Lecture 3:

Pseudodeterministic Constructions and rK*

[gor Carboni Oliveira

University of Warwick

CIRM - Randomness, Information & Complexity

February/2024

Plan for the Week

Lecture 1 (Monday)

Probabilistic Notions of (Time-Bounded) Kolmogorov Complexity

“Unconditional results & applications to average-case complexity”

Connections to Cryptography and Complexity Theory

“Major questions in complexity are equivalent to statements about Kolmogorov Complexity”
OWEF P vs NP

Lecture 3 (Thursday)

1@ 49 6@ 8 910

SR REEEA LR Connections to Algorithms (explicit constructions, generating primes, etc.)
21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 “« ”

51 52 53 54 55 56 57 58 59 60 Existence of large primes with efficient short descriptions

61 62 63 64 65 66 67 68 69 70

7172 7374 7576 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Primes

An integer is a prime if it is only divisible by 1 and itself.
n-bit prime: [2"1,2"- 1], i.e., binary representation of the form 1xxxxxxx1

Two fundamental computational problems about primes:

Primality Testing: check whether a given n-bit integer is prime
AKS primality test: solves this problem in deterministic poly(n) time

Prime Generation: find an n-bit prime
Focus of this talk

Challenge

* Generating prime numbers:
° lnput: n
* Qutput: A fixed n-bit prime p,. (i.e., in [2"71,2™-1])

* Can we solve this problem deterministically in time poly(n)?

A simple approach: Crameér

Algorithm Cramér: Cramér’s conjecture: Let p, denote the
For i « 2™ to 2" -1 k-th prime, then py.1 — px = 0((log py)?)
If i is prime,

B Output i and halt ﬁ

Under Cramér’s conjecture, this algorithm
Uses [AKS04] for checking primality! Inspects _0 (n*) numbers, so it runs in
poly(n) time.

Although Algorithm Cramér is conjectured
e to run in poly(n) time, the provable
Pi+1 — Pk =0 ((Pk) |) guarantee is only 0*(2%°>2°") time [BHPO1]

State-of-the-art:

State of the art

Best known algorithm is due to [Lagarias-Odlyzko’87].

[LO87] employs techniques from analytic number theory to approx. count
primes in an interval [a,b]. It has running time guarantee 2"/2+o(n),

[2™1, 2" - 1] Approx. #

primes in each
interval in time

2n/2

|dea:

2n/2

Infinitely Often: Mersenne

Infinitely-Often Algorithms Algorithm Mersenne:
On infinitely many n, the algorithm Output string is a
outputs a prime of length n. sequence of n ones

(already a non-trivial notion!)

Under this conjecture,
Conjecture: There are infinitely Mersenne is an infinitely-often
many Mersenne primes polynomial-time algorithm for
(primes of the form 2™ — 1). generating primes.

Generalization: Dense Properties

« A property Q < {0,1}" is dense, if for every input length n,
|@ N {0,1}"| = 2™ /poly(n)

 Prime Number Theorem: there are ~N/In N primes in [1, N]
« |PRIMES N {0,1}*| = 2"*/100n

For a dense property Q, find a
length-n string in Q in poly(n) time.

Algorithm Random:
Sample x < {0,1}"
until x € Q

Output x

Easy with randomness!

Deterministic algorithms are open

Complexity Theory and Pseudorandomness

C {0,1}" : The generator from [IW97] Circuit Lower Bound Hypothesis:
E requires 2% _sjze Boolean circuits

Algorithm IW:
For x 1in
If x is a prime
Output x and halt

Assuming hypothesis, hits every
dense property that is easy to decide

In particular, contains a prime!

Algorithm IW is conjectured to
find a prime, but we seem very State-of-the-art:
far from proving this hypothesis E requires 3.1n — o(n) size circuits

Summary

Almost-everywhere / infinitely often poly-time

[Cramer, Mersenne 7 (under conjectures)

. Assuming E requires exponential-size circuits,
Algorithm IW Algorithm IW runs in poly(n) time.

State of the art Time Complexity 0(2°°™)

Can we find a prime in poly(n) time provably?

Polymath 4: Attempted to use number-theoretic techniques but did not obtain an
unconditional improvement.

Relaxing our goal: Pseudodeterminism

Algorithm Random:

Sample x « {0,1}" Drawback of Random:
until x € Q different primes on different executions
Output x
Randomized Pseudodeterministic Deterministic
~ Algorithm | Algorithm Algorithm

o | pe| Xf | e | m | o m| X| w2 s p

A randomized algorithm is pseudodeterministic if on most of its computational
branches it outputs the answer.

Any bounded observer thinks the algorithm is deterministic.

Randomized Pseudodeterministic Deterministic

% T

p1| P2 | X pgpzm pr| P X P2 P P

Algorithm

Literature

Pseudodeterminism was first defined and studied in:
Eran Gat and Shafi Goldwasser [GG11]:

“Probabilistic search algorithms with unique answers and their cryptographic applications”.

[GGR13], [GIPS21, CDM23] Space complexity [GL19]
Streaming algorithms [GGMW?20], [BKKS23] Proof systems [GGH18], [GGH19]
Parallel computation [GG17], [GG21] [Grol5]
Learning algorithms [OS18] Approximation algorithms [DPV18]
Kolmogorov complexity [O19, LOS21] and more [BB18], [Gol19], [DPWV22],

[WDP+22], [CPW23], ...

Gat-Goldwasser (2011):

Is there an efficient pseudodeterministic algorithm
for generating prime numbers?

More generally,

Is it the case that the generation problem
for every dense and easy property Q can be solved
pseudodeterministically in polynomial time?

Relevant previous work

[Oliveira-Santhanam’17]
Thereis a algorithm A such that, for infinitely many n € N,
there is a prime p,, € [271,2™) such that A(1™) outputs p,, with probability
at least 1 — 27" over its internal randomness.

Poly-time pseudodeterministic constructions

Theorem (Joint work L. Chen, Z. Lu, H. Ren, and R. Santhanam)

There is a polynomial-time algorithm A such that, for infinitely manyn € N,
there is a prime p,, € [2™71,2™) such that A(1™) outputs p,, with probability
at least 1 — 27" over its internal randomness.

Conseguence in Kolmogorov Complexity

Corollary. Primes with succinct and efficient descriptions:

For every integer m there is n > m and an n-bit prime p with rkP°Y(p) = log n + O(1)

Proof: An efficient pseudodeterministic algorithm A and its input 1" serve as an
encoding of the canonical n-bit prime p such that p = A(1").

What properties of primes are used in the Theorem?

* Density: A 1/poly(n) fraction of n-bit strings are prime numbers.

* Easiness: There is a poly(n)-time deterministic algorithm that checks if a
given integer is prime.

Theorem (Main Result)

Let Q = {Q,, € {0,1}"*},,cn be a property such that:

* (Dense) There is a polynomial g such that foralln € N, |Q,,| = ﬁ - 2"

 (Easy) There is a deterministic poly-time algorithm deciding Q.
Then, there is a polynomial-time algorithm A such that, for infinitely many n €

N, there is a canonical solution x,, € Q,, such that A(1™) outputs x,, with
probability at least 1 — 27" over its internal randomness.

(Previous work [0S17] also works for all easy and dense properties)

Warm-up:
Sub-exponential time construction [OS17]

There IS a pseudodeterministic algorithm that outputs an n-bit prime in
27" time (infinitely often).

* [dea |: Uniform hardness vs randomness

 [dea Il: Win-win argument

Uniform Hardness vs Randomness

y=G(x)
For any D that breaks G,
D
’_ G G = GLis aPRG Recon” computes L
X
Trevisan-Vadhan 07 Corollary
A language Lyy with If GV doesn’t fool PRIMES, then
that is PSPACE-complete Recon”*™ES computes Lyy.
%& Impagliazzo-Wigderson 01 Impagliazzo-Wigderson 97
hardness vs randomness (non-uniform) hardness vs randomness
If L has , given a Given a distinguisher D of G, we can
distinguisher D of G, we can compute L with a compute L with a nonuniform reconstruction
oracle algorithm Recon?”. oracle algorithm Recon®/,g4vice.

Review of the previous approach [OS17]

m = n® for a large constant C

Candidate HSG
HL: {0,139 - {0,1}™

AKS:{0,1}"" — {0,1}
accepting a 1/m fraction
of inputs

L™ on n-bit inputs >
(space-n computation)

Reconstruction Algorithm D

Q RAXS:{0,1}" - {0,1}

H'"" does not hit AKS = RAKS computes LTV
N¢ N
&

Review of the previous approach [OS17]

m = n for a large constant C

Key Idea: HY:£0,1300 - {0,1}™"

AKS: {0,1}" - {0,1}
accepting a 1/m fraction
of inputs

L™ on n-bit inputs

(space-n computation)

Win-win
argument

RAKS: {0,1}" - {0,1}

. Hn' hits AKS? We have a hitting set generator!

In 290 time, enumerate all outputs of H-" and find the first one accepted by AKS.
20 = 2mY time construction of a fixed m-bit prime.

Review of the previous approach [OS17]

Key Idea:

Win-win
argument

L™ on n-bit inputs

(space-n computation)

m = n for a large constant C

Hn'. {0,139 - {0,1}"

AKS: {0,1}" - {0,1}
accepting a 1/m fraction
of inputs

RAKS: {0,1}" - {0,1}

Case AVOID: H-" does not hit AKS? We can now compute LT” very FAST!

RAKS

is a poly(im) = poly(n) time randomized algorithm for L1

L™V covers all space-n computations (naively it takes 2™ time to compute)

In O(n) space, one can find the lexicographically first n-bit prime

= poly(n)-time randomized algorithm that outputs the lexicographically first n-bit prime w.h.p.

AVOID
Digest: ———¢————o———
n m=mn

From a special language LTV:{0,1}" - {0,1}, build
H,:{0,13° - {0,1}™ attempting to hit m-bit primes.

e Ifit . we get a 22 _time construction of an m-bit prime!

* If it does not hit (AVOIDS), LTV itself is in poly(n) time, and we use
that to get a poly(n) time construction of an n-bit prime!

Polynomial time? . Idea: o
case still makes non-trivial progress
AVOID case is FAST, “Iterate”

but HIT case is SLOW —_———————

The (ideal) Chen-Tell generator (2021)

M bits
Unifo } - {0,1}"
(Circuit6f d3th d and width T) - H
’ T > ‘ / log T
Uniform circuit of depth ¢ and width T /ﬁ\ H = H’/ is HSG

that computes a function f:{1"} - {0,1}"

Chen-Tell: For any integer M such thatlog T<M < T: For any dense D that avoids H,

_ _ Recon” (1) computes f(1™) in
HSG H:{0,1}°9 T - {0,1}" computable in poly(T) time. randomized time poly(d, M)

Pseudodeterministic constructions from [CT21]

T= 200

A

Fix M = poly(n)

EE— A

Reconstruction guarantee: log T = O(n)
If AKS,, avoids H®Fo, then one can speed-up the
computation of BF, in poly(d, M) = poly(n) time.

BF,: Brute Force
d = poly(n) - Enumerates all strings of length n,
and outputs the first n-bit prime

Plug in f = BF, as the “hard function”

Does AKS,
~_avoid HB"0?
N\ Mo
Compute the first length-n Hitting set H5%o thagttits
prime in randomized (i.e. AKS,, and is computable in
pseudodet) poly(n) time 20(M) time.

Use AKS,, as distinguisher

The iterated win-win argument

{0,1}™
— e e |
n; = n'iB—l

HBFno;{O,l}O(IOg To) — {O,l}nl

HBFnl:{O,l}O(log T1) {0,1}112 HBFnz; {0,1}0(logT2) N {0,1}n3

BF,,:{1"} - {0,1}™

HP"ro HITS AKS . f1n n ,
outputs the smallest ml o BE {1} > {01 sy yirs AKSy,| Bl (1"} - {0,1}™
n,-bit prime in » | outputs a fixed n,-bit prime > outputs a fixed n,-bit
T, = 290%) time in T, = poly(T,)time primein T, = poly(T;)
time
Case AVOID:
H®"o DOES NOT HIT AKS,,, Case AVOID: Case AVOID: H""nz
| HEFn1 DOES NOT HIT AKS,, DOES NOT HIT AKS,,,
poly(ny)-time construction M !
of fixed 1,-bit prime! poly(n,)-time construction

poly(n,)-time construction

. i . I
of fixed n,-bit prime! of fixed n,-bit prime!

A closer look at each iteration

* n; = length of prime that we want to find
* H; = HSG containing an n;-bit prime
* T; = size of H;

TO — 20(”10)

Each iteration:
n; « (n;_1)P for some B that we set

T; « (T;_1)* for some a depending on Chen-Tell

y Doe§ AKS,, .,
Hope: If we set 8 A avoid HBFi?
large enough, {n;} T, .~

grows faster than {T;}

I

BF;
Enumerate all strings in H;
and output the first prime

Next hitting set H;, is HBY

Compute the first prime in

\(66 H; in randomized (i.e.
pseudodet) poly(n;,,) time
/\/O A smaller hitting set

Hiyq = HBF:
that hits AKS

Nitq

Hope: If we set | e
{ni} VS {Tl} large enough, {n;} will e
grow faster than {T;} !

*n; = (ni—1)ﬁ = Nn; = (no)ﬁl
T, =(T;_))*=>T; = (2”0)“i, for some «a.

« Want to find t such that T; = poly(n;). We set

 When t = O(logn,), a simple computation shows that T; will be
comparable to n;.

The algorithm and Its correctness

Algorithm CLORS23:
Let’s say n =n; for some i

If i=t (recall that T; < poly(n;))
Find the first prime in H; by brute force
Else

Use Recon”™®mi+1 to output a candidate n;-bit prime

If H; contains a prime If H, doesn’t contain a prime
We can find this prime using « But H, does...
brute force in polynomial time! Thereis somei s.t. H; contains a prime but

H;,1 = Hgp, does not.
* AKS, . avoids Hgg, SO Recon
computes BF; correctly!

AKSni+1

Omitted Technical Detalls

 The HSG of [CT21] doesn’t apply to all uniform computations: only to low-depth

uniform circuits. Luckily, the algorithms BF, . we constructed can be implemented
by low-depth uniform circuits.

 The original [CT21] paper gives a HSG with seed length instead of

. This only gives a quasi-poly time construction instead of poly-time.

 We improve Chen-Tell by combining it with the Shaltiel-Umans PRG [SU05].
This requires extra work (the original SU reconstruction algorithm is not uniform).

Open Problems

Main Challenge: Make the result work on all input lengths (or reduce gap)?

[0S17] achieves zero-error (it outputs the canonical prime or "FAILURE").

Can we get a zero-error polynomial-time infinitely-often algorithm?

[0S17] works for every dense property in . We require the property Q to
be in

Main Reference for Lecture 3:

Paper: “Polynomial-time pseudodeterministic construction of primes” (2023)

(Joint work with L. Chen, Z. Lu, H. Ren, and R. Santhanam)

Thank you

