Pseudorandomness Sunday, February 18, 2024 2:46 AM
Part I:
Pseudo-randomness from Hardness
Valentine Kabanets
(Simon Fraser University, Canada)
Pseudorandom Objects:
- expander graphs
- 2707 - CO11201120 - 10779 -
- incompressible strings (Boolegn fing of high (Circuit complexity)
- error - correcting codes (ECC) - incompressible strings (Boolean fins et high circuit complexity) - pseudorandom generators (PRG)
Insight (1980's): Hardness > PRG

Plan: Xel'n of PRG

Yao's "distinguisher into next-bit predictor"

Hybrid argument NW PRG

play to Win & play to Lose (applications)

· PRG

G: {0,1] > {0,1] "efficiently" computable

C: {0,1]k -> {0,1} C & Class of tests

C 1s &- fooled by G if

Task: Given a class & of tests C: 80,13 > 80,13 that E-fools all CEC.

Want:
$$x \gg l$$
 (large stretch)

If G fails to ϵ -fool some X , i.e.,

 $|Pr[X(2)=1] - Pr[X(G(6))=1]| > \epsilon$

Let $f: \{0,1\}^m \to \{0,1\}$ be a "hard" function

Xetime $G(x) = x$, $f(x)$
 $f(x) = x$, $f(x)$

Then $f(x) = x$ and a PRG for a class $f(x) = x$.

Then $f(x) = x$ and $f(x) = x$.

 $f(x) = x$
 $f(x) =$

Ave-case Hardness for
$$G \Rightarrow$$
Pseudorandowness for a slightly smaller class $\{\delta\}$

Example: $G = Size [2^{\frac{N}{10}}]$
 $\{X\} = Size [2^{\frac{N}{10}}]$
 $\{X\} = Size [2^{\frac{N}{10}}]$

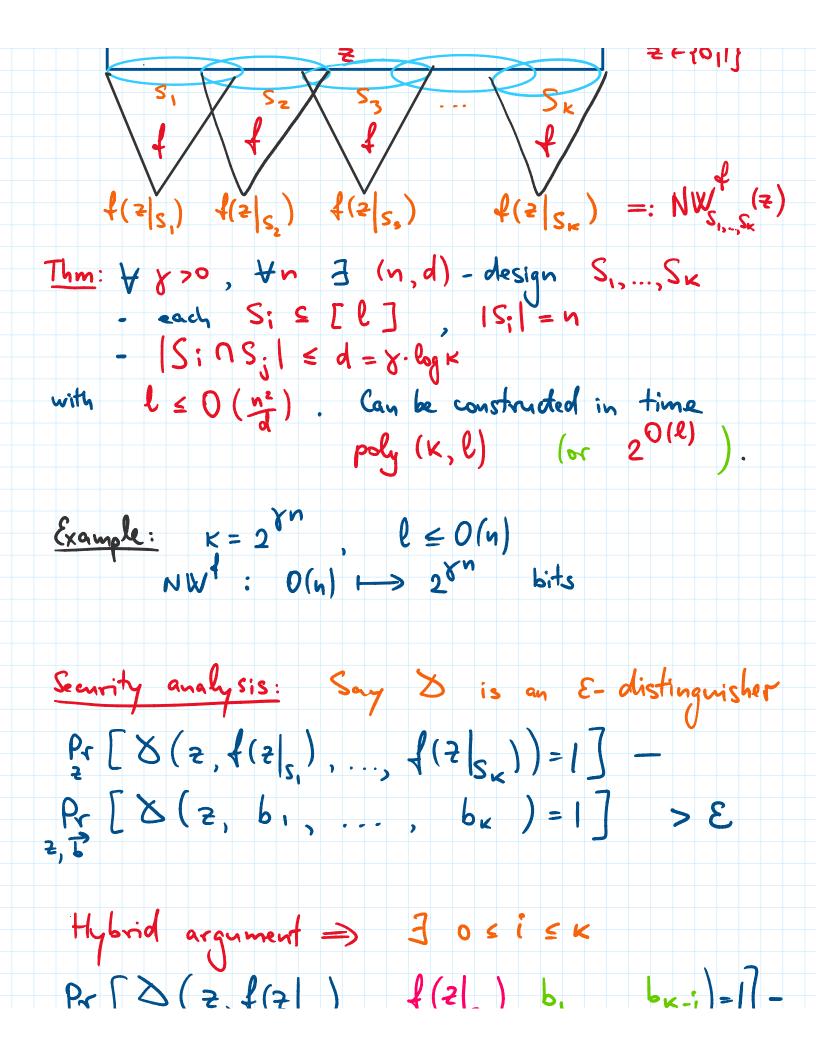
Want: pely or exp stretch

Offenpt $I (direct product of I)$:

 $G(X_1, ..., X_K) = X_1, ..., X_K, f(X_1), ..., f(X_K)$
 $K:N \mapsto KN + K \text{ bits}$

Suppose G is not a PRG : $J \times J \in >0$
 $Pr[X(G(X_1, ..., X_K)) = I] - Pr[X(U_{KN+K}) = I] > E$
 $X = I(X_1) ... I(X_{K-1}) I(X_K) = I(X_1) ... I(X_{K-1}) I(X_K)$
 $X = I(X_1) ... I(X_{K-1}) I(X_K) = I(X_1) ... I(X_{K-1}) I(X_K)$
 $X = I(X_1) ... I(X_{K-1}) I(X_K) = I(X_1) ... I(X_{K-1}) I(X_1) = I(X_1) I(X_1) ... I(X_1) I(X_1) = I(X_1) I($

Pr [
$$\times$$
(Q₀)=1] - Pr[\times (Q₁)=1]
+ Pr [\times (Q₁)=1] - Pr[\times (Q₁)=1] > \times
Pr [\times (Q₁)=1] - Pr[\times (Q₁)=1] > \times
By averaging, \times 0 \(\infty\) i \(\infty\) = 1] > \times
Pr [\times (Q₁)=1] - Pr [\times (Q₁+1)=1] > \times
Say i=0:
Pr [\times (X₁,...,X_K, f(K₁),...,f(K_{K-1}), f(X_K))=1] > \times
- Pr [\times (X₁,...,X_K, f(K₁),...,f(K_{K-1}), b)=1] > \times
can fix \times preserve > \times (by averaging)
By Yao, get a predictor \times (with advice)
Pr [\times (X)=f(X)] > \times 1 + \times 1
Note: need a "harder" f to get a better stretch.

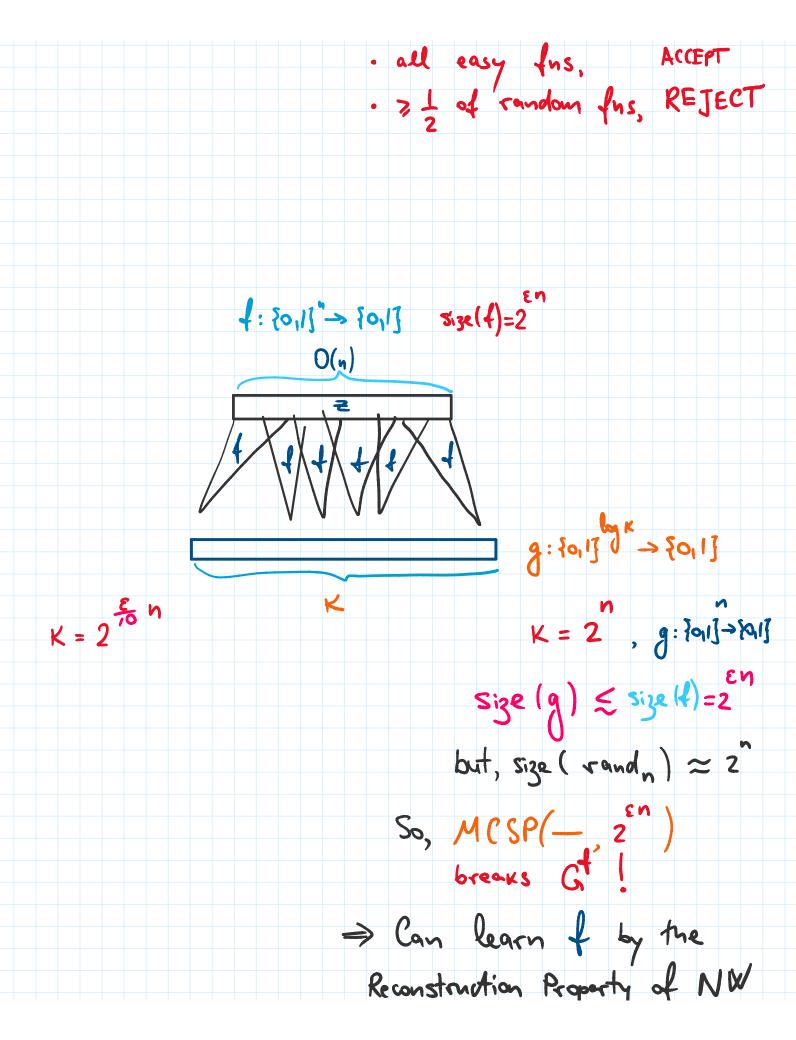


Pr[\(\frac{2}{5}, \frac{1}{5}, \),..., \(\frac{2}{5}, \), \(\frac{1}{5}, \), \(\f Pr [\(\rangle \) (\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1} • X:= 2/5; is free. • $f(2|s_1)$, ..., $f(2|s_1)$ almost fixed each depends on $\leq d = \gamma n$ bits of χ , 2 bits of advice suffice Total advice: $\leq 2^{(37)n}$ $\leq 2^{n}$ if $\sqrt[3]{2}$ Upshot: If f: {0115" -> {0,17 cannot be computed on more than \(\frac{1}{2} \) \text{inputs by circuits of size 230" then NW, ..., Sin O(n) -> 2 is PRG for linear-size circuits. Rescaling: G: O(log n) +> n Lits

Kescaling: (6: U/log n) + n lats

secure against linear-size tests If $f \in E = Time(2^{O(n)})$, then $G : O(lgn) \mapsto n$ is computable in poly(n) time. Then [Nisan-Wigderson]: If tE that is exp-hard on average by exp-size circuits, then I PRG G: Ollan) +> n computable in poly(n) time. Worst-Case to Average-Case Reduction via locally list-decodable ECCs f = {0,13 → {0,1} (Reed-Muller) Hadamard ECC / E O(n) -> 70,113 st. it can compute I am I + & inputs

st. it can compute from with size s circuit	1 + ε imputs its
then can compute of ever with size poly (s, &	ywhere) circuits
Thun [Impossible 230 - Wigderson] size 2 2 mil circuits, there]: Of E requires => PRG G: Ollguli-> u,
	for Size(n) eirauts
Play to Win G: 80,15 -> 80	Play to Lose
K << circuit size (f) Grant be broken	K >> Grant Size (+)
Gi can't be broken Serandomization	Gran be bracen if can compute MCSP Learning from MCSP (Natural Property)



Reconstruction Property of NW [Carmosino, Impergliarzo]
Kabanets, Kolokolová] Min Circuit Size Problem (MCSP): Griven X, S, 1s X computable by a circuit of Size < S? Part II:
Meta-Complexity MCSP: Given x, S, is x computable by a circuit of size \le S? MKP: Given x, s, t, is there d = 30,17 = s.t. UTM U(d) outputs x within t steps? What is the computational complexity of MCSP and MKtP???

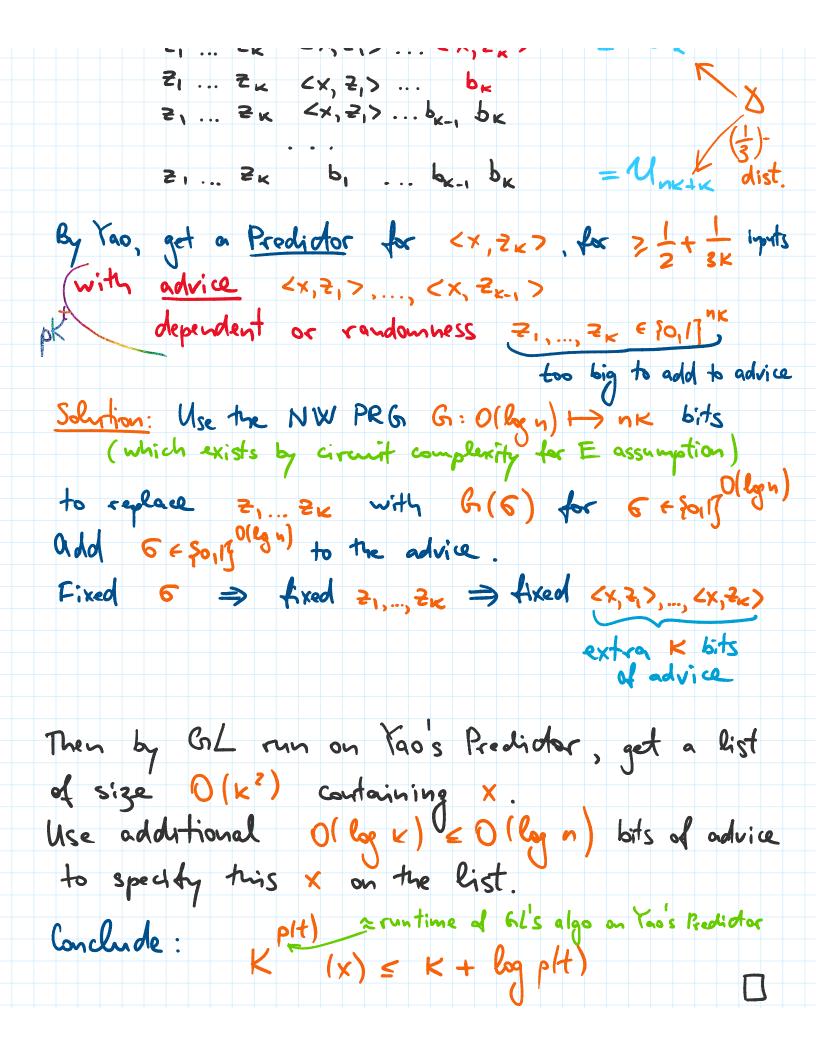
- both are in - are they eas	NP. are	Mey NP-com	slete?
- are they eas	sy on average	e? (No, in	Crypto exists
		C 3.72	
Connections to	Crypto, Lear	ning, Complexity	,
Psendorandom	ness is an	important too	٤
Psendorandom:	Meta-Co	uplikity!	
Plan:			
· Hadamard Co	de 2P Ga	nerator (310	ect Product)
· Symmetry .	of Informatto	n for K'	(under assumptions)
· application	10 compa	king liveory	
Hadamard Coo			
message XE	70,13" 1-3	< < ,0° < < ,0°	1> <×, 1°>
		[<x,y> = Z</x,y>	x, y; mod 2
Thm [Goldcei	ch, Levin]		
7 politime (randomized	algo of that	aiven n E

I polytime (randomized) algo of that, given n, E and C: {0,15" -> {0,15 s.t., for some x + {0,13", $P_{r}\left[C(r) = \langle \times, r \rangle\right] \approx \frac{1}{2} + \varepsilon$ the algo A^{C} outputs (... prob. $\frac{1}{2}$) a list of $O(\frac{1}{\epsilon^{2}})$ strings that contains X (in time $O(\frac{n^{2}}{\epsilon^{2}} \cdot \log n)$). DP Generator DP : {0,1] n+nk -> {0,1] $\Delta P_{\kappa}(x,z_1,...,z_{\kappa}) = z_1...z_{\kappa} \langle x,z_1 \rangle ... \langle x,z_{\kappa} \rangle$ (K≤ poly (n)) XP Reconstruction Lemma [Hirahara]: Suppose E requires size 2 circuits.

I poly P s.t. if some time t algo &

(1/3) - distinguishes &P_K(x, \(\frac{2}{2}\)) from Unktk,

then then $K^{p(t)}$ K $(x) \leq K + \log p(t)$. Proof: 21 ... 2k <x, 2, > ... <x, 2 x >



```
< 0 (logn) for most x~Un
 Proof: For any K, K' (we'll choose their values later)
  Say a polytime algo B solves MKP on average:
For u, w, s such that |u|+|w|>s,
       • \forall u, w if K^{2t}(u, w) \leq S

then B(u, w, 1^{2t}, 1^{S}) = 1
       • Pr \left[B(u,w,i^2,i^3)=1\right] \leq \frac{1}{2}
Claim:

K, K' s.t. K+K' = K(x,y) + \log t + 2
and for S = K^{t}(x,y) + 121 + 12'1 + \log t,
           B(-,-,|^{2t},|^s)
   is a (1/2)-Distinguisher for DP (x, 2) . DP, (y, 2').
```

Proof of Claim: By defin of S, B accepts all outputs
of SPK (x,Z) - SPKI (y,ZI) (w. prob. 1 over 2,ZI) The output length of $\Delta P_{\kappa} \cdot \Delta P_{\kappa}$, is $\Delta P_{\kappa} \cdot \Delta P_{\kappa}$ is $\Delta P_{\kappa} \cdot \Delta P_{\kappa} \cdot \Delta P_{\kappa}$. Pr [B(u,w, 1, 15)=] $\leq \frac{1}{2}$ (by defin of B) We'll choose K so that B DOES NOT

1 - distinguish between $XP_{K}(x,z)$ o U and u · u Suppose B does 4- distinguish them.

By DP Reconstruction Lemma, for some P, $K^{p(t)}(x) \leq K + \log p(t)$. (*) $K = K^{p(t)} - \log p(t) - 1$ so that (*) is false! Set - Play to Win u. u indistinguishalle by B

By XP Reconstruction for some p' $|x|^{p'(H)}|x| \le |x'| + |\log p'(t)|$ $= |x'(x,y)| + |\log t| + 2 - |x|$ $= |x'(x,y)| + |\log t| + 2$ $- |x'(x)| + |\log p'(t)| + |x|$ For large enough $q \gg \max_{x} \{ p, p' \}, get$ $K = \{ y \mid x \} \in K (x, y) - K (x) + \log_{x} q(t).$ Symmetry of Information for pkt
No decandomization assumption, but only assume

(3) By a simple averaging argument,
$$\exists \ t \leq 2^{o(N/\ell g n)} \text{ of } \frac{1}{\ell g g n} \text{ of } \frac{1}{\ell g n} \text{ of } \frac{1}{\ell g n} \text{ of } \frac{1}{\ell g g n} \text{ of } \frac{1}{\ell g n} \text{ of } \frac{1}{\ell$$

 $K(x,y_x) \leq K(x) + \log t$ where yx is the lex-first R-witness of x for large enough t, and onst &) Proof sketch: Play to Lose. K * (x,yx) & K (x) 3+, SAT $(XP_{K}(x,yx; 2)) \lesssim K^{2+}, SAT (x,yx) + 12|$ $\lesssim K(x) + 12|$ $\lesssim SAT(x,yx) + 12|$ Set K so that K+121 = 3+2. Then AvgP-algo for MK P breaks

The generator $XP_K(X, y_X; Z)$.

By XP Reconstruction, $P(H)(X, y_X) \leq K \leq K(X)$. Conclusions

