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Plan for the Week

Lecture 1 (Monday)

Probabilistic Notions of (Time-Bounded) Kolmogorov Complexity

“Unconditional results & applications to average-case complexity”

Connections to Cryptography and Complexity Theory

“Major questions in complexity are equivalent to statements about Kolmogorov Complexity”
OWEF P vs NP

Lecture 3 (Thursday)
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Primes

An integer is a prime if it is only divisible by 1 and itself.
n-bit prime: [2"1,2"- 1], i.e., binary representation of the form 1xxxxxxx1

Two fundamental computational problems about primes:

Primality Testing: check whether a given n-bit integer is prime
AKS primality test: solves this problem in deterministic poly(n) time

Prime Generation: find an n-bit prime
Focus of this talk




Challenge

* Generating prime numbers:
° lnput: n
* Qutput: A fixed n-bit prime p,. (i.e., in [2"71,2™-1])

* Can we solve this problem deterministically in time poly(n)?



A simple approach: Crameér

Algorithm Cramér: Cramér’s conjecture: Let p, denote the
For i « 2™ to 2" -1 k-th prime, then py.1 — px = 0((log py)?)
If i is prime,

B Output i and halt ﬁ

Under Cramér’s conjecture, this algorithm
Uses [AKS04] for checking primality! Inspects _0 (n*) numbers, so it runs in
poly(n) time.

Although Algorithm Cramér is conjectured
e to run in poly(n) time, the provable
Pi+1 — Pk =0 ((Pk) | ) guarantee is only 0*(2%°>2°") time [BHPO1]

State-of-the-art:



State of the art

Best known algorithm is due to [Lagarias-Odlyzko’87].

[LO87] employs techniques from analytic number theory to approx. count
primes in an interval [a,b]. It has running time guarantee 2"/2+o(n),

[2™1, 2" - 1] Approx. #

primes in each
interval in time

2n/2

|dea:

2n/2



Infinitely Often: Mersenne

Infinitely-Often Algorithms Algorithm Mersenne:
On infinitely many n, the algorithm Output string is a
outputs a prime of length n. sequence of n ones

(already a non-trivial notion!)

Under this conjecture,
Conjecture: There are infinitely Mersenne is an infinitely-often
many Mersenne primes polynomial-time algorithm for
(primes of the form 2™ — 1). generating primes.




Generalization: Dense Properties

« A property Q < {0,1}" is dense, if for every input length n,
|@ N {0,1}"| = 2™ /poly(n)

 Prime Number Theorem: there are ~N/In N primes in [1, N]
« |PRIMES N {0,1}*| = 2"*/100n

For a dense property Q, find a
length-n string in Q in poly(n) time.

Algorithm Random:
Sample x < {0,1}"
until x € Q

Output x

Easy with randomness!

Deterministic algorithms are open




Complexity Theory and Pseudorandomness

C {0,1}" : The generator from [IW97] Circuit Lower Bound Hypothesis:
E requires 2% _sjze Boolean circuits

Algorithm IW:
For x 1in
If x is a prime
Output x and halt

Assuming hypothesis, hits every
dense property that is easy to decide

In particular, contains a prime!

Algorithm IW is conjectured to
find a prime, but we seem very State-of-the-art:
far from proving this hypothesis E requires 3.1n — o(n) size circuits




Summary

Almost-everywhere / infinitely often poly-time

[ Cramer, Mersenne 7 (under conjectures)

. Assuming E requires exponential-size circuits,
Algorithm IW Algorithm IW runs in poly(n) time.

State of the art Time Complexity 0(2°°™)

Can we find a prime in poly(n) time provably?

Polymath 4: Attempted to use number-theoretic techniques but did not obtain an
unconditional improvement.




Relaxing our goal: Pseudodeterminism

Algorithm Random:

Sample x « {0,1}" Drawback of Random:
until x € Q different primes on different executions
Output x
Randomized Pseudodeterministic Deterministic
~ Algorithm | Algorithm Algorithm

o | pe| Xf | e | m | o m| X| w2 s p




A randomized algorithm is pseudodeterministic if on most of its computational
branches it outputs the answer.

Any bounded observer thinks the algorithm is deterministic.

Randomized Pseudodeterministic Deterministic

% T

p1| P2 | X pgpzm pr| P X P2 P P

Algorithm




Literature

Pseudodeterminism was first defined and studied in:
Eran Gat and Shafi Goldwasser [GG11]:

“Probabilistic search algorithms with unique answers and their cryptographic applications”.

[GGR13], [GIPS21, CDM23] Space complexity [GL19]
Streaming algorithms [GGMW?20], [BKKS23] Proof systems [GGH18], [GGH19]
Parallel computation [GG17], [GG21] [Grol5]
Learning algorithms [OS18] Approximation algorithms [DPV18]
Kolmogorov complexity [O19, LOS21] and more [BB18], [Gol19], [DPWV22],

[WDP+22], [CPW23], ...



Gat-Goldwasser (2011):

Is there an efficient pseudodeterministic algorithm
for generating prime numbers?

More generally,

Is it the case that the generation problem
for every dense and easy property Q can be solved
pseudodeterministically in polynomial time?



Relevant previous work

[Oliveira-Santhanam’17]
Thereis a algorithm A such that, for infinitely many n € N,
there is a prime p,, € [271,2™) such that A(1™) outputs p,, with probability
at least 1 — 27" over its internal randomness.



Poly-time pseudodeterministic constructions

Theorem (Joint work L. Chen, Z. Lu, H. Ren, and R. Santhanam)

There is a polynomial-time algorithm A such that, for infinitely manyn € N,
there is a prime p,, € [2™71,2™) such that A(1™) outputs p,, with probability
at least 1 — 27" over its internal randomness.



Conseguence in Kolmogorov Complexity

Corollary. Primes with succinct and efficient descriptions:

For every integer m there is n > m and an n-bit prime p with rkP°Y(p) = log n + O(1)

Proof: An efficient pseudodeterministic algorithm A and its input 1" serve as an
encoding of the canonical n-bit prime p such that p = A(1").



What properties of primes are used in the Theorem?

* Density: A 1/poly(n) fraction of n-bit strings are prime numbers.

* Easiness: There is a poly(n)-time deterministic algorithm that checks if a
given integer is prime.



Theorem (Main Result)

Let Q = {Q,, € {0,1}"*},,cn be a property such that:

* (Dense) There is a polynomial g such that foralln € N, |Q,,| = ﬁ - 2"

 (Easy) There is a deterministic poly-time algorithm deciding Q.
Then, there is a polynomial-time algorithm A such that, for infinitely many n €

N, there is a canonical solution x,, € Q,, such that A(1™) outputs x,, with
probability at least 1 — 27" over its internal randomness.

(Previous work [0S17] also works for all easy and dense properties)



Warm-up:
Sub-exponential time construction [OS17]

There IS a pseudodeterministic algorithm that outputs an n-bit prime in
27" time (infinitely often).

* [dea |: Uniform hardness vs randomness

 [dea Il: Win-win argument



Uniform Hardness vs Randomness

y=G(x)
For any D that breaks G,
D
’_ G G = GLis aPRG Recon” computes L
X
Trevisan-Vadhan 07 Corollary
A language Lyy with If GV doesn’t fool PRIMES, then
that is PSPACE-complete Recon”*™ES computes Lyy.
%& Impagliazzo-Wigderson 01 Impagliazzo-Wigderson 97
hardness vs randomness (non-uniform) hardness vs randomness
If L has , given a Given a distinguisher D of G, we can
distinguisher D of G, we can compute L with a compute L with a nonuniform reconstruction
oracle algorithm Recon?”. oracle algorithm Recon®/,g4vice.




Review of the previous approach [OS17]

m = n® for a large constant C

Candidate HSG
HL: {0,139 - {0,1}™

AKS:{0,1}"" — {0,1}
accepting a 1/m fraction
of inputs

L™ on n-bit inputs >
(space-n computation)

Reconstruction Algorithm D

Q RAXS:{0,1}" - {0,1}

H'"" does not hit AKS = RAKS computes LTV
N¢ N
&




Review of the previous approach [OS17]

m = n for a large constant C

Key Idea: HY:£0,1300 - {0,1}™"

AKS: {0,1}" - {0,1}
accepting a 1/m fraction
of inputs

L™ on n-bit inputs

(space-n computation)

Win-win
argument

RAKS: {0,1}" - {0,1}

. Hn' hits AKS? We have a hitting set generator!

In 290 time, enumerate all outputs of H-" and find the first one accepted by AKS.
20 = 2mY time construction of a fixed m-bit prime.



Review of the previous approach [OS17]

Key Idea:

Win-win
argument

L™ on n-bit inputs

(space-n computation)

m = n for a large constant C

Hn'. {0,139 - {0,1}"

AKS: {0,1}" - {0,1}
accepting a 1/m fraction
of inputs

RAKS: {0,1}" - {0,1}

Case AVOID: H-" does not hit AKS? We can now compute LT” very FAST!

RAKS

is a poly(im) = poly(n) time randomized algorithm for L1

L™V covers all space-n computations (naively it takes 2™ time to compute)

In O(n) space, one can find the lexicographically first n-bit prime

= poly(n)-time randomized algorithm that outputs the lexicographically first n-bit prime w.h.p.



AVOID
Digest: ———¢————o———
n m=mn

From a special language LTV:{0,1}" - {0,1}, build
H,:{0,13° - {0,1}™ attempting to hit m-bit primes.

e Ifit . we get a 22 _time construction of an m-bit prime!

* If it does not hit (AVOIDS), LTV itself is in poly(n) time, and we use
that to get a poly(n) time construction of an n-bit prime!

Polynomial time? . Idea: o
case still makes non-trivial progress
AVOID case is FAST, “Iterate”

but HIT case is SLOW —_———————



The (ideal) Chen-Tell generator (2021)

M bits
Unifo } - {0,1}"
(Circuit6f d3th d and width T) - H
’ T > ‘ / log T
Uniform circuit of depth ¢ and width T /ﬁ\ H = H’/ is HSG

that computes a function f:{1"} - {0,1}"

Chen-Tell: For any integer M such thatlog T<M < T: For any dense D that avoids H,

_ _ Recon” (1) computes f(1™) in
HSG H:{0,1}°9 T - {0,1}" computable in poly(T) time. randomized time poly(d, M)



Pseudodeterministic constructions from [CT21]

T= 200

A

Fix M = poly(n)

EE— A

Reconstruction guarantee: log T = O(n)
If AKS,, avoids H®Fo, then one can speed-up the
computation of BF, in poly(d, M) = poly(n) time.

BF,: Brute Force
d = poly(n) - Enumerates all strings of length n,
and outputs the first n-bit prime

Plug in f = BF, as the “hard function”

Does AKS,
~_avoid HB"0?
N\ Mo
Compute the first length-n Hitting set H5%o thagttits
prime in randomized (i.e. AKS,, and is computable in
pseudodet) poly(n) time 20(M) time.

Use AKS,, as distinguisher



The iterated win-win argument

{0,1}™
— e e |
n; = n'iB—l

HBFno;{O,l}O(IOg To) — {O,l}nl

HBFnl:{O,l}O(log T1) {0,1}112 HBFnz; {0,1}0(logT2) N {0,1}n3

BF,,:{1"} - {0,1}™

HP"ro HITS AKS . f1n n ,
outputs the smallest ml o BE {1} > {01 sy yirs AKSy,| Bl (1"} - {0,1}™
n,-bit prime in » | outputs a fixed n,-bit prime > outputs a fixed n,-bit
T, = 290%) time in T, = poly(T,)time primein T, = poly(T;)
time
Case AVOID:
H®"o DOES NOT HIT AKS,,, Case AVOID: Case AVOID: H""nz
| HEFn1 DOES NOT HIT AKS,, DOES NOT HIT AKS,,,
poly(ny)-time construction M !
of fixed 1,-bit prime! poly(n,)-time construction

poly(n,)-time construction

. i . I
of fixed n,-bit prime! of fixed n,-bit prime!




A closer look at each iteration

* n; = length of prime that we want to find
* H; = HSG containing an n;-bit prime
* T; = size of H;

TO — 20(”10)

Each iteration:
n; « (n;_1)P for some B that we set

T; « (T;_1)* for some a depending on Chen-Tell

y Doe§ AKS,, .,
Hope: If we set 8 A avoid HBFi?
large enough, {n;} T, .~

grows faster than {T;}

I

BF;
Enumerate all strings in H;
and output the first prime

Next hitting set H;,  is HBY

Compute the first prime in

\(66 H; in randomized (i.e.
pseudodet) poly(n;,,) time
/\/O A smaller hitting set

Hiyq = HBF:
that hits AKS

Nitq



Hope: If we set | e
{ni} VS {Tl} large enough, {n;} will e
grow faster than {T;} !

*n; = (ni—1)ﬁ = Nn; = (no)ﬁl
T, =(T;_))*=>T; = (2”0)“i, for some «a.

« Want to find t such that T; = poly(n;). We set

 When t = O(logn,), a simple computation shows that T; will be
comparable to n;.



The algorithm and Its correctness

Algorithm CLORS23:
Let’s say n =n; for some i

If i=t (recall that T; < poly(n;))
Find the first prime in H; by brute force
Else

Use Recon”™®mi+1 to output a candidate n;-bit prime

If H; contains a prime If H, doesn’t contain a prime
We can find this prime using « But H, does...
brute force in polynomial time!  Thereis somei s.t. H; contains a prime but

H;,1 = Hgp, does not.
* AKS, . avoids Hgg, SO Recon
computes BF; correctly!

AKSni+1



Omitted Technical Detalls

 The HSG of [CT21] doesn’t apply to all uniform computations: only to low-depth

uniform circuits. Luckily, the algorithms BF, . we constructed can be implemented
by low-depth uniform circuits.

 The original [CT21] paper gives a HSG with seed length instead of

. This only gives a quasi-poly time construction instead of poly-time.

 We improve Chen-Tell by combining it with the Shaltiel-Umans PRG [SU05].
This requires extra work (the original SU reconstruction algorithm is not uniform).



Open Problems

Main Challenge: Make the result work on all input lengths (or reduce gap)?

[0S17] achieves zero-error (it outputs the canonical prime or "FAILURE").

Can we get a zero-error polynomial-time infinitely-often algorithm?

[0S17] works for every dense property in . We require the property Q to
be in



Main Reference for Lecture 3:

Paper: “Polynomial-time pseudodeterministic construction of primes” (2023)

(Joint work with L. Chen, Z. Lu, H. Ren, and R. Santhanam)

Thank you



