Tutorial on Cellular Automata

Nicolas Ollinger

LIFO, Université d'Orléans
IRIF, CNRS et Univ. Paris Cité (sep. 2023 - aug. 2024)
DMCS, CIRM, Marseille January 2024

Theory of self-reproducing automata

Cellular automata emerged in the late 40s from the work of Ulam and von Neumann.

Cellular Automata

A cellular automaton (CA) is a discrete dynamical model.

Space is discrete and consists of an infinite regular grid of cells. Each cell is described by a state among a common finite set.

Time is discrete. At each clock tick cells change their state deterministically, synchronously and uniformly according to a common local update rule.

Conway's famous Game of Life

The Game of Life is a 2D CA invented by Conway in 1970.

Space is an infinite chessboard of alive or dead cells.

The local update rule counts the number of alive cells among the eight surrounding cells:

- exactly three alive cells give birth to dead cells ;
- less than three alive cells kill by loneliness ;
- more than four alive cells kill by overcrowding ;
- otherwise the cell remains in the same state.

																													-						-											
																				0																										
																			-	-	-	-		-			-		-																	
													-	-			,		,			?		-	-		-		-																	
									-				-				-																													
								-		,			-				-		-		-	-		-					-																	

																										-				\square																	
																									-																						
																										-																					
																							-			-	-			-			-														
																-																															
									-											-			-																								

																																								-						
																								-		-	-			-	-															
										-																-																				
															-									-																						

													-						-					-					\square																
																									-																				
																			-		-	-	-		-	-			-	-	-														
									-		-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-											
									-			-	-		-	-	,	-	-	-	,	-	-	-	-	-	-	-	,	-	-	-								\bigcirc					
																						-	,	-	-	-	-	-	-	-	-			-						-					

																									-																						
																				-																											
																										-	-																				
																	-				-					-	\bigcirc					-	-														
																	-			-	\bigcirc						-		-			,															
																	-				,																										
																				-																											

von Neumann self-reproducing CA

Summary of transition rule
Direct process changes U into sensitized states and then into $\mathrm{T}_{\text {vat }}$ or C_{50}.
Reverse process kills $\mathrm{T}_{\mathrm{uas}}$ or $\mathbf{C o w}^{\text {. }}$
into \mathbf{U}.
Receives conjunctively from $T_{\text {sar }}$ direeted toward it; emita with double delay to all $\mathrm{T}_{\mathrm{w} .}$ not directed toward it.
Killed to U by $\mathrm{T}_{\text {int }}$ directed toward it; killing dominatea reception.
Receives disjunctively from T_{pa} directed toward it and from C. ${ }^{\prime}$; emits in output direction with single delay
(a) to Tha, not directed toward it and to $\mathrm{C}_{\text {. }}$
(b) to U or sensitized states by direet process
(c) to kill $\mathrm{T}_{\text {lat }}$ by reverse process.
Killed to U by T_{La} directed toward it; killing dominates reception.
Receives disjunctively from $\mathrm{T}_{1 \text { an }}$ directed toward it and from $\mathrm{C}_{\text {wr }} ;$ emita in output direction with single delay
(a) to T_{la} not directed toward it
(b) to U or sensitized states by direct process
(c) to kill $\mathrm{T}_{6 a}$ or $\mathrm{C}_{\text {. }}$ by by reverse process.
Killed to U by Thal directed toward it; killing dominates reeeption.
These are intermediary states in the direet process. Tsal directed toward U converts it to S . Thereafter, g_{z} is followed by (s) $\mathrm{S}_{\mathbf{n}}$ if some T_{wa} is directed toward the cell
(b) $\mathrm{S}_{2 n}$ otherwise,
until the direct process terminates in $n \mathrm{~T}_{\mathrm{an}}$ or $\mathrm{C}_{\text {se }}$. Soe Figure 10.

A 29 states CA with von Neumann neighborhood with wires and construction/destruction abilities.

Self-reproduction using Universal Computer + Universal Constructor.

(Theory of Self-Reproducing Automata, edited by Burks, 1966)

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Codd self-reproducing CA

A 8 states self-reproducing CA with von Neumann neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells, self-reproducing in 1.7×10^{18} steps (estimated).

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

Langton self-reproducing loops

Langton modifies Codd rule to permit non universal rotation invariant self-reproduction by 86 cells in 151 steps.

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =\$ \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =\$ \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =\$ \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
S=\mathbb{Z}_{2}
$$

$$
N=\frac{\psi}{\#}
$$

$$
f\left(x_{i}\right)=\sum_{i} x_{i}(\bmod 2)
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =\$ \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
S=\mathbb{Z}_{2}
$$

$$
N=\frac{\psi}{\#}
$$

$$
f\left(x_{i}\right)=\sum_{i} x_{i}(\bmod 2)
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =\$ \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =\$ \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =W \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =\$ \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =\$ \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =W \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =W \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =W \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =\$ \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =W \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

The XOR rule

What is a formal definition of a self-reproducing CA?

The XOR CA

$$
\begin{aligned}
S & =\mathbb{Z}_{2} \\
N & =W \\
f\left(x_{i}\right) & =\sum_{i} x_{i}(\bmod 2)
\end{aligned}
$$

Is the XOR CA a fair example of a self-reproducing CA?

Outline of the tutorial

Part I Computing inside cellular space

Engineering CA and configurations to achieve computational tasks. Universalities. Massively parallel computing.

Part II Computing properties of cellular automata
Analyzing given CA to decide both immediate and dynamical properties. Classical results.

Part III Computation and reduction: undecidability results
Reducing instances of undecidable problems to CA and configurations to prove undecidability results. Lots of properties of CA are undecidable.

Going further

Section I Cellular Automata

http://gol1y.sf.net/

https://1stu.fr/cirm24

Part I

Computing inside the cellular space

Part I

Computing inside the cellular space

1. Cellular automata

2. A universal model of computation

3. A model of parallel computation

Cellular automata

Definition A CA is a tuple (d, S, N, f) where S is a finite set of states, $N \subseteq_{\text {finite }} \mathbb{Z}^{d}$ is the finite neighborhood and $f: S^{N} \rightarrow S$ is the local rule of the cellular automaton.

A configuration $c \in S^{\mathbb{Z}^{d}}$ is a coloring of \mathbb{Z}^{d} by S.

The global map $G: S^{\mathbb{Z}^{d}} \rightarrow S^{\mathbb{Z}^{d}}$ applies f uniformly and locally:

$$
\forall c \in S^{\mathbb{Z}}, \forall z \in \mathbb{Z}^{d}, \quad F(c)(z)=f\left(c_{\mid z+N}\right)
$$

A space-time diagram $\Delta \in S^{\mathbb{Z}^{d} \times \mathbb{N}}$ satisfies, for all $t \in \mathbb{N}$,

$$
\Delta(t+1)=F(\Delta(t)) .
$$

Space-time diagram

$$
S=\{0,1,2\}, r=1, f(x, y, z)=\left\lfloor 6450288690466 / 3^{9 x+3 y+z}\right\rfloor(\bmod 3)
$$

2D cellular automata

Typical high dimension CA in this tutorial: $c \in S^{\mathbb{Z}^{2}}$.

Classical von Neumann neighborhood :

$$
N_{\mathrm{vN}}=\{0\} \times\{-1,0,1\} \cup\{-1,0,1\} \times\{0\}
$$

von Neumann

Classical Moore neighborhood :

$$
N_{\text {Moore }}=\{-1,0,1\} \times\{-1,0,1\}
$$

1D cellular automata

More restricted low dimension CA, easier to analyze: $c \in S^{\mathbb{Z}}$.

Classical first neighbors neighborhood :

$$
N_{\text {first }}=\{-1,0,1\}
$$

1D
Classical one-way neighborhood :

$$
N_{\mathrm{OCA}}=\{0,1\}
$$

OCA

Configurations

The set of configurations, $S^{\mathbb{Z}^{d}}$, is uncountable. What reasonnable countable subset can we consider?

Recursive configurations are useless, undecidability is everywhere (Rice theorem).

Finite configurations with a quiescent state.

Periodic configurations are ultimately periodic.

Ultimately periodic configurations compromise.

Thanks to locality, one can also consider partial space-time diagrams to study all configurations.

Part I

Computing inside the cellular space

1. Cellular automata
2. A universal model of computation

3. A model of parallel computation

Universality in higher dimensions

Construction of universal CA appeared with CA as a tool to embed computation into the CA world. First, for 2D CA

1966	von Neumann	5	29
1968	Codd	5	8
1970	Conway	8	2
1970	Banks	5	2

A natural idea in 2D is to emulate universal boolean circuits by embedding ingredients into the CA space: signals, wires, turns, fan-outs, gates, delays, clocks, etc.

Copper

$$
\left(\mathbb{Z}^{2},\{\square, \boldsymbol{\bullet}, \mathbf{x}\}, \ldots, \delta\right)
$$

(α) both north and south, or east and west, neighbors in state \mathbf{x} or \quad;
(β) at least two neighbors in state \mathbf{x} or $■$ and either exactly one neighbor in state \mathbf{x} or exactly one neighbor in state $\mathbf{\square}$.

Copper

$$
\left(\mathbb{Z}^{2},\{\square, \boldsymbol{\bullet}, \mathbf{x}\}, \neq, \delta\right)
$$

(α) both north and south, or east and west, neighbors in state \mathbf{x} or \quad;
(β) at least two neighbors in state \mathbf{x} or $■$ and either exactly one neighbor in state \mathbf{x} or exactly one neighbor in state $\mathbf{\square}$.

Copper

$$
\left(\mathbb{Z}^{2},\{\square, \boldsymbol{\bullet}, \mathbf{x}\}, \ldots, \delta\right)
$$

(α) both north and south, or east and west, neighbors in state \mathbf{x} or ■
(β) at least two neighbors in state \mathbf{x} or and either exactly one neighbor in state \mathbf{x} or exactly one neighbor in state $\mathbf{\square}$.

Copper

$$
\left(\mathbb{Z}^{2},\{\square, \boldsymbol{\bullet}, \mathbf{x}\}, \neq, \delta\right)
$$

(α) both north and south, or east and west, neighbors in state \mathbf{x} or ■
(β) at least two neighbors in state \mathbf{x} or and either exactly one neighbor in state \mathbf{x} or exactly one neighbor in state $■$.

Copper

$$
\left(\mathbb{Z}^{2},\{\square, \boldsymbol{\square}, \mathbf{x}\}, \underset{\Psi}{\Psi}, \delta\right)
$$

(α) both north and south, or east and west, neighbors in state \mathbf{x} or ■
(β) at least two neighbors in state \mathbf{x} or and either exactly one neighbor in state \mathbf{x} or exactly one neighbor in state $■$.

Copper

$$
\left(\mathbb{Z}^{2},\{\square, \boldsymbol{\bullet}, \mathbf{x}, \ldots, \delta)\right.
$$

(α) both north and south, or east and west, neighbors in state \mathbf{x} or \quad;
(β) at least two neighbors in state \mathbf{x} or $■$ and either exactly one neighbor in state \mathbf{x} or exactly one neighbor in state $\mathbf{\square}$.

Copper

$$
\left(\mathbb{Z}^{2},\{\square, \boldsymbol{\bullet}, \mathbf{x}, \ldots, \delta)\right.
$$

(α) both north and south, or east and west, neighbors in state \mathbf{x} or ■
(β) at least two neighbors in state \mathbf{x} or and either exactly one neighbor in state \mathbf{x} or exactly one neighbor in state $■$.

Copper

$$
\left(\mathbb{Z}^{2},\{\square, \boldsymbol{\bullet}, \mathbf{x}, \ldots, \delta)\right.
$$

(α) both north and south, or east and west, neighbors in state \mathbf{x} or \quad;
(β) at least two neighbors in state \mathbf{x} or and either exactly one neighbor in state \mathbf{x} or exactly one neighbor in state $\mathbf{\square}$.

Copper

$$
\left(\mathbb{Z}^{2},\{\square, \boldsymbol{\square}, \mathbf{x}\}, \underset{\Psi}{\Psi}, \delta\right)
$$

(α) both north and south, or east and west, neighbors in state \mathbf{x} or \quad;
(β) at least two neighbors in state \mathbf{x} or and either exactly one neighbor in state \mathbf{x} or exactly one neighbor in state $\mathbf{\square}$.

Copper: Intersections

Copper: Gates

input wire $\rightarrow \square$?

Copper: Xing

Copper: AND

Copper: FSM

Theorem Copper is universal for boolean circuits.

Simulating a universal device requires an ultimately periodic configuration of infinitely many non quiescent cells.

The Game of Life

Theorem GoL is universal for boolean circuits.

The construction uses gliders as signals.

(Conway et al., Winning Ways Vol. 2., 1971)

GoL: Eater

GoL: Duplicator

GoL: Gosper's p46 Gun

				T	,		-		,		-	,	,	,	,	-	,	-	,		-		-				,	\square	T		-	-	
																												-					

GoL: Xing

		T																				\square

GoL: Combining

Universality in 1D

Remark Boolean circuits are less intuitive to simulate in 1D, but it is easy to simulate sequential models of computation like Turing machines.
(A. R. Smith III, Simple computation-universal cellular spaces, 1971)

1971	Smith III	18
1987	Albert \& Culik II	14
1990	Lindgren \& Nordhal	7
2004	Cook	2

A cellular automaton is Turing-universality if

Universality in 1D

Remark Boolean circuits are less intuitive to simulate in 1D, but it is easy to simulate sequential models of computation like Turing machines.
(A. R. Smith III, Simple computation-universal cellular spaces, 1971)

1971	Smith III	18
1987	Albert \& Culik II	14
1990	Lindgren \& Nordhal	7
2004	Cook	2

A cellular automaton is Turing-universality if... What exactly is the formal definition?

Universality in 1D

Remark Boolean circuits are less intuitive to simulate in 1D, but it is easy to simulate sequential models of computation like Turing machines.
(A. R. Smith III, Simple computation-universal cellular spaces, 1971)

1971	Smith III	18
1987	Albert \& Culik II	14
1990	Lindgren \& Nordhal	7
2004	Cook	2

A cellular automaton is Turing-universality if... What exactly is the formal definition? What is a non universal CA?

Universality in 1D

Remark Boolean circuits are less intuitive to simulate in 1D, but it is easy to simulate sequential models of computation like Turing machines.
(A. R. Smith III, Simple computation-universal cellular spaces, 1971)

1971	Smith III	18
1987	Albert \& Culik II	14
1990	Lindgren \& Nordhal	7
2004	Cook	2

A cellular automaton is Turing-universality if... What exactly is the formal definition? What is a non universal CA?

A consensual yet formal definition is unknown and seems difficult to achieve.
(Durand \& Roka, 1999)

TM à Ia Smith III

B	B	$\left(q_{0}, a\right)$	a	B
B	B	a	$\left(q_{1}, B\right)$	B
B	B	$\left(q_{1}, b\right)$	B	B
B	$\left(q_{0}, B\right)$	b	B	B
B	B	$\left(q_{0}, a\right)$	B	B

Time always moves upwards!

TM à Ia Lindgren \& Nordhal

B	\bullet	B	\bullet	a	q_{0}	\bullet	a	\bullet	B
B	\leftrightarrow	B	\leftrightarrow	a	\leftrightarrow	q_{0}	a	\leftrightarrow	B
B	\bullet	B	\bullet	a	\bullet	q_{1}	B	\bullet	B
B	\leftrightarrow	B	\leftrightarrow	a	q_{1}	\leftrightarrow	B	\leftrightarrow	B
B	\bullet	B	\bullet	q_{1}	b	\bullet	B	\bullet	B
B	\leftrightarrow	B	q_{1}	\leftrightarrow	b	\leftrightarrow	B	\leftrightarrow	B
B	\bullet	B	q_{0}	\bullet	b	\bullet	B	\bullet	B
B	\leftrightarrow	B	\leftrightarrow	q_{0}	b	\leftrightarrow	B	\leftrightarrow	B
B	\bullet	B	\bullet	q_{0}	a	\bullet	B	\bullet	B

Universality of Rule 110 à la Cook

Cook: Details...

Uses huge particles and collisions...

Theorem Rule 110 is Turing-universal.

Part I

Computing inside the cellular space

1. Cellular automata
2. A universal model of computation
3. A model of parallel computation

Another path to universality

Remark Boolean circuits are not sequential and can also simulate parallel models of computation.

This leads to a stronger notion of intrinsic universality on CA, the ability to simulate any CA.

Bulking classifications

Idea define a quasi-order on cellular automata, equivalence classes capturing behaviors.

Definition A CA \mathcal{A} is algorithmically simpler than a CA \mathcal{B} if all the space-time diagrams of \mathcal{A} are space-time diagrams of \mathcal{B} (up to uniform state renaming).

Formally, $\mathcal{A} \subseteq \mathcal{B}$ if there exists $\varphi: S_{\mathcal{A}} \rightarrow S_{\mathcal{B}}$ injective such that $\bar{\varphi} \circ G_{\mathcal{A}}=G_{\mathcal{B}} \circ \bar{\varphi}$.

That is, the following diagram commutes:

$$
\begin{array}{cc}
C & \varphi \\
G_{\mathcal{A}} \downarrow & \\
G_{\mathcal{A}}(C) \xrightarrow[\varphi]{\longrightarrow}(C) \\
\downarrow\left(G_{\mathcal{A}}\right. \\
\hline
\end{array}
$$

Bulking quasi-order

Quotient the set of CA by discrete affine transformations, the only geometrical transformations preserving CA.

The $\langle m, n, k\rangle$ transformation of \mathcal{A} satisfies:

$$
G_{\mathcal{A}\langle m, n, k\rangle}=\sigma^{k} \circ o^{m} \circ G_{\mathcal{A}}^{n} \circ o^{-m}
$$

\mathcal{A}

Definition The bulking quasi-order is defined by $\mathcal{A} \leqslant \mathcal{B}$ if there exists $\langle m, n, k\rangle$ and $\left\langle m^{\prime}, n^{\prime}, k^{\prime}\right\rangle$ such that

$$
\mathcal{A}^{\langle m, n, k\rangle} \subseteq \mathcal{B}^{\left\langle m^{\prime}, n^{\prime}, k^{\prime}\right\rangle}
$$

The big picture

Intrinsic universality

Definition A CA \mathcal{U} is intrinsically universal if it is maximal for \leqslant, i.e. for all CA \mathcal{A}, there exists α such that $\mathcal{A} \subseteq \mathcal{U}^{\alpha}$.

Theorem There exists Turing universal CA that are not intrinsically universal.
where Turing universality is obtained in a very classical way to ensure compatibility with your own definition.

Theorem Boolean circuit universal 2D CA are also intrinsically universal.
(Delorme et al., 2011)

Using boolean circuits

Every 2D intrinsically universal CA can be converted to a 1D intrinsically universal CA [Banks 1970].

Cut slices of a periodic configuration, catenate them horizontally, use the adequate neighborhood.

The neighborhood can be transformed into radius 1 at the cost of increase of the number of states.

Using highly parallel Turing machines A.

Use one Turing-like head per macro-cell, the moving sequence being independent of the computation.

More intricate: 6 states

A 6 states intrinsically universal CA of radius 1 embedding boolean circuits into the line.

Parallel language recognition

In the 70s CA have been studied as a model of massive parallelism, in particular as language recognizers.

A CA (S, N, f) recognizes a language $L \subseteq \Sigma^{*}$ in time $t(n)$ with border state \# and accepting states $Y \subseteq S$ if for each $u \in \Sigma^{*}$, starting from the configuration ${ }^{\omega} \# u \#^{\omega}$, at time $t(|u|)$ the state of cell 0 is in Y if and only if $u \in L$.

Real time: $t(n)=n$

Linear time: $t(n)=\alpha n$
$?$

Example: palindromes

Recognizing palindromes in real time with 16 states.

Y										
\#	Y									
\#		Y								
\#			Y							
\#				Y						
\#					Y					
				\rightarrow	(b,b)	-				
			\rightarrow	(b,a)	(a,a)	(a, b)	\leftarrow			
		\rightarrow	(b,a)	(a,b)	(a,a)	(b,a)	(a,b)	-		
	\rightarrow	(b,a)	(a,a)	(a,a)	(b,b)	(a,a)	(a,a)	(a,b)	\leftarrow	
\rightarrow	(b,a)	(a,b)	(a,a)	(b,a)	(a,a)	(a, b)	(a,a)	(b,a)	(a, b)	\leftarrow
b	a	a	b	a	a	a	b	a	a	b

\#	N							\#
\#			N					
\#			N					\#
\#				N				\#
\#			-	(b, b)	-			\#
\#		\rightarrow	(b, a)	(a, b)	(a, b)	-		\#
\#	\rightarrow	(b, a)	(a, a)	(a, a)	(a, b)	(a, b)	-	\#
\#	b	a	a	a	a	b	b	\#

Real time vs Linear time

Theorem Every language recognized in time $t(n)=n+T(n)$ is recognized in time $t(n)=n+T(n) / k$ for all k. The cost of acceleration is paid using more states.

Same techniques as for Turing machine acceleration.

Theorem[Ibarra] Every language recognized in linear time is recognized in real time if and only if the class of real time langages is closed by mirror image.

Open Pb Does Real time = Linear time?

Firing Squad Synchronization Pb

CA can also solve purely parallel tasks.

Definition A CA solves the FSSP if for all $n>0$ starting from \#GB ${ }^{n-1}$ \# it eventually enters $\# F^{n} \#$ and the fire state F never appears before.

Theorem[Minksy] A CA solves FFSP in time $3 n-1$ with $15+1$ states.

Mazoyer's solution

Remark No CA can solve the FSSP in time less than $2 n-2$.

Theorem[Mazoyer 1984] A CA solves FSSP in optimal time with $6+1$ states.

Part II

Computing properties of CA

Part II

Computing properties of CA

4. Discrete dynamical systems
5. Immediate properties
6. Dynamical properties

Cellular automata

Definition A CA is a tuple (d, S, r, f) where S is a finite set of states, $r \in \mathbb{N}$ is the neighborhood radius and $f: S^{(2 r+1)^{d}} \rightarrow S$ is the local rule of the cellular automaton.

A configuration $c \in S^{\mathbb{Z}^{d}}$ is a coloring of \mathbb{Z}^{d} by S.

The global map $G: S^{\mathbb{Z}^{d}} \rightarrow S^{\mathbb{Z}^{d}}$ applies f uniformly and locally:

$$
\forall c \in S^{\mathbb{Z}}, \forall z \in \mathbb{Z}^{d}, \quad F(c)(z)=f(c(z-r), \ldots, c(z+r)) .
$$

A space-time diagram $\Delta \in S^{\mathbb{Z}^{d} \times \mathbb{N}}$ satisfies, for all $t \in \mathbb{N}$,

$$
\Delta(t+1)=F(\Delta(t))
$$

Discrete dynamical systems

Definition A DDS is a pair (X, F) where X is a topological space and $F: X \rightarrow X$ is a continuous map.

Definition The orbit of $x \in X$ is the sequence $\left(F^{n}(x)\right)$ obtained by iterating F.

In this tutorial, $X=S^{\mathbb{Z}}$ is endowed with the Cantor topology (product of the discrete topology on S), and F is a continuous map invariant by translation.

Topology

Definition A topological space is a pair (E, \mathcal{O}) where $\mathcal{O} \subseteq \mathcal{P}(E)$ is the set of open subsets satisfying:

- \mathcal{O} contains both \varnothing and E;
- \mathcal{O} is closed under union;
- \mathcal{O} is closed under finite intersection.
S is endowed with the discrete topology: $\mathcal{O}=\mathcal{P}(S)$.
$S^{\mathbb{Z}^{d}}$ is endowed with the Cantor topology: the product topology of the discrete topology.

$$
\mathcal{O}=\left\{\prod X_{i} \mid X_{i} \subseteq S \wedge \operatorname{Card}\left(\left\{i \mid X_{i} \neq S\right\}\right)<\omega\right\}
$$

Cantor topology is metric and compact.

Cylinders

Definition The cylinder $[m] \subseteq S^{\mathbb{Z}^{d}}$ with radius $r \geqslant-1$ generated by the pattern $m \in S^{[-r, r]^{d}}$ is

$$
[m]=\left\{c \in S^{\mathbb{Z}^{d}} \mid \forall p \in \mathbb{Z}^{d},\|p\|_{\infty} \leqslant r \Rightarrow c(p)=m(p)\right\}
$$

Proposition Cylinders are a countable clopen generating set.

Notation $[m] \prec\left[m^{\prime}\right]$ means $[m]$ is a sub-cylinder of $\left[m^{\prime}\right]$, i.e. $\left[m^{\prime}\right] \subset[m]$.

Metric

Proposition Cantor topology is metric

Remark Open balls of δ exactly correspond to cylinders.

Compact

Proposition Every sequence of configurations $\left(c_{i}\right) \in S^{\mathbb{Z}^{\mathbb{N}}}$ admits a converging subsequence.

Proof by extraction:

By recurrence, let $\left(c_{i}^{0}\right)=\left(c_{i}\right)$.
It is alway possible to find:

- a cylinder [m_{n}] of radius n and
- an infinite subsequence $\left(c_{i}^{n+1}\right)$ of $\left(c_{i+1}^{n}\right)$
such that for all $i \in \mathbb{N}, c_{i}^{n+1} \in\left[m_{n}\right]$.
By construction $\left[m_{n+1}\right] \subset\left[m_{n}\right]$ and $\left(c_{0}^{i+1}\right)$ is a converging subsequence of $\left(c_{i}\right)$ (to $\cap\left[m_{i}\right]$): $\delta\left(c_{0}^{n+1}, c_{0}^{n+2}\right) \leqslant 2^{-n}$.

König trees

Remark Cantor topology is essentially combinatorial.

Remark Main properties can be obtained using extraction.

König's Lemma Every infinite tree with finite branching admis an infinite branch.

Definition The König tree \mathcal{A}_{C} of a set of configurations $C \subseteq S^{\mathbb{Z}^{d}}$ is the tree $\left(V_{C}, E_{C}\right)$ where

$$
\begin{aligned}
V_{C} & =\{[m] \mid C \cap[m] \neq \varnothing\} \\
E_{C} & =\left\{\left([m],\left[m^{\prime}\right]\right) \mid[m] \prec\left[m^{\prime}\right] \wedge \mathrm{r}\left(\left[m^{\prime}\right]\right)=\mathrm{r}([m])+1\right\}
\end{aligned}
$$

The root of the tree is the cylinder []$=S^{\mathbb{Z}^{d}}$ of radius -1 .

Toppings

The König tree of a non empty set of configurations is an infinite tree with finite branching.

To each infinite branch ($\left[m_{i}\right]$) is associated a unique configuration $\cap\left[m_{i}\right]$.

Definition The topping $\overline{\mathcal{A}_{C}}$ of a König tree is the set of configurations associated to its infinite branches.

König topology

The König topology is defined by its closed sets: toppings of König trees.

The complementary of a closed set is the union of cylinders that are not nodes of the tree.

Theorem Cantor and König topologies are the same.

Most topological concepts can be explained using trees:

- dense sets;
- closed sets with non empty interior;
- compacity;
- Baire's theorem.

Continuity

Proposition clopen sets are finite unions of cylinders.

Definition A mapping $G: S^{\mathbb{Z}^{d}} \rightarrow S^{\mathbb{Z}^{d}}$ is local in $p \in \mathbb{Z}^{d}$ if there exists a radius r such that:

$$
\forall c, c^{\prime} \in S^{\mathbb{Z}^{d}}, \quad\left[c_{\mid r}\right]=\left[c_{\mid r}^{\prime}\right] \Rightarrow G(c)_{p}=G\left(c^{\prime}\right)_{p} .
$$

Proposition A mapping $G: S^{\mathbb{Z}^{d}} \rightarrow S^{\mathbb{Z}^{d}}$ is continuous if and only if it is local in every point.

Curtis-Hedlund-Lyndon Theorem

Definition The translation $\sigma_{k}: S^{\mathbb{Z}^{d}} \rightarrow S^{\mathbb{Z}^{d}}$ with vector $k \in \mathbb{Z}^{d}$ satisfies:

$$
\forall c \in S^{\mathbb{Z}^{d}}, \forall p \in \mathbb{Z}^{d}, \quad \sigma_{k}(c)_{p}=c_{p-k}
$$

Theorem[Hedlund 1969] Continuous mapping commuting with translations are exactly global maps of CA.

Thus CA can be given by their global map.

Remark CA have a dual nature: discrete dynamical systems with a description as finite automata.

Symbolic dynamics

A central object in symbolic dynamics is subshift.

Definition A subshift of $S^{\mathbb{Z}^{d}}$ is a set of configurations both closed and invariant by translation.

Ex ...abaababaaa...

$$
X=\left\{c \in\{a, b\}^{\mathbb{Z}} \mid \forall p \in \mathbb{Z}, c_{p}=b \Rightarrow c_{p+1}=a\right\}
$$

Remark Subshifts are also very natural when studying CA.

Langage of a subshift

Definition The language $L(X)$ of a subshift X is the set of finite patterns appearing in X.

Proposition A subshift is characterized by its language.

$$
\bar{L}=\left\{c \in S^{\mathbb{Z}^{d}} \mid \forall r \geqslant 0, \forall m \in S^{[-r, r]^{d}}, m \prec c \Rightarrow m \in L\right\}
$$

Warning It might be that $L(\bar{L}) \neq L$.

Forbidden words

Proposition A subshift is characterized by the set of its forbidden words: the complementary of its language.

Proposition Subshifts are in bijection with minimal sets of forbidden words (for set inclusion).

Ex $X=S_{\{b b\}}$

SFT, tilings, soficity

Definition A subshift of finite type (SFT) is defined by a finite set of forbidden words.

Proposition The set of SFT is invariant by CA preimage.

Remark SFT correspond to tilings: colorings with local uniform constraints.

Definition A sofic subshift is the image of a SFT by a CA.

Proposition 1D sofic subshifts are subshifts that admit a regular language of forbidden words.

Part II

Computing properties of CA

4. Discrete dynamical systems
5. Immediate properties
6. Dynamical properties

Configurations

Definition A configuration $c \in S^{\mathbb{Z}^{d}}$ is periodic, with period $\left(p_{i}\right) \in \mathbb{N}^{* d}$, if

$$
\forall p \in \mathbb{Z}^{d}, \forall\left(k_{i}\right) \in \mathbb{Z}^{d}, \quad c(p)=c\left(p+\left(k_{1} p_{1}, \ldots, k_{d} p_{d}\right)\right)
$$

Notation. G_{p} denotes G restricted to periodic configurations.

Definition A configuration $c \in S^{\mathbb{Z}^{d}}$ is s-finite if s is quiescent ($f(s, \ldots, s)=s$) and

$$
\operatorname{Card}\left(\left\{p \in \mathbb{Z}^{d} \mid c(p) \neq s\right\}\right)<\omega
$$

Notation. G_{f} denotes G restricted to s-finite configurations.

Immediate properties

Definition A CA $G: C \rightarrow C$ is:

- injective if $\forall x, y \in C, F(x) \neq F(y)$;
- surjective if $\forall x \in C, F^{-1}(x) \neq \varnothing$;
- bijective if both injective and surjective.

Definition A bijective CA G is reversible if there exists a CA H such that $H=G^{-1}$.

Corollary Every bijective CA is reversible.

Garden of Eden and orphans

Definition A configuration of a CA is a garden of Eden if it has no preimage.

Proposition A CA is surjective if and only if it has no garden of Eden.

Definition Given a CA, a pattern $m \in S^{[-r, r]^{d}}$ is an orphan if m has no preimage.

Proposition A CA is surjective if and only if it has no orphan.

Moore-Myhill

Theorem[Moore 1962] G surjective $\Rightarrow G_{f}$ injective.

Theorem[Myhill 1963] G_{f} injective $\Rightarrow G$ surjective.

Corollary G injective $\Rightarrow G$ bijective.

Let's prove it!

Lemma For all $d, n, N, r \in \mathbb{N}$, there exists k big enough so that

$$
\left(N^{n^{d}}-1\right)^{k^{d}}<N^{(k n-2 r)^{d}}
$$

Key picture

G surjective $\Rightarrow G_{f}$ injective

Let G be a CA with N states and radius r that is not injective on s-finite configurations. There exists two patterns p_{1} and p_{2} of size n^{d} bordered by s on a width r with a same image. Replacing p_{1} by p_{2} in any configuration does not change its image.

Consider square patterns of side $k n$. Their images are patterns of side $k n-2 r$. There exists $N^{(k n-2 r)^{d}}$ possible images for at most $\left(N^{n^{d}}-1\right)^{k^{d}}$ preimages. By previous lemma, there is an orphan thus G is not surjective.

G_{f} injective $\Rightarrow G$ surjective

Let G be a non surjective CA with radius r. It admits an orphan of size n^{d}.

Consider the set of s-finite configurations the non-quiescent pattern of which is of side $k n-2 r$. There are $N^{(k n-2 r)^{d}}$ such patterns. Their s-finite images have patterns of side $k n$. At most $\left(N^{n^{d}}-1\right)^{k^{d}}$ of them are not orphans. Thus two of the configurations have a same image, G is not injective on finite configurations.

The big picture

G bijective $\quad \Longleftrightarrow \quad G$ réversible $\quad \Longleftrightarrow \quad G$ injective

G_{f} bijective $\stackrel{\nLeftarrow}{\rightleftarrows} G_{p}$ injective $\Longleftrightarrow G_{p}$ bijective

G_{f} surjective

G_{p} surjective

G_{f} injective $\quad \Longleftrightarrow \quad \Lambda_{G}=S^{\mathbb{Z}^{d}} \quad \Longleftrightarrow \quad G$ surjective
\triangle means true for $d=1$, false for $d \geqslant 2$
\square means true for $d=1$, open for $d \geqslant 2$

Examples

Proposition G_{p} injective $\Rightarrow G_{p}$ bijective.

Key CA preserve periods.

Proposition G_{f} surjective $\Rightarrow G_{f}$ injective.

Key Finite configurations are dense + Moore-Myhill.

Counter-examples

Proposition $\exists G$ surjective $\nRightarrow G_{f}$ surjective.

XOR rule: $S=\mathbb{Z}_{2}, f(x, y)=x+y(\bmod 2)$.

Proposition $\exists G, G_{f}$ surjective $\nRightarrow G$ injective.
controlled-XOR rule: $S=\{0,1\} \times \mathbb{Z}_{2}$, $f((1, x),(-y))=(1, x+y(\bmod 2))$ and $f\left((0, x),{ }_{-}\right)=(0, x)$.

De Bruijn Graph

Definition The De Bruijn graph of a 1D CA (S, r, f) is the labelled graph (V, E) where:

- $V=S^{2 r}$;
- $(u, s, v) \in E$ if $f\left(s_{0}, \ldots, s_{2 r}\right)=s$ where

$$
u=\left(s_{0}, \ldots, s_{2 r-1}\right) \text { and } v=\left(s_{1}, \ldots, s_{2 r}\right)
$$

A convenient tool to decide properties of 1D CA.

Deciding surjectivity in 1D

Remark A CA G is surjective if and only if $G\left(S^{\mathbb{Z}^{d}}\right)=S^{\mathbb{Z}^{d}}$.
Lemma A 1D CA G is surjective iff $L\left(G\left(S^{\mathbb{Z}}\right)\right)=S^{*}$.
Theorem[Amoroso, Patt 1972] Surjectivity 1D is decidable.

Deciding injectivity in 1D

A 1D CA is not injective iff its De Bruijn graph contains two distinct paths with the same biinfinite word.

If such a pair of paths exist, there exists one with ultimately periodic paths.

Theorem[Amoroso, Patt 1972] Injectivity is decidable in 1D.

Part II

Computing properties of CA

4. Discrete dynamical systems
5. Immediate properties
6. Dynamical properties

Symbolic dynamical systems

Definition A SDS is a DDS (X, F) where X is a subshift.
$x \in X$ is periodic with period n if $F^{n}(x)=x$.
$x \in X$ is ultimately periodic with transitory m if $F^{m}(x)$ is periodic.

Definition $Y \subseteq X$ is invariant if $F(Y) \subseteq Y$.

Definition $Y \subseteq X$ is strongly invariant if $F(Y)=Y$.

Attractors

Definition The limit set of an invariant clopen $V \subseteq X$ is

$$
\Lambda_{F}(V)=\bigcap_{n \in \mathbb{N}} F^{n}(V)
$$

Definition An attractor is the limit set of a non-empty invariant clopen.

Definition The bassin of an attractor Y is

$$
\mathcal{B}_{F}(Y)=\left\{x \in X \mid \lim _{n \rightarrow \infty} \delta\left(F^{n}(x), Y\right)=0\right\}
$$

Definition A minimal attractor is an attractor with no strict subset which is also an attractor.

Limit set

Definition The limit set of a CA $\left(S^{\mathbb{Z}^{d}}, F\right)$ is the set of configurations than can appear at all time:

$$
\Lambda_{F}=\bigcap_{n \in \mathbb{N}} F^{n}\left(S^{\mathbb{Z}^{d}}\right)
$$

Proposition The limit set is a non empty subshift.
$F^{n}\left(S^{\mathbb{Z}^{d}}\right)$ is a non empty subshift and $F^{n+1}\left(S^{\mathbb{Z}^{d}}\right) \subseteq F^{n}\left(S^{\mathbb{Z}^{d}}\right)$.

Proposition The limit set is the maximal attractor.

Biinfinite space-time diagrams

Definition A biinfinite space-time diagram $\Delta \in S^{\mathbb{Z}^{d+1}}$ satisfies:

$$
\forall t \in \mathbb{Z}, \quad \Delta(t+1)=F(\Delta(t))
$$

Proposition The limit set is the set of configurations of biinfinite space-time diagrams.

Every element x of the limit set admits an infinite chain of predecessors $x=x_{0}, x_{0}=F\left(x_{1}\right), \ldots, x_{n}=F\left(x_{n+1}\right), \ldots$

Nilpotency

Definition A CA with quiescent state q is nilpotent if every configuration converges in finite time to the q-monochromatic configuration.

Proposition A CA is nilpotent if and only if its limit set is a singleton.

SFT example

Let F be the 1D CA with radius 1 and local rule

$$
f(x, y, z)= \begin{cases}1 & \text { si }(x, y, z)=(1,0,0) \\ 0 & \text { sinon }\end{cases}
$$

$$
\Lambda_{F}=F\left(S^{\mathbb{Z}}\right)=S_{\{11,101\}}
$$

Max example

Let F be the 1D CA with radius 1 and local rule

$$
f(x, y, z)=\max (x, y, z)
$$

$$
\begin{gathered}
\Lambda_{F}={ }^{\omega} 0^{\omega}+{ }^{\omega} 1^{\omega}+{ }^{\omega} 01^{\omega}+{ }^{\omega} 10^{\omega}+{ }^{\omega} 10^{*} 1^{\omega} \\
\Lambda_{F}=S_{\left\{01^{n} 0 \mid n \in \mathbb{N}\right\}}
\end{gathered}
$$

Λ_{F} is countable and not SFT.

Majority example

Let F be the 1D CA with radius 1 and local rule

$$
f(x, y, z)=\operatorname{maj}(x, y, z)
$$

Exercise What is Λ_{F} ?
Hint Consider $01 \cdot 00^{+}\left(11^{+} 00^{+}\right)^{*} 00^{+} \cdot 10$.

Language

$$
\text { Proposition For every CA, } L\left(\Lambda_{F}\right)=\bigcap_{n \in \mathbb{N}} L\left(F^{n}\left(S^{\mathbb{Z}^{d}}\right)\right) \text {. }
$$

Corollary If Λ_{F} is a SFT then $\exists n \Lambda_{F}=F^{n}\left(S^{\mathbb{Z}^{d}}\right)$.

Consider the first time of appearance of each minimal forbidden word.

Proposition If $\Lambda_{F}=F^{n}\left(S^{\mathbb{Z}^{d}}\right)$ then Λ_{F} is sofic.

If F is a CA, so is F^{n}.

Cardinality

Proposition[CPY89] If Λ_{F} contains two distinct elements then it contains a non spatially periodic element.

Corollary A limit set is either a singleton either an infinite set.

Recursivity

Proposition $L\left(\Lambda_{F}\right)$ is co-recursively enumerable.

Orphans of F^{n} can be tested thus enumerated.

Proposition[Hurd90] For every co-recursively enumerable language $L \subseteq \Sigma^{*}$ there exists a CA F, a rational language $R \subseteq S^{*}$ and a morphism $\varphi: S^{*} \rightarrow \Sigma^{*}$ such that

$$
\varphi\left(L\left(\Lambda_{F}\right) \cap R\right)=L
$$

Corollary There exists CA with non recursive limit sets.

Non rational context free

Proposition[Hurd87] There exists a 1D CA whose limit set has a non rational context free language.

Exercise Build one!
Hint Consider bouncing particles and walls.

Context sensitive non context free

Proposition[Hurd87] There exists a 1D CA whose limit set has a non context free context sensitive language.

Exercise Build one!
Hint Complexify previous example.

Non recursive 2D

Proposition There exists a 2D CA whose limit set has a non recursive language.

Exercise Build one!
Hint Consider space-time diagrams of Turing machines.

Non recursive 1D

Proposition[CPY89] There exists a 1D CA whose limit set has a non recursive language.

Exercise Build one!
Hint Consider a CA that can simulate every CA.

Surjectivity and injectivity

Notation F_{Λ} is the restriction of F to Λ_{F}.

Proposition F_{Λ} is surjective.

Proposition If $\forall n \Lambda_{F} \neq F^{n}\left(S^{\mathbb{Z}^{d}}\right)$ then

$$
\forall n \exists c \quad \forall i<n F^{i}(c) \notin \Lambda_{F} \wedge F^{n}(c) \in \Lambda_{F} .
$$

Proposition[Taati 2008] If F_{Λ} is injective then $\exists n \Lambda_{F}=F^{n}\left(S^{\mathbb{Z}^{d}}\right)$.

Part III

Computation and reduction: undecidability results

Part III

Computation and reduction: undecidability results

7. Tilings
8. Undecidability results in 2D
9. Undecidability results in 1D

The Domino Problem (DP)

"Assume we are given a finite set of square plates of the same size with edges colored, each in a different manner. Suppose further there are infinitely many copies of each plate (plate type). We are not permitted to rotate or reflect a plate. The question is to find an effective procedure by which we can decide, for each given finite set of plates, whether we can cover up the whole plane (or, equivalently, an infinite quadrant thereof) with copies of the plates subject to the restriction that adjoining edges must have the same color."
(Wang, 1961)

Tiling with a fixed tile

Finite tiling

Tiling with diagonal constraint

\uparrow

Undecidability of DP

Theorem[Berger64] DP is recursively undecidable.

Remark To prove it one needs aperiodic tile sets.
Idea of the proof
Enforce an (aperiodic) self-similar structure using local rules.

Insert a Turing machine computation everywhere using the structure.

Remark Plenty of different proofs!

Part III

Computation and reduction: undecidability results

7. Tilings
8. Undecidability results in 2D
9. Undecidability results in 1D

The nilpotency problem (Nil)

Definition A DDS is nilpotent if $\exists z \in X, \forall x \in X, \exists n \in \mathbb{N}, F^{n}(x)=z$.

Given a recursive encoding of the DDS, can we decide nilpotency?

A DDS is uniformly nilpotent if $\exists z \in X, \exists n \in \mathbb{N}, \forall x \in X, F^{n}(x)=z$.

Given a recursive encoding of the DDS, can we bound recursively n ?

Nilpotency and limit set

Definition The limit set of a CA F is the non-empty subshift

$$
\Lambda_{F}=\bigcap_{n \in \mathbb{N}} F^{n}\left(S^{\mathbb{Z}}\right)
$$

Remark Λ_{F} is the set of configurations appearing in biinfinite space-time diagrams $\Delta \in S^{\mathbb{Z} \times \mathbb{Z}}$ such that $\forall t \in \mathbb{Z}, \Delta(t+1)=F(\Delta(t))$.

Lemma A CA is nilpotent iff its limit set is a singleton.

2D Nilpotency

2D Nilpotency
 Input: a CA (S, N, f).
 Question: Is F nilpotent?

Theorem[CPY89] Nilpotency is undecidable in 2D.

Prove than $\overline{\mathbf{D P}} \leqslant{ }_{m}$ Nil2D.
Given a set of Wang tiles τ, build a CA with alphabet $\tau \cup\{\perp\}$ where \perp is a spreading tiling error state.

Surjectivity/Injectivity 2D

Theorem[Kari 1990] Both injectivity and surjectivity are undecidable in 2D.

For surjectivity, using Moore-Myhill, prove that injectivity on finite is undecidable in 2D.

Part III

Computation and reduction: undecidability results

7. Tilings

8. Undecidability results in 2D
9. Undecidability results in 1 D

Nilpotency 1D

A state $\perp \in S$ is spreading if $f(N)=\perp$ when $\perp \in N$.

A CA with a spreading state \perp is not nilpotent iff it admits a biinfinite space-time diagram without \perp.

A tiling problem Find a coloring $\Delta \in(S \backslash\{\perp\})^{\mathbb{Z}^{2}}$ satisfying the tiling constraints given by f.

Theorem[Kari92] NW-DP \leqslant_{m} Nil

Revisiting DP

Theorem[Kari92] NW-DP is recursively undecidable.

Remark Reprove of undecidability of DP with the additionnal determinism constraint!

Corollary Nil is recursively undecidable.

More on limit sets

Theorem[Kari 1994] The set of CA whose limit sets satisfy a non trivial property is never recursive.

Theorem[Guillon Richard 2010] Still true with a fixed alphabet!

Definition A CA F is weakly nilpotent if

$$
\forall c \forall p \exists t_{0} \forall t>t_{0} \quad F^{t}(c)_{p}=q
$$

Theorem[Guillon Richard 2008] A CA is weakly nilpotent if and only if it is nilpotent.

The periodicity problem (Per)

> Definition A DDS is periodic if $\forall x \in X, \exists n \in \mathbb{N}, F^{n}(x)=x$

Given a recursive encoding of the DDS, can we decide periodicity?

A DDS is uniformly periodic if $\exists n \in \mathbb{N}, \forall x \in X, F^{n}(x)=x$.

Given a recursive encoding of the DDS, can we bound recursively n ?

Undecidability results

Theorem Both Nil and Per are recursively undecidable.

The proofs inject computation into dynamics.

Undecidability is not necessarily a negative result: it is a hint of complexity.

Remark Due to universe configurations both nilpotency and periodicity are uniform.

The bounds grow faster than any recursive function: there exists simple nilpotent or periodic CA with huge bounds.

The Immortality Problem (IP)

" $\left(T_{2}\right)$ To find an effective method, which for every Turing-machine M decides whether or not, for all tapes I (finite and infinite) and all states B, M will eventually halt if started in state B on tape I" (Büchi, 1962)

Theorem[Hooper66] IP is recursively undecidable.

Theorem[KO2008] R-IP \leqslant_{m} TM-Per \leqslant_{m} Per

Theorem[KO2008] R-IP is recursively undecidable.

Open Problem

Definition A CA F is positively expansive if

$$
\exists \varepsilon>0, \forall x \neq y, \exists n \geqslant 0, d\left(F^{n}(x), F^{n}(y)\right) \geqslant \varepsilon
$$

Question Is positive expansivity decidable?

Table of Contents

Part I

1. Cellular automata
2. A universal model of computation
3. A model of parallel computation

Part II

4. Discrete dynamical systems
5. Immediate properties
6. Dynamical properties

Part III

7. Tilings
8. Undecidability results in 2D
9. Undecidability results in 1D
