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Time lapse of a wound healing

Day 1 Day 16 Day 33

Source: https://youtu.be/YDmnOiZ5vhc

https://youtu.be/YDmnOiZ5vhc


Primitive “healing” in a cellular automaton

Toom’s NEC-majority CA

A two-dimensional binary CA

7−→

Local rule:

a b
c

7−→ a′

a′ := maj(a, b, c)
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Primitive “healing” in a cellular automaton

Toom’s NEC-majority CA

Time lapse of Toom’s CA “healing”

A finite perturbation of all-□ After 30 iterations After 120 iterations

Toom’s CA is self-stabilising:

▶ Two “legal” configurations: all-□ and all-■

▶ The “legal” configurations remain unchanged.

▶ Finite perturbations of “legal” configurations rapidly “heal”.
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Self-stabilisation

Question
Can we design self-stabilising CA with more complex* sets of legal
configurations?

* prescribed using finitely many local constraints (i.e., an SFT)

Motivation
▶ Fault-tolerance (robustness against random noise)

▶ Robustness against tampering by an adversary

▶ Self-healing materials (?)

▶ Symbolic dynamics [a notion of “complexity” for SFTs]



Outline

▶ Formulation
▶ Efficient solutions for some examples of local constraints

▶ Deterministic solutions
▶ (Probabilistic solutions)
▶ An example which appears difficult

▶ Time complexity
▶ Invariance under conjugacy
▶ An example with hard self-stabilisation

▶ (Self-stabilisation starting from random perturbations)



Formulation

Self-stabilisation
We say that a CA F stabilises an SFT X if

space of legal configurations

(i) Every element of X is a fixed point of F.
[i.e., the CA keeps each legal configuration unchanged.]

x ∈ X =⇒ F(x) = x

(ii) Starting from any finite perturbation of an element of X, the
CA returns to X in finitely many steps.

[i.e., the CA “heals” any finite perturbation of a legal configuration.]

x̃ ∼ x ∈ X =⇒ Ft(x̃) ∈ X for some t ∈ N
x̃ is a finite perturbation of x

The smallest such t is called the recovery time of x̃.
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(i) Every element of X is a fixed point of F.
(ii) Starting from any finite perturbation of an element of X, the

CA returns to X in finitely many steps.

Example (Toom’s NEC-majority CA)

X = {all-□, all-■}

Question
Which SFTs can be (efficiently) stabilised by CAs?
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Self-stabilisation
We say that a CA F stabilises an SFT X if

(i) Every element of X is a fixed point of F.
(ii) Starting from any finite perturbation of an element of X, the

CA returns to X in finitely many steps.

Example (Toom’s NEC-majority CA)

X = {all-□, all-■}

Remark
The alphabet of F may be strictly larger than the alphabet of X.
The perturbations are in the alphabet of F.
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Formulation

Question
Which SFTs can be (efficiently) stabilised by CAs?

Efficiency

What counts as “efficiency”?

▶ Speed of stabilisation [i.e., recovery time]

▶ Number of extra symbols

▶ Neighbourhood radius [linear trade-off with speed]

Example

Toom’s CA stabilises X = {all-□, all-■} very efficiently:

▶ Linear recovery time [... in the diameter of the perturbed region]

▶ No extra symbols

▶ Neighbourhood radius 1
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Back to Toom’s CA

Mechanism of stabilisation

time = 0

time = 1time = 2time = 3time = 4time = 5time = 6time = 7

A finite perturbation of the all-□ configuration

Proposition (Linear recovery)

If the perturbed region fits in a triangle of size ℓ, then the recovery
time is at most ℓ.

By symmetry: the same holds for any finite perturbation of the
all-■ configuration.
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Mechanism of stabilisation

time = 0time = 1time = 2time = 3time = 4time = 5time = 6
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A prototypical example: k-colourings

X = all valid k-colourings of the lattice



A prototypical example: k-colourings

Case: k = 2

The even checkerboard

▶ Only two legal configurations: the even and odd checkerboards



A prototypical example: k-colourings

Case: k = 2

The odd checkerboard

▶ Only two legal configurations: the even and odd checkerboards
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A prototypical example: k-colourings

Case: k = 2

A finite perturbation of the even checkerboard

A simple solution based on Toom’s CA

a b

c
7−→ a′

a′ := maj(a, b, c)
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A prototypical example: k-colourings

Case: k = 2

A finite perturbation of the even checkerboard

An alternative simple solution based on Toom’s CA

a b

c

7−→ a′ a′ := maj(a, b, c)

[Apply Toom’s CA on four sublattices separately!]



Inspired by 2-colourings

More generally:

Proposition

Let X be a finite two-dimensional SFT.
There exists a CA without additional symbols that stabilises X in
linear time.

Idea: Pick p, q ∈ N such that X is horizontally p-periodic and
vertically q-periodic. Apply Toom’s CA* on each (p, q)-sublattice.

* If all three symbols are different, leave unchanged.



A prototypical example: k-colourings

Case: k ≥ 5

A valid 5-colouring

Key property: single-site fillability

For every choice of colours a, b, c, d, there is a matching colour
s := ψ(a, b, c, d) for the center.

a
b

c

d

s
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A prototypical example: k-colourings

Case: k ≥ 5

A finite perturbation of a 5-colouring

A solution based on Toom’s CA

a
b

c
d
s 7−→ s′

s′ :=

{
ψ(a, b, c, d) if s does not match upwards or rightwards,

s otherwise.

Note: No new NE-defects are created!
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Case: k ≥ 5

A finite perturbation of a 5-colouring

A solution based on Toom’s CA

a
b

c
d
s 7−→ s′

s′ :=

{
ψ(a, b, c, d) if s does not match upwards or rightwards,

s otherwise.

Note: No new NE-defects are created!



Inspired by k-colourings for k ≥ 5

More generally:

Proposition

Let X be a single-site fillable two-dimensional n.n. SFT.
There exists a CA without additional symbols that stabilises X in
linear time.



A prototypical example: k-colourings

Case: k = 4

A valid 4-colouring

Key property: strong 2-fillability
For every (not necessarily valid) choice of a1, a2, . . . , a8, there is a
matching colouring of the central 2 × 2 block.

a1

a2

a3 a4

a5

a6

a7a8
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Inspired by 4-colourings

Proposition

Let X be a strongly ℓ-fillable two-dimensional n.n. SFT.
There exists a CA without additional symbols that stabilises X in
quadratic time.

Idea: The CA locally identifies a non-empty subset of non-adjacent
faulty ℓ× ℓ blocks and corrects them.
In this fashion, at every step, the number of faulty ℓ× ℓ blocks
decreases by at least 1.



A prototypical example: k-colourings

Case: k = 3

A valid 3-colouring

We are stuck!!

Question
Is there a CA that stabilises 3-colourings?
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Why are 3-colourings difficult to stabilise?

Connection with the six-vertex model

q q + 1

q q − 1 q

q + 1

q

q − 1

2 1 2 0

0 2 0 1

2 0 1 0

0 1 2 1

Six-vertex model: Each vertex will have exactly two incoming
arrows and two outgoing arrows.



Why are 3-colourings difficult to stabilise?
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A finite perturbation of a valid 3-colouring

The difficulty:

There are only two defects, but correcting them requires changing
the colour of a large number of sites.



One-dimensional SFTs

Example (GKL)

F(x)i :=

{
maj(xi−3, xi−1, xi) if xi = ,

maj(xi, xi+1, xi+3) if xi = ,

· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·

time

Proposition (Gács, Kurdyumov, Levin, 1977)

The GKL CA stabilises X = {all- , all- } in linear time.
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One-dimensional SFTs

Example (Modified Traffic)

F = F2F1 F1 F2

traffic filter

· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·

time

Proposition (Kari and Le Gloanec, 2012)

The modified traffic CA stabilises X = {all- , all- } in linear time.



One-dimensional SFTs

Theorem
For every non-wandering one-dimensional SFT X, there exists a
CA F (with extra symbols) that stabilises X in linear time.

0

1

2

3

4

An example of a non-wandering SFT

Remark
There is a more sophisticated solution by Ilkka Törmä which does
not require extra symbols and works for every (not just
non-wandering) SFT.



One-dimensional SFTs

Theorem
For every non-wandering one-dimensional SFT X, there exists a
CA F (with extra symbols) that stabilises X in linear time.

0
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An example of a non-wandering SFT

Remark
There is a more sophisticated solution by Ilkka Törmä which does
not require extra symbols and works for every (not just
non-wandering) SFT.



One-dimensional SFTs

Theorem
For every non-wandering one-dimensional SFT X, there exists a
CA F (with extra symbols) that stabilises X in linear time.

Idea: There is a simple sequential procedure for correcting defects
from left to right.

Difficulty: The CA cannot identify the left-most defect to start
such a procedure.

. . .



Back to two dimensions

Question
Can a CA stabilise an aperiodic SFT?

Answer: Yes!
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Question
Can a CA stabilise an aperiodic SFT?

Answer: Yes!



Deterministic two-dimensional SFTs

NE-deterministic SFTs

a b
c

shape of forbidden patterns at most one symbol a
consistent with each pair b, c

Example (Ledrappier’s SFT)

There are two symbols 0 and 1. The forbidden patterns are

a b
c

where a ̸= b + c (mod 2).



Deterministic two-dimensional SFTs

NE-deterministic SFTs

a b
c

shape of forbidden patterns at most one symbol a
consistent with each pair b, c

Example (Ammann’s aperiodic tile set)



Deterministic two-dimensional SFTs

NE-deterministic SFTs

a b
c

shape of forbidden patterns at most one symbol a
consistent with each pair b, c

Theorem
For every two-dimensional NE-deterministic SFT X, there exists a
CA F (with extra symbols) that stabilises X in linear time.

Difficulty: Näıvely applying the deterministic rule doesn’t work.

Idea: Similar to the one-dimensional SFT.



Time complexity of stabilisation

Theorem (Invariance under conjugacy)

Suppose X and Y are conjugate SFTs. If there is a CA that
stabilises X in time τ(n), then there also exists a CA that stabilises
Y in time τ

(
n + O(1)

)
.

The “best” recovery time for an SFT X can be thought of as a
measure of the “local complexity” of X.

[Reminiscent of logical depth (Bennett, 1982)?]

Convention
If an SFT has no stabilising CA, we define its “best” recover time
to be ∞.
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Time complexity of self-stabilisation

Example

The “best” recovery time of some classes of SFTs:

▶ 1d SFT: (at most) linear.

▶ 2d k-colourings with k = 2 or k ≥ 5: linear.
▶ 2d 4-colourings: (at most) quadratic.

▶ 2d 3-colourings: unknown
▶ Deterministic SFT: (at most) linear

Any negative result?

Theorem (Super-polynomial hardness)

Unless P = NP, there exists a two-dimensional SFT X which
cannot be stabilised by any CA in polynomial time.
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Example

The “best” recovery time of some classes of SFTs:

▶ 1d SFT: (at most) linear.

▶ 2d k-colourings with k = 2 or k ≥ 5: linear.
▶ 2d 4-colourings: (at most) quadratic.
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Super-polynomial hardness

Square tiling problem of a set Θ of Wang tiles

Given n and a prescribed colouring of the boundary of an n × n
square, is there an admissible colouring of the square?

n

n

Proposition (Folklore)

There exists a tile set for which the square tiling problem is
NP-complete.
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Super-polynomial hardness

A CA stabilising XΘ can be used to solve a variant of the square
tiling problem (with only polynomial overhead):

Global tiling patching problem (associated to Θ, α, β)

Sn

β
(n
)

1
α
(n
)

n

β(n) 1 α(n) n

7→ Sn

1
α
(n
)

n

1 α(n) n

Proposition

There exists a tile set Θ such that for every α, β : N → N with
polynomial growth, the global tiling patching problem associated
to Θ, α, β is NP-hard.
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Self-stabilisation starting from random perturbations

Formulation
#*&!@??!*#&???! . . .

Theorem
Suppose that a CA F stabilises an SFT X in sub-quadratic time.
Then, F also stabilises X starting from (sufficiently weak) random
perturbations.
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Self-stabilisation starting from random perturbations

Proof idea.

ρ(ℓ)

ℓrρ(ℓ) rρ(ℓ) rρ(ℓ) rρ(ℓ)

Correcting an island of length ℓ in ρ(ℓ) steps

r: neighbourhood radius of the CA



Self-stabilisation starting from random perturbations

Proof idea.

ρ(ℓ)

ℓ2rρ(ℓ) 2rρ(ℓ)

An isolated island has a sufficiently wide margin without errors

Observation
An isolated island disappears before sensing or affecting the rest of
the configuration.
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Self-stabilisation starting from random perturbations

Sparseness [Gács, 1986, . . . ]

Let ρ : N → N be a non-decreasing function.

The ρ-territory of a finite set A ⊆ Zd is the set Nρ(A) of all sites
that are within distance ρ(diam(A)) from A.

A set S ⊆ Zd is ρ-sparse if there is a partitioning C(S) of S into
finite sets, called the ρ-islands of S, such that

(i) (separation) For every two distinct A,B ∈ C(S), either
A ∩ Nρ(B) = ∅ or Nρ(A) ∩ B = ∅.

(ii) (thinness) Every site k ∈ Zd is in the ρ-territory of at most
finitely many ρ-islands.



Self-stabilisation starting from random perturbations

Theorem (Durand, Romashchenko, Shen, 2012)

Suppose that ρ(ℓ) = O(ℓ). Let ε > 0 be sufficiently small.
Then, an ε-Bernoulli random set S ⊆ Zd is almost surely ρ-sparse.

Theorem (Gács, 2020)

Suppose that ρ(ℓ) = O(ℓβ) for some β < 2. Let ε > 0 be
sufficiently small.
Then, an ε-Bernoulli random set S ⊆ Zd is almost surely ρ-sparse.



Open problems

Q1: Can every two-dimensional SFT be stabilised by a CA?

Q2: Is there a (polynomial-time) solution for 3-colourings?

Q3: Can 4-colourings be stabilised in sub-quadratic time?

Q4: Can a variant of the sparseness argument be applied to
probabilistic self-stabilising CA?

Q5: Self-stabilisation in the presence of temporal noise

Q6: Self-organization . . . ?

. . .

Happy 60th birthday, Jarkko!
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