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Time lapse of a wound healing

Day 1

Day 33

Source: https://youtu.be/YDmn0iZ5vhc


https://youtu.be/YDmnOiZ5vhc
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Toom's NEC-majority CA
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Primitive “healing” in a cellular automaton

Toom's NEC-majority CA
Time lapse of Toom’s CA “healing”

A finite perturbation of all-{J] After 30 iterations After 120 iterations
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Primitive “healing” in a cellular automaton

Toom's NEC-majority CA
Time lapse of Toom’s CA “healing”

A finite perturbation of all-ll After 30 iterations After 120 iterations

Toom's CA is self-stabilising:
> Two “legal” configurations: all-(] and all-l
» The “legal” configurations remain unchanged.

» Finite perturbations of “legal” configurations rapidly “heal”.



Self-stabilisation

Question

Can we design self-stabilising CA with more complex* sets of legal
configurations?

* prescribed using finitely many local constraints (i.e., an SFT)

Motivation
» Fault-tolerance (robustness against random noise)
» Robustness against tampering by an adversary
» Self-healing materials (?)

» Symbolic dynamics [a notion of “complexity” for SFTs]



Outline

» Formulation
» Efficient solutions for some examples of local constraints
» Deterministic solutions
> (Probabilistic solutions)
» An example which appears difficult
> Time complexity
» Invariance under conjugacy
» An example with hard self-stabilisation

> (Self-stabilisation starting from random perturbations)



Formulation

space of legal configurations

Self-stabilisation
We say that a CA F stabilises an SFT X if

(i) Every element of X is a fixed point of F.

[i.e., the CA keeps each legal configuration unchanged.]

xeX = F(x) =x

(ii) Starting from any finite perturbation of an element of X, the
CA returns to X in finitely many steps.
[i.e., the CA “heals” any finite perturbation of a legal configuration.]

x~xeX = F'(x) eX forsomete N

A\ X is a finite perturbation of x

The smallest such t is called the recovery time of X.



Formulation

Self-stabilisation
We say that a CA F stabilises an SFT X if

(i) Every element of X is a fixed point of F.

(ii) Starting from any finite perturbation of an element of X, the
CA returns to X in finitely many steps.

Example (Toom's NEC-majority CA)
X = {all-0J, all-m}



Formulation

Self-stabilisation
We say that a CA F stabilises an SFT X if

(i) Every element of X is a fixed point of F.

(ii) Starting from any finite perturbation of an element of X, the
CA returns to X in finitely many steps.

Example (Toom's NEC-majority CA)
X = {all-0J, all-m}

Remark
The alphabet of F may be strictly larger than the alphabet of X.
The perturbations are in the alphabet of F.



Formulation

Self-stabilisation
We say that a CA F stabilises an SFT X if

(i) Every element of X is a fixed point of F.

(ii) Starting from any finite perturbation of an element of X, the
CA returns to X in finitely many steps.

Example (Toom's NEC-majority CA)
X = {all-0J, all-m}

Question
Which SFTs can be (efficiently) stabilised by CAs?



Formulation

Question
Which SFTs can be (efficiently) stabilised by CAs?

Efficiency
What counts as “efficiency”?

» Speed of stabilisation [i.e., recovery time]

» Number of extra symbols

» Neighbourhood radius [linear trade-off with speed)]

Example

Toom's CA stabilises X = {all-(J, all-B} very efficiently:
» Linear recovery time [... in the diameter of the perturbed region]
> No extra symbols
» Neighbourhood radius 1
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Question
Which SFTs can be (efficiently) stabilised by CAs?

Efficiency
What counts as “efficiency”?

» Speed of stabilisation [i.e., recovery time]

» Number of extra symbols

» Neighbourhood radius [linear trade-off with speed)]

Example

Toom's CA stabilises X = {all-(J, all-B} very efficiently:
» Linear recovery time [... in the diameter of the perturbed region]
> No extra symbols
» Neighbourhood radius 1



Back to Toom's CA

Mechanism of stabilisation
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A finite perturbation of the all-0J configuration



Back to Toom's CA

Mechanism of stabilisation
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Back to Toom's CA

Mechanism of stabilisation
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Back to Toom's CA

Mechanism of stabilisation
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A finite perturbation of the all-0J configuration



Back to Toom's CA

Mechanism of stabilisation
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A finite perturbation of the all-0J configuration



Back to Toom's CA

Mechanism of stabilisation
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A finite perturbation of the all-0J configuration



Back to Toom's CA

Mechanism of stabilisation
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A finite perturbation of the all-0J configuration



Back to Toom's CA

Mechanism of stabilisation
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A finite perturbation of the all-0J configuration



Back to Toom's CA

Mechanism of stabilisation
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A legal configuration is reached!



Back to Toom's CA

Mechanism of stabilisation
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A legal configuration is reached!
Proposition (Linear recovery)

If the perturbed region fits in a triangle of size £, then the recovery
time is at most /.



Back to Toom's CA

Mechanism of stabilisation
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A legal configuration is reached!
Proposition (Linear recovery)
If the perturbed region fits in a triangle of size £, then the recovery
time is at most /.

By symmetry: the same holds for any finite perturbation of the
all-A configuration.



A prototypical example: k-colourings

X = all valid k-colourings of the lattice



A prototypical example: k-colourings

Case: k=2
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» Only two legal configurations: the even and odd checkerboards



A prototypical example: k-colourings

Case: k=2

The odd checkerboard

» Only two legal configurations: the even and odd checkerboards
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A prototypical example: k-colourings

Case: k=2

H E N ENER NN

A finite perturbation of the even checkerboard
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A prototypical example: k-colourings

Case: k=2

H E N ENER NN

A finite perturbation of the even checkerboard
An alternative simple solution based on Toom's CA
[a] [b] — a’ = maj(a,b,c)

[Apply Toom’s CA on four sublattices separately!]



Inspired by 2-colourings

More generally:

Proposition

Let X be a finite two-dimensional SFT.

There exists a CA without additional symbols that stabilises X in
linear time.

Idea: Pick p,q € N such that X is horizontally p-periodic and
vertically g-periodic. Apply Toom's CA* on each (p, q)-sublattice.

* If all three symbols are different, leave unchanged.



A prototypical example: k-colourings

Case: k> 5
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A prototypical example: k-colourings

Case: k> 5
EE EE NN
| (o] (i | (e ] [ ] |
HECCCECC AN

[ | (] (o

N [N

Key property: single-site fillability
For every choice of colours a, b, c,d, there is a matching colour
s :=1(a,b,c,d) for the center.

b
’asc‘
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A prototypical example: k-colourings

Case: k>5
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A finite perturbation of a 5-colouring

A solution based on Toom's CA

[a

S

b |
s|c] —
d

otherwise.

J {w(a, b,c,d) if s does not match upwards or rightwards,



A prototypical example: k-colourings

Case: k>5
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A solution based on Toom's CA
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, ¥(a,b,c,d) if s does not match upwards or rightwards,
S =
s otherwise.

Note: No new NE-defects are created!




A prototypical example: k-colourings

Case: k>5
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, ¥(a,b,c,d) if s does not match upwards or rightwards,
S =
s otherwise.

Note: No new NE-defects are created!




A prototypical example: k-colourings

Case: k>5
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A finite perturbation of a 5-colouring

A solution based on Toom's CA

b ]
[als]|c] —
1]
J ¥(a,b,c,d) if s does not match upwards or rightwards,
s otherwise.

Note: No new NE-defects are created!




Inspired by k-colourings for k > 5

More generally:

Proposition

Let X be a single-site fillable two-dimensional n.n. SFT.

There exists a CA without additional symbols that stabilises X in
linear time.



A prototypical example: k-colourings

Case: k=4
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A valid 4-colouring



A prototypical example: k-colourings

Case: k=4

CHOEE ER [
H EH B N EEEN
CHOE NN EECC
H EHEE EN H EN
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[ [ [m( (mmem| (e ] | [m
CH_ECEEEE_ (/.

A valid 4-colouring

Key property: strong 2-fillability

For every (not necessarily valid) choice of aj,as,

matching colouring of the central 2 x 2 block.

as ‘04
az as

a ae

ag‘a7

...,dag, there is a



Inspired by 4-colourings

Proposition

Let X be a strongly (-fillable two-dimensional n.n. SFT.

There exists a CA without additional symbols that stabilises X in
quadratic time.

Idea: The CA locally identifies a non-empty subset of non-adjacent
faulty £ x £ blocks and corrects them.

In this fashion, at every step, the number of faulty ¢ x ¢ blocks
decreases by at least 1.



A prototypical example: k-colourings

Case: k=3
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A valid 3-colouring



A prototypical example: k-colourings

Case: k=3

We are stuck!!

['H HEEN EEN =
H H N EEE EN
| |y [mmf el | | mf | |

H B EEEEEEN =
(| | |ml |ml | | (W) [W

A valid 3-colouring



A prototypical example: k-colourings

Case: k=3

We are stuck!!

Question

['H HEEN EEN =
H H N EEE EN
| |y [mmf el | | mf | |

H B EEEEEEN =
(| | |ml |ml | | (W) [W

A valid 3-colouring

Is there a CA that stabilises 3-colourings?



Why are 3-colourings difficult to stabilise?

Connection with the six-vertex model

2017270

-1
i 4111 ol2tof1
q“qul g+1] lg—1 21o0f1}lo0
of1f2}1

Six-vertex model: Each vertex will have exactly two incoming
arrows and two outgoing arrows.




Why are 3-colourings difficult to stabilise?
fzyotifztotiyofiia ofn
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A finite perturbation of a valid 3-colouring

The difficulty:

There are only two defects, but correcting them

the colour of a large number of sites.

requires changing



One-dimensional SFTs



One-dimensional SFTs

Example (GKL)

F(x); = :
maj (X, Xi+1,Xi+3)

000000000000 00
0000000000 000O0
crO0Cee OO0
crO0Cee [oX NOXO)
crO0Cee [ XoX NO)
cO00@0 O00Ce
+O0000O O00O0
Q000000 O00O0
+O0000000 O00O0
cO00000O0O0OOOOOOO
0000000000000 O
cO00000O0O0OOOOOOO
cO00000O0O0OOOOOOO
cO00000O0O0OOOOOOO

maj(xi—?)axi—lvxi)

0000000000000 O
0000000000000 O

if x; =0,
if xi = e,

Q0000000 -
Q0000000 -
Q0000000 -

Proposition (Gacs, Kurdyumov, Levin, 1977)

The GKL CA stabilises X = {all-0, all-®} in linear time.

ltime



One-dimensional SFTs

Example (GKL)

maj(xi—?)axi—lvxi) if X;i =0,

F(x); = s .

maj(x;, Xi+1,Xi43) ifx; =@,
0000000000000 000000000000
0000000000 000000000000000
-0000000000000000000000000
-00Ceeeee 0000000000000
00000000 000000000000
-000Ceee0e® 0000000000 O0:" -+
00000000 0000000000 -+ .
00000000080 ©e000000000: -+ l“me
0000000000000 0e0e00000000

0000000000000 0Oe0OeO0O0OOOO0: -+
0000000000000 OOOeOeOOO0OOO0:. -+
0000000000 OOOOOOOOOe000O0: - -
00000000000 OOOOOOOOOOOOOO: -+
0000000000 OOOOOOOOOOOOOOO:" -+

Proposition (Gacs, Kurdyumov, Levin, 1977)
The GKL CA stabilises X = {all-0, all-®} in linear time.



One-dimensional SFTs

Example (Modified Traffic)

[ X@) OO0 @O [ JoX X |
F =F,F, F ( F, | I
oX J O °
traffic filter

c0000000000000000000000000:" +»
c0000000000000000000000000:" +»
0000000000 000000000000 0: -+
000000000 000000000000+
00000000 00000000000 -+
-0000Cee0e 000000000 -+
-0000Ce0e0e 000000000+ .
000000080 e 00000000 l“me
000000000080 e 000000000
-0000000000000000000800000
-00000000000000000000e0000
-000000000000000000000e000
-0000000000000000000000e00
-0000000000000000000000000

Proposition (Kari and Le Gloanec, 2012)
The modified traffic CA stabilises X = {all<0, all-®} in linear time.



One-dimensional SFTs
Theorem

For every non-wandering one-dimensional SFT X, there exists a
CA F (with extra symbols) that stabilises X in linear time.

£

An example of a non-wandering SFT



One-dimensional SFTs

Theorem
For every non-wandering one-dimensional SFT X, there exists a
CA F (with extra symbols) that stabilises X in linear time.

£ {

An example of a non-wandering SFT

Remark

There is a more sophisticated solution by llkka Torma which does
not require extra symbols and works for every (not just
non-wandering) SFT.



One-dimensional SFTs

Theorem
For every non-wandering one-dimensional SFT X, there exists a
CA F (with extra symbols) that stabilises X in linear time.

Idea: There is a simple sequential procedure for correcting defects
from left to right.

Difficulty: The CA cannot identify the left-most defect to start
such a procedure.



Back to two dimensions



Back to two dimensions

Question
Can a CA stabilise an aperiodic SFT?



Back to two dimensions

Question
Can a CA stabilise an aperiodic SFT?

Answer: Yes!




Deterministic two-dimensional SFTs

NE-deterministic SFTs

|

shape of forbidden patterns

Example (Ledrappier's SFT)

C

a

b]

at most one symbol a
consistent with each pair b, ¢

There are two symbols 0 and 1. The forbidden patterns are

where a # b + ¢ (mod 2).

b]




Deterministic two-dimensional SFTs

NE-deterministic SFTs

shape of forbidden patterns

C

a

b

at most one symbol a

consistent with each pair b, ¢

Example (Ammann's aperiodic tile set)

MANK N
< DAX



Deterministic two-dimensional SFTs

NE-deterministic SFTs

|

shape of forbidden patterns

Theorem

C

a

b]

at most one symbol a
consistent with each pair b, ¢

For every two-dimensional NE-deterministic SFT X, there exists a
CA F (with extra symbols) that stabilises X in linear time.

Difficulty: Naively applying the deterministic rule doesn’t work.

Idea: Similar to the one-dimensional SFT.



Time complexity of stabilisation

Theorem (Invariance under conjugacy)

Suppose X and Y are conjugate SFTs. If there is a CA that
stabilises X in time T(n), then there also exists a CA that stabilises

Y in time T(n + O(1)).



Time complexity of stabilisation

Theorem (Invariance under conjugacy)

Suppose X and Y are conjugate SFTs. If there is a CA that
stabilises X in time T(n), then there also exists a CA that stabilises
Y in time T(n + O(1)).

The “best” recovery time for an SFT X can be thought of as a
measure of the “local complexity” of X.
[Reminiscent of logical depth (Bennett, 1982)7]

Convention
If an SFT has no stabilising CA, we define its “best” recover time
to be co.



Time complexity of self-stabilisation

Example
The "best” recovery time of some classes of SFTs:

» 1d SFT: (at most) linear.

2d k-colourings with k = 2 or k > 5: linear.
2d 4-colourings: (at most) quadratic.

2d 3-colourings: unknown

>
>
>
» Deterministic SFT: (at most) linear



Time complexity of self-stabilisation

Example

The "best” recovery time of some classes of SFTs:
» 1d SFT: (at most) linear.
» 2d k-colourings with k = 2 or k > 5: linear.
» 2d 4-colourings: (at most) quadratic.

» 2d 3-colourings: unknown

>

Deterministic SFT: (at most) linear

Any negative result?



Time complexity of self-stabilisation

Example
The "best” recovery time of some classes of SFTs:

» 1d SFT: (at most) linear.

» 2d k-colourings with k = 2 or k > 5: linear.
» 2d 4-colourings: (at most) quadratic.

» 2d 3-colourings: unknown

» Deterministic SFT: (at most) linear

Any negative result?

Theorem (Super-polynomial hardness)
Unless P = NP, there exists a two-dimensional SFT X which
cannot be stabilised by any CA in polynomial time.



Super-polynomial hardness

Square tiling problem of a set © of Wang tiles

Given n and a prescribed colouring of the boundary of ann x n
square, is there an admissible colouring of the square?




Super-polynomial hardness

Square tiling problem of a set © of Wang tiles

Given n and a prescribed colouring of the boundary of ann x n
square, is there an admissible colouring of the square?

Proposition (Folklore)

There exists a tile set for which the square tiling problem is
NP-complete.



Super-polynomial hardness

A CA stabilising Xg can be used to solve a variant of the square
tiling problem (with only polynomial overhead):

Global tiling patching problem (associated to ©, «a, 3

1777777777777 77777
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777 717077 7777777777777¢777 1000000070007 7777
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i A ZA N i it
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AR A Zhiraiaiaaaaaasasaaaagg
A A A AR AR 223 ivrviiavanaaaaaaagy
A Yy AR AR AR AR 4
A 20000800007 B P P R A
A AR P RN R R RS
AR zrr77vsVv sy B DN DDA
R S 1177742V 777 VBRI A SARLRE P4

=\Voo50niinss n 70000800007 — LR 7R R R R RS ¥
A AAAAAA L R S
AR AR R R R RN A
2wy A 2 R R R R SRR
AR AR R R A

NV 22ee8000000000000000000000v 007 N L NN 4

Ol A A A A S NN 7

SNV 2800 2000000002220200000800077 Ll R R A
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Super-polynomial hardness

A CA stabilising Xg can be used to solve a variant of the square
tiling problem (with only polynomial overhead):

Global tiling patching problem (associated to ©, «, [3)

N

a(n)

FIIIIITIIIIIT I TSI
777777777777777772777,

NN
T

R Y

N
N

1
<>

~{

XA NN UNAUNNNNNNNNNNNNNNNNNNNNNN Y
n

a(n)
PR E——

B(n) 1

a(n) n

w1 aw

Proposition
There exists a tile set © such that for every o, 5 : N — N with

polynomial growth, the global tiling patching problem associated
to ©, a, § is NP-hard.



Self-stabilisation starting from random perturbations



Self-stabilisation starting from random perturbations

Formulation
#xE1 Q7?7 | x# 7?7 .



Self-stabilisation starting from random perturbations

Formulation
#xE1 Q7?7 | x# 7?7 .

Theorem

Suppose that a CA F stabilises an SFT X in sub-quadratic time.
Then, F also stabilises X starting from (sufficiently weak) random
perturbations.



Self-stabilisation starting from random perturbations

Proof idea.

N

Correcting an island of length £ in p(¢) steps
r: neighbourhood radius of the CA



Self-stabilisation starting from random perturbations
Proof idea.

2rp(¢) l

2rp(¢)

An isolated island has a sufficiently wide margin without errors
Observation

An isolated island disappears before sensing or affecting the rest of
the configuration.

DA



Self-stabilisation starting from random perturbations
Proof idea.

A sparse set of errors can be decomposed into non-interacting islands

DA



Self-stabilisation starting from random perturbations
Proof idea.

A sparse set of errors can be decomposed into non-interacting islands

Thus, the notion of sparseness is the key!



Self-stabilisation starting from random perturbations

Sparseness [Gécs, 1986, ...]
Let p: N — N be a non-decreasing function.

The p-territory of a finite set A C Z4 is the set N?(A) of all sites
that are within distance p(diam(A)) from A.

A set S C Z4 is p-sparse if there is a partitioning C(S) of S into
finite sets, called the p-islands of S, such that
(i) (separation) For every two distinct A,B € C(S), either
ANNPB) =@ or N°(A)NB = @.
(ii) (thinness) Every site k € Z4 is in the p-territory of at most
finitely many p-islands.



Self-stabilisation starting from random perturbations

Theorem (Durand, Romashchenko, Shen, 2012)

Suppose that p(¢) = O({). Let ¢ > 0 be sufficiently small.
Then, an e-Bernoulli random set S C 7% is almost surely p-sparse.

Theorem (Gécs, 2020)

Suppose that p(£) = O({?) for some 3 < 2. Let e > 0 be
sufficiently small.

Then, an e-Bernoulli random set S C Z% is almost surely p-sparse.



Open problems

Q1:
Q2:
Q3:
Q4:

Q5:
Q6:

Can every two-dimensional SFT be stabilised by a CA?
Is there a (polynomial-time) solution for 3-colourings?
Can 4-colourings be stabilised in sub-quadratic time?

Can a variant of the sparseness argument be applied to
probabilistic self-stabilising CA?

Self-stabilisation in the presence of temporal noise

Self-organization ...?



Open problems

Q1:
Q2:
Q3:
Q4:

Q5:
Q6:

Can every two-dimensional SFT be stabilised by a CA?
Is there a (polynomial-time) solution for 3-colourings?
Can 4-colourings be stabilised in sub-quadratic time?

Can a variant of the sparseness argument be applied to
probabilistic self-stabilising CA?

Self-stabilisation in the presence of temporal noise

Self-organization ...?

Happy 60th birthday, Jarkko!
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