseudodeterministic algorithm for generating prime numbers?

More generally,
Is it the case that the generation problem for every dense and easy property \mathbf{Q} can be solved pseudodeterministically in polynomial time?

Relevant previous work

[Oliveira-Santhanam'17]
There is a sub-exponential algorithm A such that, for infinitely many $n \in \mathbb{N}$, there is a prime $p_{n} \in\left[2^{n-1}, 2^{n}\right)$ such that $A\left(1^{n}\right)$ outputs p_{n} with probability at least $1-2^{-n}$ over its internal randomness.

Poly-time pseudodeterministic constructions

Theorem (Joint work L. Chen, Z. Lu, H. Ren, and R. Santhanam)
There is a polynomial-time algorithm A such that, for infinitely many $n \in \mathbb{N}$, there is a prime $p_{n} \in\left[2^{n-1}, 2^{n}\right)$ such that $A\left(1^{n}\right)$ outputs p_{n} with probability at least $1-2^{-n}$ over its internal randomness.

Consequence in Kolmogorov Complexity

Corollary. Primes with succinct and efficient descriptions:
For every integer \mathbf{m} there is $\mathbf{n}>\mathbf{m}$ and an \mathbf{n}-bit prime \mathbf{p} with $\mathrm{rK}^{\text {poly }}(\mathbf{p})=\log \mathbf{n}+\mathrm{O}(1)$

Proof: An efficient pseudodeterministic algorithm A and its input 1^{n} serve as an encoding of the canonical n-bit prime \mathbf{p} such that $\mathbf{p}=A\left(1^{n}\right)$.

What properties of primes are used in the Theorem?

- Density: A $1 / \operatorname{poly}(n)$ fraction of n-bit strings are prime numbers.
- Easiness: There is a poly (n)-time deterministic algorithm that checks if a given integer is prime.

Theorem (Main Result)

Let $Q=\left\{Q_{n} \subseteq\{0,1\}^{n}\right\}_{n \in \mathbb{N}}$ be a property such that:

- (Dense) There is a polynomial q such that for all $n \in \mathbb{N},\left|Q_{n}\right| \geq \frac{1}{q(n)} \cdot 2^{n}$;
- (Easy) There is a deterministic poly-time algorithm deciding Q.

Then, there is a polynomial-time algorithm A such that, for infinitely many $n \in$ \mathbb{N}, there is a canonical solution $x_{n} \in Q_{n}$ such that $A\left(1^{n}\right)$ outputs x_{n} with probability at least $1-2^{-n}$ over its internal randomness.
(Previous work [OS17] also works for all easy and dense properties)

Warm-up: Sub-exponential time construction [OS17]

There is a pseudodeterministic algorithm that outputs an n-bit prime in $2^{n^{\circ(1)}}$ time (infinitely often).

- Idea I: Uniform hardness vs randomness
- Idea II: Win-win argument

Uniform Hardness vs Randomness

Trevisan-Vadhan 07
A language $L_{T V}$ with special properties that is PSPACE-complete

Impagliazzo-Wigderson 01

(uniform) hardness vs randomness
If \boldsymbol{L} has special properties, given a distinguisher \boldsymbol{D} of \boldsymbol{G}, we can compute \boldsymbol{L} with a uniform reconstruction oracle algorithm Recon ${ }^{D}$. lornd

For any D that breaks \boldsymbol{G}, Recon ${ }^{D}$ computes L

Corollary

If $\boldsymbol{G}^{L_{\mathrm{TV}}}$ doesn't fool PRIMES, then Recon ${ }^{\text {PRIMES }}$ computes L_{TV}.
Impagliazzo-Wigderson 97
(non-uniform) hardness vs randomness
Given a distinguisher \boldsymbol{D} of \boldsymbol{G}, we can
compute \boldsymbol{L} with a nonuniform reconstruction
oracle algorithm Recon ${ }^{\boldsymbol{D}} /$ advice.

Review of the previous approach [OS17]

$$
m=n^{C} \text { for a large constant } C
$$

Candidate HSG

$H^{L_{n}^{T V}}:\{0,1\}^{O(n)} \rightarrow\{0,1\}^{m}$

$$
\begin{gathered}
\text { AKS: }\{0,1\}^{m} \rightarrow\{0,1\} \\
\text { accepting a } 1 / m \text { fraction } \\
\text { of inputs }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Reconstruction Algorithm } \\
& \qquad R^{\text {AKS }:\{0,1\}^{n} \rightarrow\{0,1\}}
\end{aligned}
$$

$$
H^{L_{n}^{T V}} \text { does not hit AKS } \Rightarrow R^{\text {AKS }} \text { computes } L_{n}^{T V}
$$

Review of the previous approach [OS17]

$$
m=n^{C} \text { for a large constant } C
$$

Key Idea:
 win-win argument

Case HIT: $H^{L_{n}^{T V}}$ hits AKS? We have a hitting set generator!
In $2^{O(n)}$ time, enumerate all outputs of $H^{L_{n}^{T V}}$ and find the first one accepted by AKS. $2^{O(n)}=2^{m^{1 / C}}$-time construction of a fixed m-bit prime.

Review of the previous approach [OS17]

Key Idea:

win-win argument
$m=n^{C}$ for a large constant C

$$
\text { AKS: }\{0,1\}^{m} \rightarrow\{0,1\}
$$

$$
\text { accepting a } 1 / \mathrm{m} \text { fraction }
$$ of inputs

Case AVOID: $H^{L_{n}^{T V}}$ does not hit AKS? We can now compute $L^{T V}$ very FAST! $\mathrm{R}^{\text {AKS }}$ is a poly $(m)=\operatorname{poly}(n)$ time randomized algorithm for $L_{n}^{T V}$
$L^{T V}$ covers all space-n computations (naively it takes $\mathbf{2}^{n}$ time to compute)
In $O(n)$ space, one can find the lexicographically first n-bit prime
$\Rightarrow \operatorname{poly}(n)$-time randomized algorithm that outputs the lexicographically first n-bit prime w.h.p.

Digest:

From a special language $L_{n}^{T V}:\{0,1\}^{n} \rightarrow\{0,1\}$, build $H_{n}:\{0,1\}^{O(n)} \rightarrow\{0,1\}^{m}$ attempting to hit m-bit primes.

- If it HITS, we get a $2^{O(n)}$-time construction of an m-bit prime!
- If it does not hit (AVOIDS), $L_{n}^{T V}$ itself is in poly (n) time, and we use that to get a $\operatorname{poly}(n)$ time construction of an n-bit prime!

Polynomial time?
AVOID case is FAST, but HIT case is SLOW

Idea:

HIT case still makes non-trivial progress
"Iterate"

The (ideal) Chen-Tell generator (2021)

Uniform $f:\left\{1^{n}\right\} \rightarrow\{0,1\}^{n}$
(Circuit,of depth d and width T)

Chen-Tell: For any integer M such that $\log \mathrm{T}<\mathrm{M}<\mathrm{T}$:
HSG H: $\{0,1\}^{\log T} \rightarrow\{0,1\}^{\mathrm{M}}$ computable in poly((T) time.

For any dense D that avoids H, Recon ${ }^{D}\left(1^{n}\right)$ computes $f\left(1^{n}\right)$ in randomized time poly (d, M)

Pseudodeterministic constructions from [CT21]

$$
\begin{aligned}
& d=\operatorname{poly}(n)\left\{\begin{array}{l}
\begin{array}{l}
\mathrm{BF}_{0} \text { : Brute Force } \\
\begin{array}{l}
\text { Enumerates all strings of length } n, \\
\text { and outputs the first } n \text {-bit prime }
\end{array} \\
\quad \begin{array}{l}
\text { Reconstruction guarantee: } \\
\text { If } \mathrm{AKS}_{M} \text { avoids } H^{\mathrm{BF}_{0}} \text {, then one can speed-up the } \\
\text { computation of } \mathrm{BF}_{0} \text { in poly }(d, M)=\operatorname{poly}(n) \text { time. }
\end{array} \\
\text { Plug in } f=\mathrm{BF}_{0} \text { as the "hard function" }
\end{array} \quad \text { Fog } T=\mathrm{O}(n)
\end{array}\right. \\
& \text { computation of } \mathrm{BF}_{0} \text { in } \operatorname{poly}(d, M)=\operatorname{poly}(n) \text { time. } \\
& \text { Plug in } f=\mathrm{BF}_{0} \text { as the "hard function" }
\end{aligned}
$$

The iterated win-win argument

$$
H^{B F_{n_{1}}}:\{0,1\}^{O\left(\log T_{1}\right)} \rightarrow\{0,1\}^{n_{2}} \quad H^{B F_{n_{2}}}:\{0,1\}^{O\left(\log T_{2}\right)} \rightarrow\{0,1\}^{n_{3}}
$$

$$
\begin{gathered}
B F_{n_{2}}:\left\{1^{n_{2}}\right\} \rightarrow\{0,1\}^{n_{2}} \\
\text { outputs a fixed } n_{2} \text {-bit } \\
\text { prime in } T_{2}=\operatorname{poly}\left(T_{1}\right) \\
\text { time }
\end{gathered}
$$

A closer look at each iteration

- $n_{i}=$ length of prime that we want to find
- $H_{i}=$ HSG containing an n_{i}-bit prime
- $T_{i}=$ size of $H_{i} \quad T_{0}=2^{o\left(n_{0}\right)}$

Next hitting set H_{i+1} is $H^{\mathrm{BF}_{i}}$
\quad Each iteration:
$n_{i} \leftarrow\left(n_{i-1}\right)^{\beta}$ for some β that we set
$T_{i} \leftarrow\left(T_{i-1}\right)^{\alpha}$ for some α depending on Chen-Tell

Compute the first prime in
H_{i} in randomized (i.e. pseudodet) poly $\left(n_{i+1}\right)$ time

Hope: If we set β large enough, $\left\{n_{i}\right\}$ grows faster than $\left\{T_{i}\right\}$

Does AKS $_{n_{i+1}}$ avoid $H^{\mathrm{BF}_{i}}$?

A smaller hitting set

$$
H_{i+1}:=H^{\mathrm{BF}_{i}}
$$

that hits $\mathrm{AKS}_{n_{i+1}}$
$\left\{n_{i}\right\}$ vs $\left\{T_{i}\right\}$

Hope: If we set β large enough, $\left\{n_{i}\right\}$ will grow faster than $\left\{T_{i}\right\}$!

- $n_{i}=\left(n_{i-1}\right)^{\beta} \Rightarrow n_{i}=\left(n_{0}\right)^{\beta^{i}}$
- $T_{i}=\left(T_{i-1}\right)^{\alpha} \Rightarrow T_{i}=\left(2^{n_{0}}\right)^{\alpha^{i}}$, for some α.
- Want to find t such that $T_{t}=\operatorname{poly}\left(n_{t}\right)$. We set $\beta=2 \alpha$.
- When $t=O\left(\log n_{0}\right)$, a simple computation shows that T_{t} will be comparable to n_{t}.

The algorithm and its correctness

```
Algorithm CLORS23:
Let's say }n=\mp@subsup{n}{i}{}\mathrm{ for some i
If i=t (recall that }\mp@subsup{T}{t}{}\leq\operatorname{poly}(\mp@subsup{n}{t}{})
    Find the first prime in }\mp@subsup{H}{t}{}\mathrm{ by brute force
Else
    Use Recon }\mp@subsup{}{}{\mp@subsup{\textrm{AKS}}{n}{i+1}
```


If $\boldsymbol{H}_{\boldsymbol{t}}$ contains a prime

We can find this prime using brute force in polynomial time!

If $\boldsymbol{H}_{\boldsymbol{t}}$ doesn't contain a prime

- But H_{0} does...
- There is some i s.t. H_{i} contains a prime but $H_{i+1}=H_{\mathrm{BF}_{i}}$ does not.
- $\mathrm{AKS}_{n_{i+1}}$ avoids $H_{\mathrm{BF}_{i}}$, so Recon ${ }^{\mathrm{AKS}}{ }_{n_{i+1}}$ computes BF_{i} correctly!

Omitted Technical Details

- The HSG of [CT21] doesn't apply to all uniform computations: only to low-depth uniform circuits. Luckily, the algorithms $B F_{n_{i}}$ we constructed can be implemented by low-depth uniform circuits.
- The original [CT21] paper gives a HSG with $O\left(\frac{\log ^{2} T}{\log M}\right)$ seed length instead of $O(\log T)$. This only gives a quasi-poly time construction instead of poly-time.
- We improve Chen-Tell by combining it with the Shaltiel-Umans PRG [SU05]. This requires extra work (the original SU reconstruction algorithm is not uniform).

Open Problems

Main Challenge: Make the result work on all input lengths (or reduce gap)?
[OS17] achieves zero-error (it outputs the canonical prime or "FAILURE").
Can we get a zero-error polynomial-time infinitely-often algorithm?
[OS17] works for every dense property in BPP. We require the property \mathbf{Q} to be in P .

Main Reference for Lecture 3:

Paper: "Polynomial-time pseudodeterministic construction of primes" (2023) (Joint work with L. Chen, Z. Lu, H. Ren, and R. Santhanam)

Thank you

