Stabilising shifts of finite type with cellular automata

Siamak Taati
Department of Mathematics, American University of Beirut

Complexity of Simple Dynamical Systems
CIRM, Marseille, February 2024

Time lapse of a wound healing

Day 1

Day 16

Day 33

Source: https://youtu.be/YDmnOiZ5vhc

Primitive "healing" in a cellular automaton
Toom's NEC-majority CA
A two-dimensional binary CA

Local rule:

c	
a	b

$$
a^{\prime}:=\frac{a^{\prime}}{\operatorname{maj}(a, b, c)}
$$

Primitive "healing" in a cellular automaton
Toom's NEC-majority CA
A two-dimensional binary CA

Local rule:

c	
a	b

$$
a^{\prime}:=\frac{a^{\prime}}{\operatorname{maj}(a, b, c)}
$$

Primitive "healing" in a cellular automaton
Toom's NEC-majority CA
A two-dimensional binary CA

Local rule:

c	
a	b

$$
a^{\prime}:=\frac{a^{\prime}}{\operatorname{maj}(a, b, c)}
$$

Primitive "healing" in a cellular automaton

Toom's NEC-majority CA

Primitive "healing" in a cellular automaton

Toom's NEC-majority CA
Time lapse of Toom's CA "healing"

A finite perturbation of all-

After 30 iterations

After 120 iterations

Primitive "healing" in a cellular automaton

Toom's NEC-majority CA
Time lapse of Toom's CA "healing"

A finite perturbation of all-

After 30 iterations

After 120 iterations

Toom's CA is self-stabilising:

- Two "legal" configurations: all- \square and all-■
- The "legal" configurations remain unchanged.
- Finite perturbations of "legal" configurations rapidly "heal".

Self-stabilisation

Question

Can we design self-stabilising CA with more complex* sets of legal configurations?

* prescribed using finitely many local constraints (i.e., an SFT)

Motivation

- Fault-tolerance (robustness against random noise)
- Robustness against tampering by an adversary
- Self-healing materials (?)
- Symbolic dynamics

Outline

- Formulation
- Efficient solutions for some examples of local constraints
- Deterministic solutions
- (Probabilistic solutions)
- An example which appears difficult
- Time complexity
- Invariance under conjugacy
- An example with hard self-stabilisation
- (Self-stabilisation starting from random perturbations)

Formulation

Self-stabilisation
We say that a CA F stabilises an SFT X if
(i) Every element of X is a fixed point of F. [i.e., the CA keeps each legal configuration unchanged.]

$$
x \in X \quad \Longrightarrow \quad F(x)=x
$$

(ii) Starting from any finite perturbation of an element of X, the CA returns to X in finitely many steps. [i.e., the CA "heals" any finite perturbation of a legal configuration.]

$$
\tilde{\sim} \sim x \in X \quad \Longrightarrow \quad F^{t}(\tilde{x}) \in X \quad \text { for some } t \in \mathbb{N}
$$

The smallest such t is called the recovery time of \tilde{x}.

Formulation

Self-stabilisation
We say that a CA F stabilises an SFT X if
(i) Every element of X is a fixed point of F.
(ii) Starting from any finite perturbation of an element of X, the CA returns to X in finitely many steps.

Example (Toom's NEC-majority CA)

$$
X=\{\text { all- } \square, \text { all-■ }\}
$$

Formulation

Self-stabilisation

We say that a CA F stabilises an SFT X if
(i) Every element of X is a fixed point of F.
(ii) Starting from any finite perturbation of an element of X, the CA returns to X in finitely many steps.

Example (Toom's NEC-majority CA)

$$
X=\{\text { all- } \square, \text { all-■ }\}
$$

Remark

The alphabet of F may be strictly larger than the alphabet of X. The perturbations are in the alphabet of F.

Formulation

Self-stabilisation

We say that a CA F stabilises an SFT X if
(i) Every element of X is a fixed point of F.
(ii) Starting from any finite perturbation of an element of X, the CA returns to X in finitely many steps.

Example (Toom's NEC-majority CA)

$$
X=\{\text { all- } \square, \text { all-■ }\}
$$

Question
Which SFTs can be (efficiently) stabilised by CAs?

Formulation

Question
Which SFTs can be (efficiently) stabilised by CAs?
Efficiency
What counts as "efficiency"?

- Speed of stabilisation
- Number of extra symbols
- Neighbourhood radius

Example
Toom's CA stabilises $X=\{$ all- \square, all-■ $\}$ very efficiently:

- Linear recovery time [... in the diameter of the perturbed region]
- No extra symbols
- Neighbourhood radius 1

Formulation

Question
Which SFTs can be (efficiently) stabilised by CAs?
Efficiency
What counts as "efficiency"?

- Speed of stabilisation
- Number of extra symbols
- Neighbourhood radius

Example
Toom's CA stabilises $X=\{$ all- \square, all-■ $\}$ very efficiently:

- Linear recovery time [... in the diameter of the perturbed region]
- No extra symbols
- Neighbourhood radius 1

Back to Toom's CA

Mechanism of stabilisation

$$
\text { time }=0
$$

A finite perturbation of the all- \square configuration

Back to Toom's CA

Mechanism of stabilisation

Back to Toom's CA

Mechanism of stabilisation

$$
\text { time }=0
$$

A finite perturbation of the all- \square configuration

Back to Toom's CA

Mechanism of stabilisation

Back to Toom's CA

Mechanism of stabilisation

$$
\text { time }=2
$$

A finite perturbation of the all- \square configuration

Back to Toom's CA

Mechanism of stabilisation

$$
\text { time }=3
$$

A finite perturbation of the all- \square configuration

Back to Toom's CA

Mechanism of stabilisation

$$
\text { time }=4
$$

A finite perturbation of the all- \square configuration

Back to Toom's CA

Mechanism of stabilisation

$$
\text { time }=5
$$

A finite perturbation of the all- \square configuration

Back to Toom's CA

Mechanism of stabilisation

$$
\text { time }=6
$$

A finite perturbation of the all- \square configuration

Back to Toom's CA

Mechanism of stabilisation

$$
\text { time }=7
$$

A legal configuration is reached!

Back to Toom's CA

Mechanism of stabilisation

Proposition (Linear recovery)
If the perturbed region fits in a triangle of size ℓ, then the recovery time is at most ℓ.

Back to Toom's CA

Mechanism of stabilisation

Proposition (Linear recovery)
If the perturbed region fits in a triangle of size ℓ, then the recovery time is at most ℓ.

By symmetry: the same holds for any finite perturbation of the all-■ configuration.

A prototypical example: k-colourings

$X=$ all valid k-colourings of the lattice

A prototypical example: k-colourings

Case: $k=2$

- Only two legal configurations: the even and odd checkerboards

A prototypical example: k-colourings

Case: $k=2$

The odd checkerboard

- Only two legal configurations: the even and odd checkerboards

A prototypical example: k-colourings

Case: $k=2$

- Only two legal configurations: the even and odd checkerboards

A prototypical example: k-colourings

Case: $k=2$

A finite perturbation of the even checkerboard

A prototypical example: k-colourings

Case: $k=2$

A finite perturbation of the even checkerboard
A simple solution based on Toom's CA

a	b

$$
a^{\prime}:=\arg (a, \bar{b}, \bar{c})
$$

A prototypical example: k-colourings

Case: $k=2$

A finite perturbation of the even checkerboard
A simple solution based on Toom's CA

c	
a	b

$$
a^{\prime}:=\arg (a, \bar{b}, \bar{c})
$$

A prototypical example: k-colourings

Case: $k=2$

A simple solution based on Toom's CA

c	
a	b

$$
a^{a^{\prime}}:=\frac{\operatorname{maj}(a, \bar{b}, \bar{c})}{}
$$

A prototypical example: k-colourings

Case: $k=2$

A finite perturbation of the even checkerboard
An alternative simple solution based on Toom's CA

$$
\begin{aligned}
& \begin{array}{l}
c \\
a \\
a
\end{array} \quad b \quad \longmapsto \quad \text { a } \quad a^{\prime}:=\operatorname{maj}(a, b, c)
\end{aligned}
$$

[Apply Toom's CA on four sublattices separately!]

Inspired by 2-colourings

More generally:

Proposition

Let X be a finite two-dimensional SFT.
There exists a CA without additional symbols that stabilises X in linear time.

Idea: Pick $p, q \in \mathbb{N}$ such that X is horizontally p-periodic and vertically q-periodic. Apply Toom's CA* on each (p, q)-sublattice.

* If all three symbols are different, leave unchanged.

A prototypical example: k-colourings

Case: $k \geq 5$

A prototypical example: k-colourings

Case: $k \geq 5$

Key property: single-site fillability
For every choice of colours a, b, c, d, there is a matching colour $s:=\psi(a, b, c, d)$ for the center.

A prototypical example: k-colourings

Case: $k \geq 5$

A solution based on Toom's CA

s^{\prime}

$$
s^{\prime}:= \begin{cases}\psi(a, b, c, d) & \text { if } s \text { does not match upwards or rightwards } \\ s & \text { otherwise. }\end{cases}
$$

A prototypical example: k-colourings

Case: $k \geq 5$

A solution based on Toom's CA

s^{\prime}

$$
s^{\prime}:= \begin{cases}\psi(a, b, c, d) & \text { if } s \text { does not match upwards or rightwards } \\ s & \text { otherwise. }\end{cases}
$$

Note: No new NE-defects are created!

A prototypical example: k-colourings

Case: $k \geq 5$

A solution based on Toom's CA

$$
\begin{aligned}
& \\
& \longmapsto \\
& s^{\prime} \\
& s^{\prime}:= \begin{cases}\psi(a, b, c, d) & \text { if } s \text { does not match upwards or rightwards, } \\
s & \text { otherwise. }\end{cases}
\end{aligned}
$$

Note: No new NE-defects are created!

A prototypical example: k-colourings

Case: $k \geq 5$

A solution based on Toom's CA

$$
s^{\prime}:= \begin{cases}\psi(a, b, c, d) & \text { if } s \text { does not match upwards or rightwards } \\ s & \text { otherwise. }\end{cases}
$$

Note: No new NE-defects are created!

Inspired by k-colourings for $k \geq 5$

More generally:

Proposition

Let X be a single-site fillable two-dimensional n.n. SFT.
There exists a CA without additional symbols that stabilises X in linear time.

A prototypical example: k-colourings

Case: $k=4$

A valid 4-colouring

A prototypical example: k-colourings

Case: $k=4$

Key property: strong 2-fillability
For every (not necessarily valid) choice of $a_{1}, a_{2}, \ldots, a_{8}$, there is a matching colouring of the central 2×2 block.

Inspired by 4-colourings

Proposition

Let X be a strongly ℓ-fillable two-dimensional n.n. SFT.
There exists a CA without additional symbols that stabilises X in quadratic time.

Idea: The CA locally identifies a non-empty subset of non-adjacent faulty $\ell \times \ell$ blocks and corrects them.
In this fashion, at every step, the number of faulty $\ell \times \ell$ blocks decreases by at least 1 .

A prototypical example: k-colourings

Case: $k=3$

A valid 3-colouring

A prototypical example: k-colourings

Case: $k=3$

We are stuck!!

A prototypical example: k-colourings

Case: $k=3$

We are stuck!!
Question
Is there a CA that stabilises 3-colourings?

Why are 3-colourings difficult to stabilise?

Connection with the six-vertex model

Six-vertex model: Each vertex will have exactly two incoming arrows and two outgoing arrows.

Why are 3-colourings difficult to stabilise?

The difficulty:
There are only two defects, but correcting them requires changing the colour of a large number of sites.

One-dimensional SFTs

One-dimensional SFTs

Example (GKL)

$$
\begin{aligned}
& F(x)_{i}:= \begin{cases}\operatorname{maj}\left(x_{i-3}, x_{i-1}, x_{i}\right) & \text { if } x_{i}=0, \\
\operatorname{maj}\left(x_{i}, x_{i+1}, x_{i+3}\right) & \text { if } x_{i}=\bullet,\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \circ \circ \circ \bullet \circ \bullet \bullet \circ \bullet \circ \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \cdot 0000000000000000000000000 \cdot \cdot \\
& \cdots \cdot 0000000000000000000000000 \cdots \\
& \cdots \cdot \circ \circ 00000000000000000000000 \cdot \cdot \\
& \cdots \cdot \circ \circ 00000000000000000000000 \cdot \cdot
\end{aligned}
$$

Proposition (Gács, Kurdyumov, Levin, 1977)
The GKL CA stabilises $X=\{$ all-o, all -$\}$ in linear time.

One-dimensional SFTs

Example (GKL)

$$
\begin{aligned}
& F(x)_{i}:= \begin{cases}\operatorname{maj}\left(x_{i-3}, x_{i-1}, x_{i}\right) & \text { if } x_{i}=0, \\
\operatorname{maj}\left(x_{i}, x_{i+1}, x_{i+3}\right) & \text { if } x_{i}=\bullet,\end{cases} \\
& \cdots \cdot 000 \bullet \bullet \bullet \bullet O O O O 0000000000 \cdots \cdot \\
& \cdots \bigcirc \bigcirc \bigcirc-\text { - - ○○○○○○○○○○○○○○○••• }
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \bigcirc 0000000000000000 \bullet \circ \text { ○○○○○○••• }
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \cdot 10000000000000000000000000 \cdots \cdot
\end{aligned}
$$

Proposition (Gács, Kurdyumov, Levin, 1977)
The GKL CA stabilises $X=\{$ all-o, all $\bullet\}$ in linear time.

One-dimensional SFTs

Example (Modified Traffic)

Proposition (Kari and Le Gloanec, 2012)
The modified traffic CA stabilises $X=\{$ all-○, all- \bullet in linear time.

One-dimensional SFTs

Theorem
For every non-wandering one-dimensional SFT X, there exists a CA F (with extra symbols) that stabilises X in linear time.

An example of a non-wandering SFT

One-dimensional SFTs

Theorem
For every non-wandering one-dimensional SFT X, there exists a CA F (with extra symbols) that stabilises X in linear time.

An example of a non-wandering SFT

Remark

There is a more sophisticated solution by llkka Törmä which does not require extra symbols and works for every (not just non-wandering) SFT.

One-dimensional SFTs

Theorem
For every non-wandering one-dimensional SFT X, there exists a CA F (with extra symbols) that stabilises X in linear time.

Idea: There is a simple sequential procedure for correcting defects from left to right.

Difficulty: The CA cannot identify the left-most defect to start such a procedure.

Back to two dimensions

Back to two dimensions

Question
Can a CA stabilise an aperiodic SFT?

Back to two dimensions

Question
Can a CA stabilise an aperiodic SFT?

Answer: Yes!

Deterministic two-dimensional SFTs

NE-deterministic SFTs

shape of forbidden patterns

\[

\]

at most one symbol a consistent with each pair b, c

Example (Ledrappier's SFT)
There are two symbols 0 and 1. The forbidden patterns are

c	
a	b

where $a \neq b+c(\bmod 2)$.

Deterministic two-dimensional SFTs

NE-deterministic SFTs

shape of forbidden patterns

at most one symbol a consistent with each pair b, c

Example (Ammann's aperiodic tile set)

Deterministic two-dimensional SFTs

NE-deterministic SFTs

shape of forbidden patterns

\[

\]

at most one symbol a consistent with each pair b, c

Theorem
For every two-dimensional NE-deterministic SFT X, there exists a CA F (with extra symbols) that stabilises X in linear time.

Difficulty: Naïvely applying the deterministic rule doesn't work.
Idea: Similar to the one-dimensional SFT.

Time complexity of stabilisation

Theorem (Invariance under conjugacy)
Suppose X and Y are conjugate SFTs. If there is a CA that stabilises X in time $\tau(n)$, then there also exists a CA that stabilises Y in time $\tau(n+O(1))$.

Time complexity of stabilisation

Theorem (Invariance under conjugacy)
Suppose X and Y are conjugate SFTs. If there is a CA that stabilises X in time $\tau(n)$, then there also exists a CA that stabilises Y in time $\tau(n+O(1))$.

The "best" recovery time for an SFT X can be thought of as a measure of the "local complexity" of X.
[Reminiscent of logical depth (Bennett, 1982)?]

Convention

If an SFT has no stabilising CA, we define its "best" recover time to be ∞.

Time complexity of self-stabilisation

Example

The "best" recovery time of some classes of SFTs:

- 1d SFT: (at most) linear.
- 2d k-colourings with $k=2$ or $k \geq 5$: linear.
- 2d 4-colourings: (at most) quadratic.
- 2d 3-colourings: unknown
- Deterministic SFT: (at most) linear

Time complexity of self-stabilisation

Example

The "best" recovery time of some classes of SFTs:

- 1d SFT: (at most) linear.
- 2d k-colourings with $k=2$ or $k \geq 5$: linear.
- 2d 4-colourings: (at most) quadratic.
- 2d 3-colourings: unknown
- Deterministic SFT: (at most) linear

Any negative result?

Time complexity of self-stabilisation

Example

The "best" recovery time of some classes of SFTs:

- 1d SFT: (at most) linear.
- 2d k-colourings with $k=2$ or $k \geq 5$: linear.
- 2d 4-colourings: (at most) quadratic.
- 2d 3-colourings: unknown
- Deterministic SFT: (at most) linear

Any negative result?

Theorem (Super-polynomial hardness)
Unless $\mathbf{P}=\mathbf{N P}$, there exists a two-dimensional SFT X which cannot be stabilised by any CA in polynomial time.

Super-polynomial hardness

Square tiling problem of a set Θ of Wang tiles
Given n and a prescribed colouring of the boundary of an $n \times n$ square, is there an admissible colouring of the square?

Super-polynomial hardness

Square tiling problem of a set Θ of Wang tiles
Given n and a prescribed colouring of the boundary of an $n \times n$ square, is there an admissible colouring of the square?

Proposition (Folklore)
There exists a tile set for which the square tiling problem is NP-complete.

Super-polynomial hardness

A CA stabilising X_{Θ} can be used to solve a variant of the square tiling problem (with only polynomial overhead):
Global tiling patching problem (associated to Θ, α, β)

Super-polynomial hardness

A CA stabilising X_{Θ} can be used to solve a variant of the square tiling problem (with only polynomial overhead):
Global tiling patching problem (associated to Θ, α, β)

Proposition

There exists a tile set Θ such that for every $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ with polynomial growth, the global tiling patching problem associated to Θ, α, β is NP-hard.

Self-stabilisation starting from random perturbations

Self-stabilisation starting from random perturbations

Formulation
\#*\&!@??!*\#\&???! ...

Self-stabilisation starting from random perturbations

Formulation
\#*\&!@??!*\#\&???! . .
Theorem
Suppose that a CA F stabilises an SFT X in sub-quadratic time. Then, F also stabilises X starting from (sufficiently weak) random perturbations.

Self-stabilisation starting from random perturbations

Proof idea.

Correcting an island of length ℓ in $\rho(\ell)$ steps
r : neighbourhood radius of the CA

Self-stabilisation starting from random perturbations

Proof idea.

An isolated island has a sufficiently wide margin without errors

Observation
An isolated island disappears before sensing or affecting the rest of the configuration.

Self-stabilisation starting from random perturbations

Proof idea.

A sparse set of errors can be decomposed into non-interacting islands

Self-stabilisation starting from random perturbations

Proof idea.

A sparse set of errors can be decomposed into non-interacting islands

Thus, the notion of sparseness is the key!

Self-stabilisation starting from random perturbations

Sparseness

[Gács, 1986, ...]
Let $\rho: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing function.
The ρ-territory of a finite set $A \subseteq \mathbb{Z}^{d}$ is the set $N^{\rho}(A)$ of all sites that are within distance $\rho(\operatorname{diam}(A))$ from A.

A set $S \subseteq \mathbb{Z}^{d}$ is ρ-sparse if there is a partitioning $\mathcal{C}(S)$ of S into finite sets, called the ρ-islands of S, such that
(i) (separation) For every two distinct $A, B \in \mathcal{C}(S)$, either $A \cap N^{\rho}(B)=\varnothing$ or $N^{\rho}(A) \cap B=\varnothing$.
(ii) (thinness) Every site $k \in \mathbb{Z}^{d}$ is in the ρ-territory of at most finitely many ρ-islands.

Self-stabilisation starting from random perturbations

Theorem (Durand, Romashchenko, Shen, 2012)
Suppose that $\rho(\ell)=O(\ell)$. Let $\varepsilon>0$ be sufficiently small.
Then, an ε-Bernoulli random set $\mathbf{S} \subseteq \mathbb{Z}^{d}$ is almost surely ρ-sparse.

Theorem (Gács, 2020)
Suppose that $\rho(\ell)=O\left(\ell^{\beta}\right)$ for some $\beta<2$. Let $\varepsilon>0$ be sufficiently small.
Then, an ε-Bernoulli random set $\mathbf{S} \subseteq \mathbb{Z}^{d}$ is almost surely ρ-sparse.

Open problems

Q1: Can every two-dimensional SFT be stabilised by a CA?
Q2: Is there a (polynomial-time) solution for 3-colourings?
Q3: Can 4-colourings be stabilised in sub-quadratic time?
Q4: Can a variant of the sparseness argument be applied to probabilistic self-stabilising CA?
Q5: Self-stabilisation in the presence of temporal noise
Q6: Self-organization ... ?

Open problems

Q1: Can every two-dimensional SFT be stabilised by a CA?
Q2: Is there a (polynomial-time) solution for 3-colourings?
Q3: Can 4-colourings be stabilised in sub-quadratic time?
Q4: Can a variant of the sparseness argument be applied to probabilistic self-stabilising CA?
Q5: Self-stabilisation in the presence of temporal noise Q6: Self-organization ... ?

Happy 60th birthday, Jarkko!

