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Plan for the Week
Lecture 1 (Monday)

Lecture 2 (Tuesday)

Lecture 3 (Thursday)

Probabilistic Notions of (Time-Bounded) Kolmogorov Complexity

Connections to Cryptography and Complexity Theory

Connections to Algorithms (explicit constructions, generating primes, etc.)

“Major questions in complexity are equivalent to statements about Kolmogorov Complexity”

“Existence of large primes with efficient short descriptions”

P vs NPOWF

“Unconditional results & applications to average-case complexity”
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Primes

An integer is a prime if it is only divisible by 1 and itself.

𝑛-bit prime:  [2n-1,2n - 1] , i.e., binary representation of the form 1xxxxxxx1

Two fundamental computational problems about primes:

Primality Testing: check whether a given 𝑛-bit integer is prime
AKS primality test: solves this problem in deterministic poly(𝑛) time

Prime Generation: find an 𝑛-bit prime
Focus of this talk
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Challenge

• Generating prime numbers:

• Input: 𝑛

• Output:  A fixed 𝑛-bit prime pn. ( i.e., in [2𝑛−1, 2𝑛-1] )

• Can we solve this problem deterministically in time poly(𝑛)?
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A simple approach: Cramér

Algorithm Cramér:
For 𝑖 ← 2𝑛−1 to 2𝑛 − 1

If 𝑖 is prime, 
Output 𝑖 and halt

Cramér’s conjecture: Let 𝑝𝑘 denote the 

𝑘-th prime, then 𝑝𝑘+1 − 𝑝𝑘 = 𝑂 log 𝑝𝑘
2

Under Cramér’s conjecture, this algorithm 

inspects 𝑂 𝑛2 numbers, so it runs in 

poly 𝑛 time.
Uses [AKS04] for checking primality!

State-of-the-art: 

𝑝𝑘+1 − 𝑝𝑘 = 𝑂 𝑝𝑘
0.525

Although Algorithm Cramér is conjectured 

to run in poly 𝑛 time, the provable 

guarantee is only 𝑂∗ 20.525𝑛 time [BHP01]
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State of the art

Best known algorithm is due to [Lagarias-Odlyzko’87]. 

[LO87] employs techniques from analytic number theory to approx. count 
primes in an interval [a,b]. It has running time guarantee 2n/2+o(n).

Idea: 
[2n-1  , 2n - 1] 

2n/2

Approx. # 
primes in each 
interval in time

2n/2

…
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Infinitely Often: Mersenne

Algorithm Mersenne:

Output string is a    
sequence of 𝑛 ones

Conjecture: There are infinitely 

many Mersenne primes

(primes of the form 2𝑛 − 1).

Under this conjecture, 

Mersenne is an infinitely-often

polynomial-time algorithm for 

generating primes.

Infinitely-Often Algorithms

On infinitely many 𝑛, the algorithm 

outputs a prime of length 𝑛.

(already a non-trivial notion!)
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Generalization: Dense Properties

• A property 𝑄 ⊆ 0,1 ∗ is dense, if for every input length 𝑛, 
𝑄 ∩ 0,1 𝑛 ≥ 2𝑛/poly 𝑛

• PRIMES is dense:
• Prime Number Theorem: there are ~𝑁/ ln𝑁 primes in [1, 𝑁]

• PRIMES ∩ 0,1 𝑛 ≥ 2𝑛/100𝑛

• Explicit construction problem: For a dense property 𝑄, find a 
length-𝑛 string in 𝑄 in poly 𝑛 time.

Algorithm Random:
Sample 𝑥 ← 0,1 𝑛

until 𝑥 ∈ 𝑄
Output 𝑥

Easy with randomness!

Deterministic algorithms are open
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Complexity Theory and Pseudorandomness

Algorithm IW:
For 𝑥 in 𝐺IW

If 𝑥 is a prime
Output 𝑥 and halt

Circuit Lower Bound Hypothesis:

𝐄 requires 2Ω 𝑛 -size Boolean circuits

Assuming hypothesis, 𝐺IW hits every 

dense property that is easy to decide

In particular, 𝐺IW contains a prime!

State-of-the-art: 

𝐄 requires 3.1𝑛 − 𝑜 𝑛 size circuits

Algorithm IW is conjectured to 

find a prime, but we seem very 

far from proving this hypothesis

𝐺IW 0,1 𝑛 : The generator from [IW97]
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Summary

State of the art Time Complexity 𝑂 20.5𝑛

Algorithm IW Assuming 𝐄 requires exponential-size circuits, 

Algorithm IW runs in poly 𝑛 time.

Cramer, Mersenne
Almost-everywhere / infinitely often poly-time 

(under conjectures)

Can we find a prime in 𝐩𝐨𝐥𝐲 𝒏 time provably?

Polymath 4: Attempted to use number-theoretic techniques but did not obtain an 

unconditional improvement.
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Deterministic

Algorithm

𝑝

Randomized

Algorithm

𝑝1 𝑝2 ❌ 𝑝3 𝑝2 𝑝4

Algorithm Random:
Sample 𝑥 ← 0,1 𝑛

until 𝑥 ∈ 𝑄
Output 𝑥

Drawback of Random:

different primes on different executions

Relaxing our goal: Pseudodeterminism

Pseudodeterministic

Algorithm

𝑝1 𝑝1 ❌ 𝑝2 𝑝1 𝑝1
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Any bounded observer thinks the algorithm is deterministic.

A randomized algorithm is pseudodeterministic if on most of its computational 

branches it outputs the same answer.

Deterministic

Algorithm

𝑝

Randomized

Algorithm

𝑝1 𝑝2 ❌ 𝑝3 𝑝2 𝑝4

Pseudodeterministic

Algorithm

𝑝1 𝑝1 ❌ 𝑝2 𝑝1 𝑝1
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Literature

Pseudodeterminism was first defined and studied in:

Eran Gat and Shafi Goldwasser  [GG11]: 

“Probabilistic search algorithms with unique answers and their cryptographic applications”.

Query complexity [GGR13], [GIPS21, CDM23]

Streaming algorithms [GGMW20], [BKKS23]

Parallel computation [GG17], [GG21]

Learning algorithms [OS18]

Kolmogorov complexity [O19, LOS21]

Space complexity [GL19]

Proof systems [GGH18], [GGH19]

Computational algebra [Gro15]

Approximation algorithms [DPV18]

and more [BB18], [Gol19], [DPWV22], 

[WDP+22], [CPW23], …
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Gat-Goldwasser (2011): 

Is there an efficient pseudodeterministic algorithm 
for generating prime numbers?

More generally,

Is it the case that the generation problem 
for every dense and easy property Q can be solved 

pseudodeterministically in polynomial time?
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Relevant previous work

[Oliveira-Santhanam’17]
There is a sub-exponential algorithm 𝐴 such that, for infinitely many 𝑛 ∈ ℕ, 
there is a prime 𝑝𝑛 ∈ [2𝑛−1, 2𝑛) such that 𝐴(1𝑛) outputs 𝑝𝑛 with probability 
at least 1 − 2−𝑛 over its internal randomness.
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Poly-time pseudodeterministic constructions

There is a polynomial-time algorithm 𝐴 such that, for infinitely many 𝑛 ∈ ℕ, 
there is a prime 𝑝𝑛 ∈ [2𝑛−1, 2𝑛) such that 𝐴(1𝑛) outputs 𝑝𝑛 with probability 
at least 1 − 2−𝑛 over its internal randomness.

Theorem (Joint work L. Chen, Z. Lu, H. Ren, and R. Santhanam)
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Consequence in Kolmogorov Complexity

For every integer m there is n > m and an n-bit prime p with rKpoly(p) = log n + O(1) 

Corollary. Primes with succinct and efficient descriptions:

Proof: An efficient pseudodeterministic algorithm A and its input 1n serve as an 
encoding of the canonical n-bit prime p such that p = A(1n ).
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What properties of primes are used in the Theorem?

• Density: A 1/poly(𝑛) fraction of 𝑛-bit strings are prime numbers.

• Easiness: There is a poly 𝑛 -time deterministic algorithm that checks if a 
given integer is prime.
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Let 𝑄 = {𝑄𝑛 ⊆ {0,1}𝑛}𝑛∈ℕ be a property such that:

• (Dense) There is a polynomial 𝑞 such that for all 𝑛 ∈ ℕ, 𝑄𝑛 ≥
1

𝑞 𝑛
⋅ 2𝑛;

• (Easy) There is a deterministic poly-time algorithm deciding 𝑄.

Then, there is a polynomial-time algorithm 𝐴 such that, for infinitely many 𝑛 ∈
ℕ, there is a canonical solution 𝑥𝑛 ∈ 𝑄𝑛 such that 𝐴(1𝑛) outputs 𝑥𝑛 with 
probability at least 1 − 2−𝑛 over its internal randomness.

Theorem (Main Result)

(Previous work [OS17] also works for all easy and dense properties)
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There is a pseudodeterministic algorithm that outputs an 𝑛-bit prime in 
2𝑛

𝑜 1
time (infinitely often).

• Idea I:   Uniform hardness vs randomness

• Idea II:  Win-win argument

Warm-up: 
Sub-exponential time construction [OS17]
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Impagliazzo-Wigderson 97
(non-uniform) hardness vs randomness

Given a distinguisher 𝑫 of 𝑮, we can 

compute 𝑳 with a nonuniform reconstruction 

oracle algorithm 𝐑𝐞𝐜𝐨𝐧𝑫/𝐚𝐝𝐯𝐢𝐜𝐞.

𝑫
For any 𝑫 that breaks 𝑮, 

𝐑𝐞𝐜𝐨𝐧𝑫 computes 𝑳
𝐑𝐞𝐜𝐨𝐧

Trevisan-Vadhan 07
A language 𝑳𝐓𝐕 with special 

properties that is 𝐏𝐒𝐏𝐀𝐂𝐄-complete

Corollary
If 𝑮𝑳𝐓𝐕 doesn’t fool 𝐏𝐑𝐈𝐌𝐄𝐒, then 

𝐑𝐞𝐜𝐨𝐧𝐏𝐑𝐈𝐌𝐄𝐒 computes 𝑳𝐓𝐕.

Uniform Hardness vs Randomness

𝑮𝑳
𝑮 = 𝑮𝑳 is a PRG

y = G(x)

x

Impagliazzo-Wigderson 01
(uniform) hardness vs randomness

If 𝑳 has special properties, given a

distinguisher 𝑫 of 𝑮, we can compute 𝑳 with a 

uniform reconstruction oracle algorithm 𝐑𝐞𝐜𝐨𝐧𝑫.
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Review of the previous approach [OS17]

𝐿𝑇𝑉 on 𝑛-bit inputs
(space-𝑛 computation)

Candidate HSG

𝐻𝐿𝑛
𝑇𝑉
: 0,1 𝑂(𝑛) → 0,1 𝑚

AKS: 0,1 𝑚 → {0,1}
accepting a 1/𝑚 fraction 

of inputs 

Reconstruction Algorithm
𝑅AKS: 0,1 𝑛 → {0,1}

𝐻𝐿𝑛
𝑇𝑉

does not hit AKS ⇒ 𝑅AKS computes 𝐿𝑛
𝑇𝑉

𝑚 = 𝑛𝐶 for a large constant 𝐶
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Review of the previous approach [OS17]

Case HIT: 𝐻𝐿𝑛
𝑇𝑉

hits AKS?  We have a hitting set generator!

In 2𝑂(𝑛) time, enumerate all outputs of 𝐻𝐿𝑛
𝑇𝑉

and find the first one accepted by AKS.

2𝑂 𝑛 = 2𝑚
1/𝐶

-time construction of a fixed 𝒎-bit prime. 

Key Idea:

win-win 
argument
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Review of the previous approach [OS17]

Key Idea:

win-win 
argument

Case AVOID: 𝐻𝐿𝑛
𝑇𝑉

does not hit AKS? We can now compute 𝐿𝑇𝑉 very FAST!

RAKS is a poly 𝑚 = poly 𝑛 time randomized algorithm for 𝐿𝑛
𝑇𝑉

𝐿𝑇𝑉 covers all space-𝒏 computations (naively it takes 𝟐𝒏 time to compute)

In 𝑂(𝑛) space, one can find the lexicographically first 𝑛-bit prime

⇒ poly(𝑛)-time randomized algorithm that outputs the lexicographically first 𝑛-bit prime w.h.p.
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Digest:

From a special language 𝐿𝑛
𝑻𝑽: 0,1 𝑛 → {0,1},  build 

𝐻𝑛: 0,1
𝑂(𝑛) → 0,1 𝑚 attempting to hit 𝑚-bit primes.

• If it HITS, we get a 2𝑂(𝑛)-time construction of an 𝑚-bit prime!

• If it does not hit (AVOIDS), 𝐿𝑛
𝑇𝑉 itself is in poly(𝑛) time, and we use 

that to get a poly(𝑛) time construction of an 𝑛-bit prime!

Polynomial time?

AVOID case is FAST, 
but HIT case is SLOW

Idea: 
HIT case still makes non-trivial progress

“Iterate”

𝑛 𝑚 = 𝑛𝐶

HITAVOID
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Uniform circuit of depth 𝒅 and width 𝑻
that computes a function 𝑓: {1𝑛} → 0,1 𝑛

𝒅

𝑻 ≫ 𝒅

∧

∨ ∨

𝐷

For any dense 𝑫 that avoids 𝐻, 

Recon𝑫 1𝑛 computes 𝑓 1𝑛 in 

randomized time poly 𝒅,𝑴

Recon

The (ideal) Chen-Tell generator (2021)

Uniform 𝑓: {1𝑛} → 0,1 𝑛

(Circuit of depth 𝒅 and width 𝑻)

Chen-Tell: For any integer M such that log T < M < T:

HSG H: {0,1}log T → {0,1}M computable in poly(T) time. 

𝐻

𝐻 = 𝐻𝑓 is HSG

𝑓

M bits

log T
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𝐁𝐅𝟎: Brute Force

Enumerates all strings of length 𝑛, 

and outputs the first n-bit prime
d = poly 𝑛

T = 2𝑂 𝑛

Fix 𝑀 = poly 𝑛

𝐻BF0

Plug in 𝑓 = BF0 as the “hard function”

AKS𝑀
Recon

Use 𝐀𝐊𝐒𝑀 as distinguisher

Reconstruction guarantee:
If 𝐀𝐊𝐒𝑀 avoids 𝐻BF0, then one can speed-up the 

computation of BF0 in poly 𝑑,𝑀 = poly 𝑛 time.

Does 𝐀𝐊𝐒𝑴
avoid 𝐻BF0?

Compute the first length-𝑛
prime in randomized (i.e. 

pseudodet) poly 𝑛 time

Hitting set 𝐻BF0 that hits 

𝐀𝐊𝐒𝑀 and is computable in 

2𝑂 𝑛 time. 

Pseudodeterministic constructions from [CT21]

log T = O(n)
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The iterated win-win argument

𝑛𝑖 = 𝑛𝑖−1
𝛽

Case AVOID: 
𝐻𝐵𝐹𝑛0 DOES NOT HIT AKS𝒏𝟏

Case HIT
𝐻𝐵𝐹𝑛0 HITS AKS𝒏𝟏

poly(𝑛0)-time construction
of fixed 𝑛0-bit prime!

𝐵𝐹𝑛0: 1
𝑛0 → 0,1 𝑛0

outputs the smallest
𝑛0-bit prime in 

𝑇0 = 2𝑂(𝑛0) time

𝐻𝐵𝐹𝑛0 : 0,1 𝑂(log 𝑇0) → 0,1 𝑛1

𝐵𝐹𝑛1: 1
𝑛1 → 0,1 𝑛1

outputs a fixed 𝑛1-bit prime 
in 𝑇1 = poly(𝑇0)time

Case AVOID: 
𝐻𝐵𝐹𝑛1 DOES NOT HIT AKS𝒏𝟐

poly(𝑛1)-time construction
of fixed 𝑛1-bit prime!

Case HIT
𝐻𝐵𝐹𝑛1 HITS AKS𝒏𝟐

𝐻𝐵𝐹𝑛1 : 0,1 𝑂(log 𝑇1) → 0,1 𝑛2

𝐵𝐹𝑛2: 1
𝑛2 → 0,1 𝑛2

outputs a fixed 𝑛2-bit 
prime in 𝑇2 = poly(𝑇1)

time

Case AVOID: 𝐻𝐵𝐹𝑛2

DOES NOT HIT AKS𝒏𝟑

poly(𝑛2)-time construction
of fixed 𝑛2-bit prime!

𝐻𝐵𝐹𝑛2 : 0,1 𝑂(log 𝑇2) → 0,1 𝑛3

0,1 𝑛1

𝐻𝐵𝐹𝑛0
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• 𝑛𝑖 = length of prime that we want to find

• 𝐻𝑖 = HSG containing an 𝑛𝑖-bit prime

• 𝑇𝑖 = size of 𝐻𝑖

Does AKS𝑛𝑖+1
avoid 𝐻BF𝑖?

Compute the first prime in 

𝐻𝑖 in randomized (i.e. 

pseudodet) poly 𝑛𝑖+1 time

A smaller hitting set 

𝐻𝑖+1 ≔ 𝐻BF𝑖

that hits AKS𝑛𝑖+1

𝐁𝐅𝒊
Enumerate all strings in 𝐻𝑖
and output the first prime

𝑑𝑖

𝑇𝑖

Each iteration:

𝑛𝑖 ← 𝑛𝑖−1
𝛽 for some 𝛽 that we set

𝑇𝑖 ← 𝑇𝑖−1
𝛼 for some 𝛼 depending on Chen-Tell

Hope: If we set 𝛽
large enough, 𝑛𝑖
grows faster than 𝑇𝑖

𝑖

𝑇𝑖

𝑛𝑖

𝑇0 = 2𝑂 𝑛0

A closer look at each iteration

Next hitting set 𝐻𝑖+1 is 𝐻BF𝑖
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• 𝑛𝑖 = 𝑛𝑖−1
𝛽 ⇒ 𝑛𝑖 = 𝑛0

𝛽𝑖

• 𝑇𝑖 = 𝑇𝑖−1
𝛼 ⇒ 𝑇𝑖 = 2𝑛0 𝛼𝑖, for some 𝛼.

• Want to find 𝑡 such that 𝑇𝑡 = poly(𝑛𝑡). We set 𝛽 = 2𝛼.

• When 𝑡 = 𝑂 log 𝑛0 , a simple computation shows that 𝑇𝑡 will be 
comparable to 𝑛𝑡.

Hope: If we set 𝛽
large enough, 𝑛𝑖 will 

grow faster than 𝑇𝑖 !
𝑖

𝑇𝑖

𝑛𝑖

𝑛𝑖 vs 𝑇𝑖
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If 𝑯𝒕 contains a prime
We can find this prime using 

brute force in polynomial time!

Algorithm CLORS23:
Let’s say 𝑛 = 𝑛𝑖 for some 𝑖

If 𝑖 = 𝑡 (recall that 𝑇𝑡 ≤ poly 𝑛𝑡 )
Find the first prime in 𝐻𝑡 by brute force

Else

Use ReconAKS𝑛𝑖+1 to output a candidate 𝑛𝑖-bit prime

If 𝑯𝒕 doesn’t contain a prime
• But 𝐻0 does…

• There is some 𝑖 s.t. 𝐻𝑖 contains a prime but 

𝐻𝑖+1 = 𝐻BF𝑖 does not.

• AKS𝑛𝑖+1 avoids 𝐻BF𝑖, so ReconAKS𝑛𝑖+1

computes BF𝑖 correctly!

The algorithm and its correctness
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Omitted Technical Details

• The HSG of [CT21] doesn’t apply to all uniform computations: only to low-depth 
uniform circuits. Luckily, the algorithms 𝐵𝐹𝑛𝑖 we constructed can be implemented 

by low-depth uniform circuits.

• The original [CT21] paper gives a HSG with 𝑂(
log2 𝑇

log 𝑀
) seed length instead of 

𝑂 log 𝑇 . This only gives a quasi-poly time construction instead of poly-time.

• We improve Chen-Tell by combining it with the Shaltiel-Umans PRG [SU05]. 
This requires extra work (the original SU reconstruction algorithm is not uniform).

32



Open Problems

Main Challenge: Make the result work on all input lengths (or reduce gap)? 

[OS17] achieves zero-error (it outputs the canonical prime or ``FAILURE’’). 

Can we get a zero-error polynomial-time infinitely-often algorithm?

[OS17] works for every dense property in BPP. We require the property Q to 
be in P.

33



Thank you

Paper: “Polynomial-time pseudodeterministic construction of primes” (2023)

(Joint work with L. Chen, Z. Lu, H. Ren, and R. Santhanam)

Main Reference for Lecture 3:
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