
Symbolic dynamics and representations of
matrices

arXiv:2107.10734

E. Jeandel

Université de Lorraine, France

E. Jeandel, Symbolic dynamics and representations of matrices, arXiv:2107.10734 1/54



Plan

1 Symbolic Dynamics

2 Graphical representation of matrices

3 props for conjugacy

4 Applications

5 Conclusion

E. Jeandel, Symbolic dynamics and representations of matrices, arXiv:2107.10734 2/54



Conjugacy

Main objective: decide conjugacy of shifts of finite type

Upto conjugacy, every subshift of finite type is effectively an edge shift,
so this can be discussed using matrices.
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Edge shift

An edge shift is the set of all biinfinite walks (on edges) in a finite
graph.

Edge shifts are conjugate if they’re isomorphic via local
transformations (cellular automata).
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0 2 0
0 0 1
1 0 1


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SSE

This can be defined directly on adjacency matrices:

Definition
Two matrices M and N are 1-step equivalent if M = RS and N = SR
for (nonnecessarily square) nonnegative integral matrices R,S
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SSE

This can be defined directly on adjacency matrices:

Definition
Two matrices M and N are 1-step equivalent if M = RS and N = SR
for (nonnecessarily square) nonnegative integral matrices R,S

Example:

M =

0 2 0
0 0 1
1 0 1

 N =


0 0 1 0
0 0 1 0
0 0 0 1
1 1 0 1



R =

1 1 0 0
0 0 1 0
0 0 0 1

 S =


0 1 0
0 1 0
0 0 1
1 0 1


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SSE

This can be defined directly on adjacency matrices:

Definition
Two matrices M and N are 1-step equivalent if M = RS and N = SR
for (nonnecessarily square) nonnegative integral matrices R,S

Definition
Strong shift equivalence (SSE) is the transitive closure of 1-step
equivalence.

Graphs G1 and G2 represent conjugate edge shifts iff their adjacency
matrices are SSE.
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History

Main open problem of symbolic dynamics: decide conjugacy/SSE

Open since the 70s
Decidable for matrices in Z (Krieger, 1980)

(almost the) same as conjugacy in GLn(Z)
Decidable for one-sided edge-shifts (Williams, 1973)

The rewriting system on graphs is confluent.
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In this talk:

Represent matrices with generators and relations
Use it to obtain invariants.
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Fact

Every matrix over Z+ can be obtained from the following 6 matrices:

(
1
) (

1 1
) (

1
1

) (
0 1
1 0

) ( ) ( )
with two composition laws:

Multiplication: A × B

Sum: A ⊕ B =

(
A 0
0 B

)

( )
is the matrix with two columns and 0 rows, equivalently the

unique function : Z2
+ → {0}
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Example

(
1 3
2 0

)
=

((
1 1

)
⊕ 1

) ((
1 1

)
⊕
(
1 1

)
⊕
(
1 1

))
×

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0

×

((
1
1

)
⊕ 1 ⊕

(
1
1

)
⊕ 1

)((
1
1

)
⊕
(

1
1

))
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To understand that, we represent matrix graphically

...M...

identifying the matrix M of m rows and n columns with the linear
function Zn

+ → Zm
+ it represents.
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Dictionary

(
1
)
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Dictionary

(
0 1
1 0

)
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Dictionary

MN
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Dictionary

MN

...M...N...

associativity is for free in the graphical representation
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Dictionary

M ⊕ N =

(
M 0
0 N

)
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Dictionary

M ⊕ N =

(
M 0
0 N

)

...M...

...N...
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Dictionary
(
1 1

)
is essentially the addition.
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Dictionary
(
1 1

)
is essentially the addition.

=
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Dictionary
(
1 1

)
is essentially the addition.

=
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Dictionary

(
1
1

)
is the copy x 7→ (x , x).
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Dictionary

(
1
1

)
is the copy x 7→ (x , x).

=
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Example

(
1 3
2 0

)
=

((
1 1

)
⊕ 1

) ((
1 1

)
⊕
(
1 1

)
⊕
(
1 1

))
×

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0

×

((
1
1

)
⊕ 1 ⊕

(
1
1

)
⊕ 1

)((
1
1

)
⊕
(

1
1
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Example

(
1 3
2 0

)
=
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Example

(
1 3
2 0

)
=
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props

Instead of dealing with matrices, we can deal with pictures

This gives a presentation of matrices in terms of generators and
relations.

Presentation as a prop which is something from category theory with
two composition rules.
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Axioms

Two composition laws: sequential, parallel.
Two generators:

Relations: (co)associativity, (co)commutativity, and bialgebra:

=

(folklore, see also Pirashvili 2002, and Zanasi 2015)
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Goal

Can we do the same for matrices quotiented by SSE ?

(to decide conjugacy)

How to say that MN ≡ NM ?

(Note: We cannot directly say MN = NM : a 2 × 2 matrix ̸= 3 × 3
matrix)
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Idea: replace

...M...

by

...M...
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Trace

The trace (feedback loop) is an operator that takes a diagram and
loops one wire s.t.:

g
f

=
f

g

=
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Trace

In particular

...N...M...

=

...M...N...
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Trace

Consider the prop given by the previous generators and relations
Add a trace (feedback loop)

Theorem
M and N are SSE iff

...M...

=

...N...

using the equations
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Trace

M =

0 2 0
0 0 1
1 0 1


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Problem

Theorem
The previous theorem is not a theorem
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Flow equivalence

In this context: M =

(
0 1
1 0

)
and N =

(
1
)

are equivalent, and they

shouldn’t be.

==
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Flow equivalence

Theorem
The graphical representation captures flow equivalence, not SSE
equivalence.

(First observed by David Hillman, 1995)

We have lost a notion of time, that we need to recover
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Solution

We add a notion of time: something that commutes with everything,
and just needs to be there.

= =
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Solution

We add a notion of time: something that commutes with everything,
and just needs to be there.

M =

0 2 0
0 0 1
1 0 1


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Theorem

Theorem
M and N are SSE iff

...M...

=

...N...

using the equations.

Idea of the proof: Now we are representing matrices in Z+[t ], use
positive K -theory from Boyle-Wagoner.
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Example

(
2
)

is SSE to 1 0 1
1 0 1
0 1 1


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(
2
)
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1 0 1
1 0 1
0 1 1


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Applications

What do we gain from it ?

If one knows a concrete representation of this prop, one can
decide conjugacy
One can give a definition of SSE equivalence that is compositional
One can find invariants !
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Methodology

Forget about matrices
Find structures in the wild that have “objects” that satisfy the
axioms

Then
Structure A (matrices in Z+[t ] (with loops)) satisfies all the axioms,
and no additional ones
Structure B also satisfies the axiom
There is a morphism from A to B.

We obtain an invariant of conjugacy: M ≡ N implies ϕ(M) = ϕ(N).
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Axioms

Two composition laws: sequential, parallel. One trace (loop)
Three generators:

Relations: (co)associativity, (co)commutativity, and:

= =

=
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Good news/Bad news

Good news: There are a lot of such structures in the wild

Bad news:
They either have less structure, or more structure
Some of them are Hopf algebras

Hopf algebras represent matrices with coefficients in Z, not in Z+

Some of them do not have loops
We need to tweak them to have loops.

But it still works !
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Example: Monoids

Let M be a commutative monoid.
Product: monoid addition
Coproduct: copy
Trace: fixed points

Proposition
Let M be a commutative monoid and h a morphism.
The number ψ(A) of solutions of the system

h(a11x1 + a12x2 + . . . a1nxn) = x1
h(a21x1 + a22x2 + . . . a2nxn) = x2

. . .
h(an1x1 + an2x2 + . . . annxn) = xn

is an invariant of conjugacy.

M = C, h(x) = λx : The nonzero eigenvalues are invariant.
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Example: Polynomials

Maps n → m are linear maps from K[X1 . . .Xn] to K[Y1,Ym]

Product (2 → 1) : K[X1,X2] → K[Y ] identifies X1 and X2.
Coproduct (1 → 2) is defined by ∆(X k ) = (Y1 + Y2)

k

Trace: If p is a polynomial K[X1 . . .Xn−1] to K[Y1,Ym−1], then

(tr f )(p) =
∑

k

[Z k ]f (p,Z k )

where [Z k ]q is the coefficient of degree Z k of q
Problem: Does not work: infinite sum
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Example: Polynomials

Maps n → m are linear maps from K[X1 . . .Xn] to K[Y1,Ym]

Product (2 → 1) : K[X1,X2] → K[Y ] identifies X1 and X2.
Coproduct (1 → 2) is defined by ∆(X k ) = (Y1 + Y2)

k

Trace: If p is a polynomial K[X1 . . .Xn−1] to K[Y1,Ym−1], then

(tr f )(p) =
∑

k

[Z k ]f (p,Z k )

where [Z k ]q is the coefficient of degree Z k of q
Solution: Replace K[X ] by formal series in a complete semiring (like
R+ ∪ {+∞}).
If we take the morphism h(X ) = tX we get:

Theorem
The quantity fM(t) = 1

det(I−tM) is an invariant for SSE

This is the well-known Zeta function of a subshift.
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Example: Groups

Maps n → m are abelian groups with n + m distinguished points
Composition = identifying points (quotienting)
Product: 2 → 1 the group ⟨x1, x2, y |y = x1 + x2⟩ with points
x1, x2, y .
Coproduct: 1 → 2 the group ⟨x , y1, y2|y1 = y2 = x⟩ with points
x , y1, y2

Trace: identifying points
We obtain the Bowen-Franks group (1977)
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Example: Z[t ]-modules

Maps n → m are Z[t ] modules with n + m distinguished points
Product: 2 → 1 the module ⟨x1, x2, y |y = x1 + x2⟩
Coproduct: 1 → 2 the module ⟨x , y1, y2|y1 = y2 = x⟩
Trace: identifying points
Morphism: h is the Z[t ] module ⟨x , y |y = tx⟩

We obtain the dimension group of Krieger (1977)
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Where to go from here ?

A systematic way to obtain invariants for symbolic dynamics by looking
at algebraic structures.
We recover the classical invariants, which proves the method works:

The Zeta function
The Bowen-Franks group
The Dimension group

Now: find new invariants!
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