Finite-dimensional pseudofinite groups of small dimension, without CFSG

Ulla Karhumäki, j.w. Frank Wagner

University of Helsinki

Model Theory and Applications to Groups and Combinatorics CIRM, France 30.09-04.10.2024

Finite-dimensional groups

Definition 1.1. (Wagner) A group G is *finite-dimensional* if there is a dimension function dim from the collection of all interpretable sets in models of Th(G) to $\mathbb{N} \cup \{-\infty\}$ such that, for any formula $\phi(x, y)$ and interpretable sets X and Y, the following hold:

- **1** Invariance: If $a \equiv a'$ then $\dim(\phi(x, a)) = \dim(\phi(x, a'))$.
- 2 Algebraicity: If $X \neq \emptyset$ is finite then $\dim(X) = 0$, and $\dim(\emptyset) = -\infty$.
- 3 Union: $\dim(X \cup Y) = \max{\dim(X), \dim(Y)}$.
- 4 Fibration: If $f : X \to Y$ is an interpretable map such that $\dim(f^{-1}(y)) \ge d$ for all $y \in Y$ then $\dim(X) \ge \dim(Y) + d$.

In this talk, 'a finite-dimensinal group' always means a finite-dimensional group with *fine* and *additive* dimension: dim is

- additive if $\dim(a, b/C) = \dim(a/b, C) + \dim(b/C)$ holds for any tuples *a* and *b* and for any set *C*; and
- fine if dim(X) = 0 implies that X is finite.

Additivity ensures that Lascar equality holds: If G is a finite-dimensional group and $H \leq G$ is definable, then $\dim(G) = \dim(H) + \dim(G/H)$.

Example 1.2. Any supersimple finite SU-rank group is finite-dimensional; thus $PSL_2(F)$ where F is pseudofinite field, is finite-dimensional.

Finite-dimensional groups

Definition 1.1. (Wagner) A group G is *finite-dimensional* if there is a dimension function dim from the collection of all interpretable sets in models of Th(G) to $\mathbb{N} \cup \{-\infty\}$ such that, for any formula $\phi(x, y)$ and interpretable sets X and Y, the following hold:

- **1** Invariance: If $a \equiv a'$ then $\dim(\phi(x, a)) = \dim(\phi(x, a'))$.
- 2 Algebraicity: If $X \neq \emptyset$ is finite then $\dim(X) = 0$, and $\dim(\emptyset) = -\infty$.
- 3 Union: $\dim(X \cup Y) = \max{\dim(X), \dim(Y)}$.
- 4 Fibration: If $f : X \to Y$ is an interpretable map such that $\dim(f^{-1}(y)) \ge d$ for all $y \in Y$ then $\dim(X) \ge \dim(Y) + d$.

In this talk, 'a finite-dimensinal group' always means a finite-dimensional group with fine and additive dimension: \dim is

- additive if $\dim(a, b/C) = \dim(a/b, C) + \dim(b/C)$ holds for any tuples *a* and *b* and for any set *C*; and
- fine if dim(X) = 0 implies that X is finite.

Additivity ensures that Lascar equality holds: If G is a finite-dimensional group and $H \leq G$ is definable, then $\dim(G) = \dim(H) + \dim(G/H)$.

Example 1.2. Any supersimple finite SU-rank group is finite-dimensional; thus $PSL_2(F)$ where F is pseudofinite field, is finite-dimensional.

Finite-dimensional groups

Definition 1.1. (Wagner) A group G is *finite-dimensional* if there is a dimension function dim from the collection of all interpretable sets in models of Th(G) to $\mathbb{N} \cup \{-\infty\}$ such that, for any formula $\phi(x, y)$ and interpretable sets X and Y, the following hold:

- **1** Invariance: If $a \equiv a'$ then $\dim(\phi(x, a)) = \dim(\phi(x, a'))$.
- 2 Algebraicity: If $X \neq \emptyset$ is finite then $\dim(X) = 0$, and $\dim(\emptyset) = -\infty$.
- 3 Union: $\dim(X \cup Y) = \max{\dim(X), \dim(Y)}$.
- 4 Fibration: If $f : X \to Y$ is an interpretable map such that $\dim(f^{-1}(y)) \ge d$ for all $y \in Y$ then $\dim(X) \ge \dim(Y) + d$.

In this talk, 'a finite-dimensinal group' always means a finite-dimensional group with fine and additive dimension: \dim is

- additive if $\dim(a, b/C) = \dim(a/b, C) + \dim(b/C)$ holds for any tuples *a* and *b* and for any set *C*; and
- fine if dim(X) = 0 implies that X is finite.

Additivity ensures that Lascar equality holds: If G is a finite-dimensional group and $H \leq G$ is definable, then $\dim(G) = \dim(H) + \dim(G/H)$.

Example 1.2. Any supersimple finite SU-rank group is finite-dimensional; thus $PSL_2(F)$ where F is pseudofinite field, is finite-dimensional.

icc^{0} , commensurability and almost operators

Let G be a group, $H, K \leq G$. Then H is almost contained in K, written $H \leq K$, if $[H : (H \cap K)] < \infty$; and $H, K \leq G$ are commensurable, written $H \simeq K$, if both $H \leq K$ and $K \leq H$. A family \mathcal{H} of subgroups of G is uniformly commensurable if there is $n \in \mathbb{N}$ so that $|H_1 : H_1 \cap H_2| < n$ for all $H_1, H_2 \in \mathcal{H}$.

Definition 1.3. For subgroups H, K of a group G, define:

- $\blacksquare \widetilde{N}_{K}(H) = \{k \in K : H \simeq H^{k}\}, \text{ the almost normaliser of } H \text{ in } K.$
- 2 $\widetilde{C}_{\kappa}(H) = \{k \in K : H \lesssim C_{H}(k)\}$, the *almost centraliser* of H in K.

3 $\widetilde{Z}(G) = \widetilde{C}_G(G)$, the almost centre of G.

The commensurability is *uniform* in $\widetilde{N}_{\kappa}(H)$ (resp. in $\widetilde{C}_{\kappa}(H)$) if there is some $m \in \mathbb{N}$ so that if $H \simeq H^k$ then $|H : H \cap H^k| < m$ (resp. if $H \lesssim C_H(k)$ then $|H : C_H(k)| < m$).

It is easy to see that a finite-dimensional group G satisfies the chain condition on interscetions of uniformly definable subgroups, icc⁰:

Given a family \mathcal{H} of uniformly definable subgroups of G, there is $m < \omega$ so that there is no sequence $\{H_i : i \leq m\} \subset \mathcal{H}$ with $|\bigcap_{i \leq i} H_i : \bigcap_{i \leq i} H_i| \ge m$ for all $j \leq m$.

 \Rightarrow : it follows that if $H, K \leq G$ are definable then the commensurability is uniform in $\tilde{N}_{\kappa}(H)$ and in $\tilde{C}_{\kappa}(H)$; hence $\tilde{N}_{\kappa}(H)$ and $\tilde{C}_{\kappa}(H)$ are definable subgroups.

icc^{0} , commensurability and almost operators

Let G be a group, $H, K \leq G$. Then H is almost contained in K, written $H \leq K$, if $[H : (H \cap K)] < \infty$; and $H, K \leq G$ are commensurable, written $H \simeq K$, if both $H \leq K$ and $K \leq H$. A family \mathcal{H} of subgroups of G is uniformly commensurable if there is $n \in \mathbb{N}$ so that $|H_1 : H_1 \cap H_2| < n$ for all $H_1, H_2 \in \mathcal{H}$.

Definition 1.3. For subgroups H, K of a group G, define:

- $\blacksquare \widetilde{N}_{K}(H) = \{k \in K : H \simeq H^{k}\}, \text{ the almost normaliser of } H \text{ in } K.$
- 2 $\widetilde{C}_{\kappa}(H) = \{k \in K : H \lesssim C_{H}(k)\}$, the *almost centraliser* of H in K.

3 $\widetilde{Z}(G) = \widetilde{C}_G(G)$, the almost centre of G.

The commensurability is *uniform* in $\widetilde{N}_{\kappa}(H)$ (resp. in $\widetilde{C}_{\kappa}(H)$) if there is some $m \in \mathbb{N}$ so that if $H \simeq H^k$ then $|H : H \cap H^k| < m$ (resp. if $H \lesssim C_H(k)$ then $|H : C_H(k)| < m$).

It is easy to see that a finite-dimensional group G satisfies the chain condition on interscetions of uniformly definable subgroups, icc⁰:

Given a family \mathcal{H} of uniformly definable subgroups of G, there is $m < \omega$ so that there is no sequence $\{H_i : i \leq m\} \subset \mathcal{H}$ with $|\bigcap_{i \leq i} H_i : \bigcap_{i \leq i} H_i| \ge m$ for all $j \leq m$.

 \Rightarrow : it follows that if $H, K \leq G$ are definable then the commensurability is uniform in $\widetilde{N}_{\kappa}(H)$ and in $\widetilde{C}_{\kappa}(H)$; hence $\widetilde{N}_{\kappa}(H)$ and $\widetilde{C}_{\kappa}(H)$ are definable subgroups.

icc^{0} , commensurability and almost operators

Let G be a group, $H, K \leq G$. Then H is almost contained in K, written $H \leq K$, if $[H : (H \cap K)] < \infty$; and $H, K \leq G$ are commensurable, written $H \simeq K$, if both $H \leq K$ and $K \leq H$. A family \mathcal{H} of subgroups of G is uniformly commensurable if there is $n \in \mathbb{N}$ so that $|H_1 : H_1 \cap H_2| < n$ for all $H_1, H_2 \in \mathcal{H}$.

Definition 1.3. For subgroups H, K of a group G, define:

- $\blacksquare \widetilde{N}_{K}(H) = \{k \in K : H \simeq H^{k}\}, \text{ the almost normaliser of } H \text{ in } K.$
- 2 $\widetilde{C}_{\kappa}(H) = \{k \in K : H \lesssim C_{H}(k)\}$, the *almost centraliser* of H in K.

3 $\widetilde{Z}(G) = \widetilde{C}_G(G)$, the almost centre of G.

The commensurability is *uniform* in $\widetilde{N}_{\kappa}(H)$ (resp. in $\widetilde{C}_{\kappa}(H)$) if there is some $m \in \mathbb{N}$ so that if $H \simeq H^k$ then $|H : H \cap H^k| < m$ (resp. if $H \lesssim C_H(k)$ then $|H : C_H(k)| < m$).

It is easy to see that a finite-dimensional group G satisfies the chain condition on interscetions of uniformly definable subgroups, icc⁰:

Given a family \mathcal{H} of uniformly definable subgroups of G, there is $m < \omega$ so that there is no sequence $\{H_i : i \leq m\} \subset \mathcal{H}$ with $|\bigcap_{i \leq i} H_i : \bigcap_{i \leq i} H_i| \ge m$ for all $j \leq m$.

 \Rightarrow : it follows that if $H, K \leq G$ are definable then the commensurability is uniform in $\widetilde{N}_{\kappa}(H)$ and in $\widetilde{C}_{\kappa}(H)$; hence $\widetilde{N}_{\kappa}(H)$ and $\widetilde{C}_{\kappa}(H)$ are definable subgroups.

Pseudofinite groups

Definition 1.4. An infinite group G is *pseudofinite* if for every L_{gr} -sentence σ s.t. $G \models \sigma$ there is a finite group G_0 s.t. $G_0 \models \sigma$.

Los: A group G is pseudofinite $\Leftrightarrow G \equiv \prod_{i \in I} G_i/U$, where U is a non-principal ultrafilter on I and for U-many i, the groups G_i 's are finite of increasing orders. Example 1.5.

- $(\mathbb{Z}, +)$ is not pseudofinite: Let σ say 'If the map $x \mapsto x + x$ is injective then it is surjective'. Then σ is true in all finite groups and false in $(\mathbb{Z}, +)$.
- $(\mathbb{R},+) \equiv (\mathbb{Q},+) \equiv \prod_{p_i \in P} C_{p_i}/U$, where P is the set of primes, are pseudofinite.
- The group $G = \prod_{n \in \mathbb{N}} Alt_{n_i}/U$, is pseudofinite and definably simple but not simple.

We denote a group of (twisted) Lie type over a field F by X(F). Theorem 1.6 (Wilson 1995, uses CFSG). A simple group G is pseudofinite \Leftrightarrow $G \equiv X(F)$, where F is a pseudofinite field.

- Ryten: '≡' generalises to '≅' without *further* use of CFSG.
- Theorem 1.6 implies that a) a simple pseudofinite group is supersimple of finite SU-rank, thus finite-dimensional b) the only simple pseudofinite group of dimension ≤ 3 is $PSL_2(F)$ with $dim(PSL_2(F)) = 3$.

Pseudofinite groups

Definition 1.4. An infinite group G is *pseudofinite* if for every L_{gr} -sentence σ s.t. $G \models \sigma$ there is a finite group G_0 s.t. $G_0 \models \sigma$.

Los: A group G is pseudofinite $\Leftrightarrow G \equiv \prod_{i \in I} G_i/U$, where U is a non-principal ultrafilter on I and for U-many i, the groups G_i 's are finite of increasing orders. Example 1.5.

- $(\mathbb{Z}, +)$ is not pseudofinite: Let σ say 'If the map $x \mapsto x + x$ is injective then it is surjective'. Then σ is true in all finite groups and false in $(\mathbb{Z}, +)$.
- $(\mathbb{R}, +) \equiv (\mathbb{Q}, +) \equiv \prod_{p_i \in P} C_{p_i}/U$, where P is the set of primes, are pseudofinite.
- The group $G = \prod_{n_i \in \mathbb{N}} Alt_{n_i}/U$, is pseudofinite and definably simple but not simple.

We denote a group of (twisted) Lie type over a field F by X(F). Theorem 1.6 (Wilson 1995, uses CFSG). A simple group G is pseudofinite \Leftrightarrow $G \equiv X(F)$, where F is a pseudofinite field.

- Ryten: '≡' generalises to '≅' without *further* use of CFSG.
- Theorem 1.6 implies that a) a simple pseudofinite group is supersimple of finite SU-rank, thus finite-dimensional b) the only simple pseudofinite group of dimension ≤ 3 is $PSL_2(F)$ with $dim(PSL_2(F)) = 3$.

Pseudofinite groups

Definition 1.4. An infinite group G is *pseudofinite* if for every L_{gr} -sentence σ s.t. $G \models \sigma$ there is a finite group G_0 s.t. $G_0 \models \sigma$.

Los: A group G is pseudofinite $\Leftrightarrow G \equiv \prod_{i \in I} G_i/U$, where U is a non-principal ultrafilter on I and for U-many i, the groups G_i 's are finite of increasing orders. Example 1.5.

- $(\mathbb{Z}, +)$ is not pseudofinite: Let σ say 'If the map $x \mapsto x + x$ is injective then it is surjective'. Then σ is true in all finite groups and false in $(\mathbb{Z}, +)$.
- $(\mathbb{R}, +) \equiv (\mathbb{Q}, +) \equiv \prod_{p_i \in P} C_{p_i}/U$, where P is the set of primes, are pseudofinite.
- The group $G = \prod_{n \in \mathbb{N}} Alt_{n_i}/U$, is pseudofinite and definably simple but not simple.

We denote a group of (twisted) Lie type over a field F by X(F). Theorem 1.6 (Wilson 1995, uses CFSG). A simple group G is pseudofinite \Leftrightarrow $G \equiv X(F)$, where F is a pseudofinite field.

- Ryten: ' \equiv ' generalises to ' \cong ' without *further* use of CFSG.
- Theorem 1.6 implies that a) a simple pseudofinite group is supersimple of finite SU-rank, thus finite-dimensional b) the only simple pseudofinite group of dimension ≤ 3 is $PSL_2(F)$ with $dim(PSL_2(F)) = 3$.

If the *soluble radical* (i.e. a maximal soluble normal subgroup) of a group G exists, then it is denoted by Rad(G).

Theorem 1.7 (Wilson 2009, uses CFSG). Let G be a finite group. Then there is an L_{gr} -formula $\phi_R(x)$ s.t. $Rad(G) = \phi_R(G)$.

 \Rightarrow : If G is pseudofinite then $\overline{G} := G/\phi_R(G)$ is semi-simple (i.e. no proper non-trivial abelian normal subgroup), and $\operatorname{Rad}(G)$ exists $\Leftrightarrow \operatorname{Rad}(G) = \phi_R(G) \Leftrightarrow \phi_R(G)$ is soluble.

- Khukhro 2009: If the *centraliser dimension* cd(G) of G is $k \in \mathbb{N}$ then Rad(G) exists.
- Milliet 2013: If G is supersimple then Rad(G) exists.
- K.-Wagner 2024: If G is finite-dimensional then Rad(G) exists.
- Macpherson-Tent 2012: If G is NIP then G is finite; if G is non-stable then G is not soluble-by-finite in general.
- Milliet 2013: If G is supersimple then G has a definable normal subgroup L which is a finite direct product of simple (pseudo)finite groups and G/L is finite-by-abelian.
- **3** K. 2022: If cd(G) = k then G is as in 2.
- K.-Uğurlu Kowalski 2024: If cd(G) = k and for any $N \trianglelefteq \trianglelefteq G$ we have $C_G(N) = 1$, then there is a simple \emptyset -definable subgroup $X(F) \trianglelefteq G$ with G/X(F) finite-by-abelian.

Theorem 1.17 and 1-4 all use CFSG!!

Finite-dimensional pseudofinite groups of small dimension, without CFSG 1.

If the *soluble radical* (i.e. a maximal soluble normal subgroup) of a group G exists, then it is denoted by Rad(G).

Theorem 1.7 (Wilson 2009, uses CFSG). Let G be a finite group. Then there is an L_{gr} -formula $\phi_R(x)$ s.t. $Rad(G) = \phi_R(G)$.

 \Rightarrow : If G is pseudofinite then $\overline{G} := G/\phi_R(G)$ is *semi-simple* (i.e. no proper non-trivial abelian normal subgroup), and $\operatorname{Rad}(G)$ exists $\Leftrightarrow \operatorname{Rad}(G) = \phi_R(G) \Leftrightarrow \phi_R(G)$ is soluble.

- Khukhro 2009: If the centraliser dimension cd(G) of G is $k \in \mathbb{N}$ then Rad(G) exists.
- Milliet 2013: If G is supersimple then Rad(G) exists.
- K.-Wagner 2024: If G is finite-dimensional then Rad(G) exists.
- Macpherson-Tent 2012: If G is NIP then G is finite; if G is non-stable then G is not soluble-by-finite in general.
- 2 Milliet 2013: If G is supersimple then G has a definable normal subgroup L which is a finite direct product of simple (pseudo)finite groups and G/L is finite-by-abelian.
- **3** K. 2022: If cd(G) = k then G is as in 2.
- If cd(G) = k and for any N ≤ ≤G we have C_G(N) = 1, then there is a simple Ø-definable subgroup X(F) ≤ G with G/X(F) finite-by-abelian.

Theorem 1.17 and 1-4 all use CFSG!!

Finite-dimensional pseudofinite groups of small dimension, without CFSG 1.

If the *soluble radical* (i.e. a maximal soluble normal subgroup) of a group G exists, then it is denoted by Rad(G).

Theorem 1.7 (Wilson 2009, uses CFSG). Let G be a finite group. Then there is an L_{gr} -formula $\phi_R(x)$ s.t. $Rad(G) = \phi_R(G)$.

 \Rightarrow : If G is pseudofinite then $\overline{G} := G/\phi_R(G)$ is *semi-simple* (i.e. no proper non-trivial abelian normal subgroup), and $\operatorname{Rad}(G)$ exists $\Leftrightarrow \operatorname{Rad}(G) = \phi_R(G) \Leftrightarrow \phi_R(G)$ is soluble.

- Khukhro 2009: If the centraliser dimension cd(G) of G is $k \in \mathbb{N}$ then Rad(G) exists.
- Milliet 2013: If G is supersimple then Rad(G) exists.
- K.-Wagner 2024: If G is finite-dimensional then Rad(G) exists.
- Macpherson-Tent 2012: If G is NIP then G is finite; if G is non-stable then G is not soluble-by-finite in general.
- 2 Milliet 2013: If G is supersimple then \overline{G} has a definable normal subgroup \overline{L} which is a finite direct product of simple (pseudo)finite groups and $\overline{G}/\overline{L}$ is finite-by-abelian.
- **3** K. 2022: If cd(G) = k then G is as in 2.
- **4** K.-Uğurlu Kowalski 2024: If cd(G) = k and for any N $\trianglelefteq \trianglelefteq G$ we have $C_G(N) = 1$, then there is a simple Ø-definable subgroup $X(F) \trianglelefteq G$ with G/X(F) finite-by-abelian.

Theorem 1.17 and 1-4 all use CFSG!!

If the *soluble radical* (i.e. a maximal soluble normal subgroup) of a group G exists, then it is denoted by Rad(G).

Theorem 1.7 (Wilson 2009, uses CFSG). Let G be a finite group. Then there is an L_{gr} -formula $\phi_R(x)$ s.t. $Rad(G) = \phi_R(G)$.

 \Rightarrow : If G is pseudofinite then $\overline{G} := G/\phi_R(G)$ is semi-simple (i.e. no proper non-trivial abelian normal subgroup), and $\operatorname{Rad}(G)$ exists $\Leftrightarrow \operatorname{Rad}(G) = \phi_R(G) \Leftrightarrow \phi_R(G)$ is soluble.

- Khukhro 2009: If the centraliser dimension cd(G) of G is $k \in \mathbb{N}$ then Rad(G) exists.
- Milliet 2013: If G is supersimple then Rad(G) exists.
- K.-Wagner 2024: If G is finite-dimensional then Rad(G) exists.
- Macpherson-Tent 2012: If G is NIP then G is finite; if G is non-stable then G is not soluble-by-finite in general.
- 2 Milliet 2013: If G is supersimple then \overline{G} has a definable normal subgroup \overline{L} which is a finite direct product of simple (pseudo)finite groups and $\overline{G}/\overline{L}$ is finite-by-abelian.
- **3** K. 2022: If cd(G) = k then G is as in 2.
- 4 K.-Uğurlu Kowalski 2024: If cd(G) = k and for any N ≤ ≤G we have C_G(N) = 1, then there is a simple Ø-definable subgroup X(F) ≤ G with G/X(F) finite-by-abelian.

Theorem 1.17 and 1-4 all use CFSG!!

Question 1.8 (Elwes-Jaligot-Macpherson-Ryten; Macpherson; Palacin,...).

What can be proven without CFSG? In particular, can one prove without CFSG that a supersimple of finite *SU*-rank, simple, pseudofinite group with SU(G) = 3 is isomorphic to $PSL_2(F)$?

Let G be a pseudofinite finite-dimensional group.

- Wagner 2020 (in similar settings EJMR, Hempel-Palacín,...): If dim(G) = 1 then G is finite-by-abelian-by-finite (*FAF*).
- Wagner 2020: If dim(G) = 2 then G is soluble-by-finite (follows from Wilson's classification of simple pseudofinite groups).

Theorem 1.9 (Without CFSG, Wagner/K.-Wagner). Let G be a pseudofinite finite-dimensional group. If $\dim(G) = 2$ then G is soluble-by-finite. Moreover, if G is not FAF, then there is a definable subgroup $N \leq G$ with $\dim(N) = 1$.

Theorem 1.10 (Without CFSG, K.-Wagner). Let G be a pseudofinite finite-dimensional group. If $\dim(G) = 3$, then either G is soluble-by-finite, or $\widetilde{Z}(G)$ is finite and $G/\widetilde{Z}(G)$ has a definable normal subgroup of finite index isomorphic to $PSL_2(F)$ where F is a pseudofinite field.

Question 1.11. Can one prove without CFSG that a simple pseudofinite group is finite-dimensional?

Finite-dimensional pseudofinite groups of small dimension, without CFSG 1.

Question 1.8 (Elwes-Jaligot-Macpherson-Ryten; Macpherson; Palacin,...).

What can be proven without CFSG? In particular, can one prove without CFSG that a supersimple of finite *SU*-rank, simple, pseudofinite group with SU(G) = 3 is isomorphic to $PSL_2(F)$?

Let G be a pseudofinite finite-dimensional group.

- Wagner 2020 (in similar settings EJMR, Hempel-Palacín,...): If $\dim(G) = 1$ then G is finite-by-abelian-by-finite (*FAF*).
- Wagner 2020: If $\dim(G) = 2$ then G is soluble-by-finite (follows from Wilson's classification of simple pseudofinite groups).

Theorem 1.9 (Without CFSG, Wagner/K.-Wagner). Let G be a pseudofinite finite-dimensional group. If $\dim(G) = 2$ then G is soluble-by-finite. Moreover, if G is not FAF, then there is a definable subgroup $N \leq G$ with $\dim(N) = 1$.

Theorem 1.10 (Without CFSG, K.-Wagner). Let G be a pseudofinite finite-dimensional group. If $\dim(G) = 3$, then either G is soluble-by-finite, or $\widetilde{Z}(G)$ is finite and $G/\widetilde{Z}(G)$ has a definable normal subgroup of finite index isomorphic to $PSL_2(F)$ where F is a pseudofinite field.

Question 1.11. Can one prove without CFSG that a simple pseudofinite group is finite-dimensional?

Question 1.8 (Elwes-Jaligot-Macpherson-Ryten; Macpherson; Palacin,...).

What can be proven without CFSG? In particular, can one prove without CFSG that a supersimple of finite *SU*-rank, simple, pseudofinite group with SU(G) = 3 is isomorphic to $PSL_2(F)$?

Let G be a pseudofinite finite-dimensional group.

- Wagner 2020 (in similar settings EJMR, Hempel-Palacín,...): If $\dim(G) = 1$ then G is finite-by-abelian-by-finite (*FAF*).
- Wagner 2020: If $\dim(G) = 2$ then G is soluble-by-finite (follows from Wilson's classification of simple pseudofinite groups).

Theorem 1.9 (Without CFSG, Wagner/K.-Wagner). Let G be a pseudofinite finite-dimensional group. If $\dim(G) = 2$ then G is soluble-by-finite. Moreover, if G is not FAF, then there is a definable subgroup $N \leq G$ with $\dim(N) = 1$.

Theorem 1.10 (Without CFSG, K.-Wagner). Let G be a pseudofinite finite-dimensional group. If $\dim(G) = 3$, then either G is soluble-by-finite, or $\widetilde{Z}(G)$ is finite and $G/\widetilde{Z}(G)$ has a definable normal subgroup of finite index isomorphic to $PSL_2(F)$ where F is a pseudofinite field.

Question 1.11. Can one prove without CFSG that a simple pseudofinite group is finite-dimensional?

Finite-dimensional pseudofinite groups of small dimension, without CFSG 1.

Question 1.8 (Elwes-Jaligot-Macpherson-Ryten; Macpherson; Palacin,...).

What can be proven without CFSG? In particular, can one prove without CFSG that a supersimple of finite *SU*-rank, simple, pseudofinite group with SU(G) = 3 is isomorphic to $PSL_2(F)$?

Let G be a pseudofinite finite-dimensional group.

- Wagner 2020 (in similar settings EJMR, Hempel-Palacín,...): If $\dim(G) = 1$ then G is finite-by-abelian-by-finite (*FAF*).
- Wagner 2020: If $\dim(G) = 2$ then G is soluble-by-finite (follows from Wilson's classification of simple pseudofinite groups).

Theorem 1.9 (Without CFSG, Wagner/K.-Wagner). Let G be a pseudofinite finite-dimensional group. If $\dim(G) = 2$ then G is soluble-by-finite. Moreover, if G is not FAF, then there is a definable subgroup $N \trianglelefteq G$ with $\dim(N) = 1$.

Theorem 1.10 (Without CFSG, K.-Wagner). Let G be a pseudofinite finite-dimensional group. If $\dim(G) = 3$, then either G is soluble-by-finite, or $\widetilde{Z}(G)$ is finite and $G/\widetilde{Z}(G)$ has a definable normal subgroup of finite index isomorphic to $PSL_2(F)$ where F is a pseudofinite field.

Question $1.11. \mbox{ Can one prove without CFSG that a simple pseudofinite group is finite-dimensional?}$

We use:

Theorem 1.12 (Feit-Thompson 1963). A finite group with no involutions is soluble.

Theorem 1.13. Let G be a finite simple non-abelian and 'large' group. If at least one of the following holds then $G \cong X(\mathbb{F}_q)$, where $X \in \{ PSL_2, PSL_3, PSU_3, Sz \}$.

- (Gorenstein et al.) $m_2(G) \leq 2$, i.e., if $j, k, \ell \in I(G)$ are distinct and pairwise commuting then $jk = \ell$.
- (Bender) G has a strongly embedded subgroup, i.e., there is $1 \neq C < G$ so that $I(C) \neq \emptyset$ and, whenever $g \in G \setminus C$, then $I(C \cap C^g) = \emptyset$.

⇒: If $G \equiv \prod_{i \in I} G_i / U$ is a semi-simple pseudofinite finite-dimensional group with dim(G) ≤ 3. Then $I(G) \neq \emptyset$. Further, if either $m_2(G) \leq 2$, or

■ *G* has a strongly embedded subgroup (i.e. a definable $C \leq G$ so that $C \equiv \prod_{i \in I} C_i / U$ with C_i strongly embedded in G_i),

then $\dim(G) = 3$ and G has a normal finite index subgroup isomorphic to PSL(F) where F is a pseudofinite field.

We also use the following generalisation of the famous Brauer-Fowler Theorem (1955):

We use:

Theorem 1.12 (Feit-Thompson 1963). A finite group with no involutions is soluble.

Theorem 1.13. Let G be a finite simple non-abelian and 'large' group. If at least one of the following holds then $G \cong X(\mathbb{F}_q)$, where $X \in \{ PSL_2, PSL_3, PSU_3, Sz \}$.

- (Gorenstein et al.) $m_2(G) \leq 2$, i.e., if $j, k, \ell \in I(G)$ are distinct and pairwise commuting then $jk = \ell$.
- (Bender) G has a strongly embedded subgroup, i.e., there is $1 \neq C < G$ so that $I(C) \neq \emptyset$ and, whenever $g \in G \setminus C$, then $I(C \cap C^g) = \emptyset$.

⇒: If $G \equiv \prod_{i \in I} G_i / U$ is a semi-simple pseudofinite finite-dimensional group with dim(G) ≤ 3. Then $I(G) \neq \emptyset$. Further, if either

- $m_2(G) \leqslant 2$, or
- *G* has a strongly embedded subgroup (i.e. a definable $C \leq G$ so that $C \equiv \prod_{i \in I} C_i / U$ with C_i strongly embedded in G_i),

then $\dim(G) = 3$ and G has a normal finite index subgroup isomorphic to PSL(F) where F is a pseudofinite field.

We also use the following generalisation of the famous Brauer-Fowler Theorem (1955):

We use:

Theorem 1.12 (Feit-Thompson 1963). A finite group with no involutions is soluble.

Theorem 1.13. Let G be a finite simple non-abelian and 'large' group. If at least one of the following holds then $G \cong X(\mathbb{F}_q)$, where $X \in \{ PSL_2, PSL_3, PSU_3, Sz \}$.

- (Gorenstein et al.) m₂(G) ≤ 2, i.e., if j, k, l ∈ I(G) are distinct and pairwise commuting then jk = l.
- (Bender) G has a strongly embedded subgroup, i.e., there is $1 \neq C < G$ so that $I(C) \neq \emptyset$ and, whenever $g \in G \setminus C$, then $I(C \cap C^g) = \emptyset$.

⇒: If $G \equiv \prod_{i \in I} G_i/U$ is a semi-simple pseudofinite finite-dimensional group with dim(G) ≤ 3. Then $I(G) \neq \emptyset$. Further, if either

- $m_2(G) \leqslant 2$, or
- G has a strongly embedded subgroup (i.e. a definable $C \leq G$ so that $C \equiv \prod_{i \in I} C_i / U$ with C_i strongly embedded in G_i),

then $\dim(G) = 3$ and G has a normal finite index subgroup isomorphic to PSL(F) where F is a pseudofinite field.

We also use the following generalisation of the famous Brauer-Fowler Theorem (1955):

We use:

Theorem 1.12 (Feit-Thompson 1963). A finite group with no involutions is soluble.

Theorem 1.13. Let G be a finite simple non-abelian and 'large' group. If at least one of the following holds then $G \cong X(\mathbb{F}_q)$, where $X \in \{ PSL_2, PSL_3, PSU_3, Sz \}$.

- (Gorenstein et al.) $m_2(G) \leq 2$, i.e., if $j, k, \ell \in I(G)$ are distinct and pairwise commuting then $jk = \ell$.
- (Bender) G has a strongly embedded subgroup, i.e., there is $1 \neq C < G$ so that $I(C) \neq \emptyset$ and, whenever $g \in G \setminus C$, then $I(C \cap C^g) = \emptyset$.

⇒: If $G \equiv \prod_{i \in I} G_i/U$ is a semi-simple pseudofinite finite-dimensional group with dim(G) ≤ 3. Then $I(G) \neq \emptyset$. Further, if either

- $m_2(G) \leqslant 2$, or
- G has a strongly embedded subgroup (i.e. a definable $C \leq G$ so that $C \equiv \prod_{i \in I} C_i / U$ with C_i strongly embedded in G_i),

then $\dim(G) = 3$ and G has a normal finite index subgroup isomorphic to PSL(F) where F is a pseudofinite field.

We also use the following generalisation of the famous Brauer-Fowler Theorem (1955):

Schlichting's Theorem

Theorem 1.15 (Schlichting/Wagner). Let G be a group and \mathcal{H} a uniformly commensurable family of subgroups of G. Then there is a subgroup $H \leq G$ which is uniformly commensurable to all members of \mathcal{H} and is invariant under all automorphisms of G which fix \mathcal{H} setwise.

An infinite group is called *almost simple* if it is not abelian-by-finite and has no definable normal subgroup of infinite index. It is not hard to verify the following things:

1 Let G be an almost simple icc^0 -group.

- a If H is an infinite definable subgroup of infinite index then $N_G(H) < G$.
- **b** If *H* is an infinite definable solvable-by-finite subgroup, then $\tilde{N}_G(H)$ has infinite index in *G* (note that almost simple implies semi-simple).
- **2** Let G be a pseudofinite finite-dimensional group with $\dim(G) \leq 3$ and H < G a definable subgroup of G s.t. $\dim(H) = 2$ and $\widetilde{N}_G(H) \neq G$. Then either $\widetilde{Z}(H)$ is finite or $\dim(\widetilde{Z}(G)) \geq 1$.

Schlichting's Theorem

Theorem 1.15 (Schlichting/Wagner). Let G be a group and \mathcal{H} a uniformly commensurable family of subgroups of G. Then there is a subgroup $H \leq G$ which is uniformly commensurable to all members of \mathcal{H} and is invariant under all automorphisms of G which fix \mathcal{H} setwise.

An infinite group is called *almost simple* if it is not abelian-by-finite and has no definable normal subgroup of infinite index. It is not hard to verify the following things:

- **1** Let G be an almost simple icc^0 -group.
 - a If H is an infinite definable subgroup of infinite index then $\tilde{N}_G(H) < G$.
 - **b** If *H* is an infinite definable solvable-by-finite subgroup, then $\tilde{N}_G(H)$ has infinite index in *G* (note that almost simple implies semi-simple).
- 2 Let G be a pseudofinite finite-dimensional group with $\dim(G) \leq 3$ and H < G a definable subgroup of G s.t. $\dim(H) = 2$ and $\widetilde{N}_G(H) \neq G$. Then either $\widetilde{Z}(H)$ is finite or $\dim(\widetilde{Z}(G)) \geq 1$.

2-dimensional subgroups

Lemma 1.16. Let G be an almost simple pseudofinite finite-dimensional group with $\dim(G) = 3$. Assume that all definable subgroups of dimension 2 are soluble-by-finite. If L is a definable subgroup of dimension 2, then:

1 $B = \widetilde{N}_G(L)$ is a maximal definable subgroup of dimension 2. Moreover, $B = \widetilde{N}_G(B)$; if $Z = \widetilde{Z}(B)$ then Z is finite, and B/Z is a Frobenius group with Frobenius kernel U/Z and Frobenius complement T/Z, where $U = \widetilde{C}_G(U)$ and $T = \widetilde{C}_B(T)$ have dimension 1 and are finite-by-abelian.

- **2** There is a pseudofinite field F such that $U/Z \cong F^+$ and T/Z embeds into F^{\times} as a subgroup of finite index. In particular T/Z is abelian, and T has only finitely many elements of any given order.
- **3** If $g \in G \setminus B$ then $U \cap U^g = 1$. If B contains involutions, then either B is strongly embedded, or there is an involution in $T \setminus Z$ and no involution in $U \setminus Z$.
- **4** Suppose $Z \neq 1$. If $g \in G \setminus B$ then $B \cap B^g$ is a finite index subgroup of T^u for some $u \in U$. Moreover, if $x \in B$ with dim $(C_G(x)) = 2$ then $x \in Z$.

Let G be an almost simple pseudofinite finite-dimensinal group with $\dim(G) \leq 3$; if $\dim(G) = 3$, let 2-dimensional subgroups be soluble-by-finite. Then G is a finite extension of $PSL_2(F)$:

■ May assume: G has no strongly embedded subgroup, $m_2(G) > 2$, $\forall i \in I(G)$ we have $\dim(C_G(i)) \ge 1$, and, if $\dim(G) = 2$ then $\forall i \in I(G)$ we have $\dim(C_G(i)) = 1$.

Set $C_j = \widetilde{C}_G(C_G(j))$ for $j \in I(G)$.

Claim 1: There is $i \in I(G)$ with $\dim(C_G(i)) = 1$. For such *i*, there is $k \in N_G(C_i) \setminus C_i$. If there is $j \in I(G)$ with $\dim(C_G(j)) = 2$ then *k* can be chosen from $C_G(i)$.

Fix *i* as in Claim 1 and set $N = N_G(C_i)$.

- Claim 2: An involution $k \in N \setminus C_i$ fixes unique involution ℓ in C_i and $\dim(C_G(k)) = \dim(C_G(\ell)) = 1$.
- Claim 3: Any two $x, y \in I(C_i)$ with $\dim(C_G(x)) = \dim(C_G(y)) = 1$ commute. Further, if $x, y, z \in I(C_i)$ are distinct with $\dim(C_G(x)) = \dim(C_G(y)) = \dim(C_G(z)) = 1$ then xyz = 1.

• Claim 4: $\dim(C_G(j)) = 1$ for all $j \in I(G)$.

Let G be an almost simple pseudofinite finite-dimensinal group with $\dim(G) \leq 3$; if $\dim(G) = 3$, let 2-dimensional subgroups be soluble-by-finite. Then G is a finite extension of $PSL_2(F)$:

• May assume: G has no strongly embedded subgroup, $m_2(G) > 2$, $\forall i \in I(G)$ we have $\dim(C_G(i)) \ge 1$, and, if $\dim(G) = 2$ then $\forall i \in I(G)$ we have $\dim(C_G(i)) = 1$.

Set $C_j = \widetilde{C}_G(C_G(j))$ for $j \in I(G)$.

Claim 1: There is $i \in I(G)$ with $\dim(C_G(i)) = 1$. For such *i*, there is $k \in N_G(C_i) \setminus C_i$. If there is $j \in I(G)$ with $\dim(C_G(j)) = 2$ then *k* can be chosen from $C_G(i)$.

Fix *i* as in Claim 1 and set $N = N_G(C_i)$.

- Claim 2: An involution $k \in N \setminus C_i$ fixes unique involution ℓ in C_i and $\dim(C_G(k)) = \dim(C_G(\ell)) = 1$.
- Claim 3: Any two $x, y \in I(C_i)$ with $\dim(C_G(x)) = \dim(C_G(y)) = 1$ commute. Further, if $x, y, z \in I(C_i)$ are distinct with $\dim(C_G(x)) = \dim(C_G(y)) = \dim(C_G(z)) = 1$ then xyz = 1.

Claim 4: dim $(C_G(j)) = 1$ for all $j \in I(G)$.

Let G be an almost simple pseudofinite finite-dimensinal group with $\dim(G) \leq 3$; if $\dim(G) = 3$, let 2-dimensional subgroups be soluble-by-finite. Then G is a finite extension of $PSL_2(F)$:

• May assume: G has no strongly embedded subgroup, $m_2(G) > 2$, $\forall i \in I(G)$ we have $\dim(C_G(i)) \ge 1$, and, if $\dim(G) = 2$ then $\forall i \in I(G)$ we have $\dim(C_G(i)) = 1$.

Set $C_j = \widetilde{C}_G(C_G(j))$ for $j \in I(G)$.

Claim 1: There is $i \in I(G)$ with $\dim(C_G(i)) = 1$. For such *i*, there is $k \in N_G(C_i) \setminus C_i$. If there is $j \in I(G)$ with $\dim(C_G(j)) = 2$ then *k* can be chosen from $C_G(i)$.

Fix *i* as in Claim 1 and set $N = N_G(C_i)$.

- Claim 2: An involution $k \in N \setminus C_i$ fixes unique involution ℓ in C_i and $\dim(C_G(k)) = \dim(C_G(\ell)) = 1$.
- Claim 3: Any two $x, y \in I(C_i)$ with $\dim(C_G(x)) = \dim(C_G(y)) = 1$ commute. Further, if $x, y, z \in I(C_i)$ are distinct with $\dim(C_G(x)) = \dim(C_G(y)) = \dim(C_G(z)) = 1$ then xyz = 1.

Claim 4: dim $(C_G(j)) = 1$ for all $j \in I(G)$.

Let G be an almost simple pseudofinite finite-dimensinal group with $\dim(G) \leq 3$; if $\dim(G) = 3$, let 2-dimensional subgroups be soluble-by-finite. Then G is a finite extension of $PSL_2(F)$:

• May assume: G has no strongly embedded subgroup, $m_2(G) > 2$, $\forall i \in I(G)$ we have $\dim(C_G(i)) \ge 1$, and, if $\dim(G) = 2$ then $\forall i \in I(G)$ we have $\dim(C_G(i)) = 1$.

Set $C_j = \widetilde{C}_G(C_G(j))$ for $j \in I(G)$.

Claim 1: There is $i \in I(G)$ with $\dim(C_G(i)) = 1$. For such *i*, there is $k \in N_G(C_i) \setminus C_i$. If there is $j \in I(G)$ with $\dim(C_G(j)) = 2$ then *k* can be chosen from $C_G(i)$.

Fix *i* as in Claim 1 and set $N = N_G(C_i)$.

- Claim 2: An involution $k \in N \setminus C_i$ fixes unique involution ℓ in C_i and $\dim(C_G(k)) = \dim(C_G(\ell)) = 1$.
- Claim 3: Any two $x, y \in I(C_i)$ with $\dim(C_G(x)) = \dim(C_G(y)) = 1$ commute. Further, if $x, y, z \in I(C_i)$ are distinct with $\dim(C_G(x)) = \dim(C_G(y)) = \dim(C_G(z)) = 1$ then xyz = 1.

• Claim 4: $\dim(C_G(j)) = 1$ for all $j \in I(G)$.

Let G be an almost simple pseudofinite finite-dimensinal group with $\dim(G) \leq 3$; if $\dim(G) = 3$, let 2-dimensional subgroups be soluble-by-finite. Then G is a finite extension of $PSL_2(F)$:

• May assume: G has no strongly embedded subgroup, $m_2(G) > 2$, $\forall i \in I(G)$ we have $\dim(C_G(i)) \ge 1$, and, if $\dim(G) = 2$ then $\forall i \in I(G)$ we have $\dim(C_G(i)) = 1$.

Set $C_j = \widetilde{C}_G(C_G(j))$ for $j \in I(G)$.

Claim 1: There is $i \in I(G)$ with $\dim(C_G(i)) = 1$. For such *i*, there is $k \in N_G(C_i) \setminus C_i$. If there is $j \in I(G)$ with $\dim(C_G(j)) = 2$ then *k* can be chosen from $C_G(i)$.

Fix *i* as in Claim 1 and set $N = N_G(C_i)$.

Claim 2: An involution $k \in N \setminus C_i$ fixes unique involution ℓ in C_i and $\dim(C_G(k)) = \dim(C_G(\ell)) = 1$.

Claim 3: Any two $x, y \in I(C_i)$ with $\dim(C_G(x)) = \dim(C_G(y)) = 1$ commute. Further, if $x, y, z \in I(C_i)$ are distinct with $\dim(C_G(x)) = \dim(C_G(y)) = \dim(C_G(z)) = 1$ then xyz = 1.

Claim 4: dim $(C_G(j)) = 1$ for all $j \in I(G)$.

Let G be an almost simple pseudofinite finite-dimensinal group with $\dim(G) \leq 3$; if $\dim(G) = 3$, let 2-dimensional subgroups be soluble-by-finite. Then G is a finite extension of $PSL_2(F)$:

• May assume: G has no strongly embedded subgroup, $m_2(G) > 2$, $\forall i \in I(G)$ we have $\dim(C_G(i)) \ge 1$, and, if $\dim(G) = 2$ then $\forall i \in I(G)$ we have $\dim(C_G(i)) = 1$.

Set $C_j = \widetilde{C}_G(C_G(j))$ for $j \in I(G)$.

Claim 1: There is $i \in I(G)$ with $\dim(C_G(i)) = 1$. For such *i*, there is $k \in N_G(C_i) \setminus C_i$. If there is $j \in I(G)$ with $\dim(C_G(j)) = 2$ then *k* can be chosen from $C_G(i)$.

Fix *i* as in Claim 1 and set $N = N_G(C_i)$.

- Claim 2: An involution $k \in N \setminus C_i$ fixes unique involution ℓ in C_i and $\dim(C_G(k)) = \dim(C_G(\ell)) = 1$.
- Claim 3: Any two $x, y \in I(C_i)$ with $\dim(C_G(x)) = \dim(C_G(y)) = 1$ commute. Further, if $x, y, z \in I(C_i)$ are distinct with $\dim(C_G(x)) = \dim(C_G(y)) = \dim(C_G(z)) = 1$ then xyz = 1.

Claim 4: dim $(C_G(j)) = 1$ for all $j \in I(G)$.

Let G be an almost simple pseudofinite finite-dimensinal group with $\dim(G) \leq 3$; if $\dim(G) = 3$, let 2-dimensional subgroups be soluble-by-finite. Then G is a finite extension of $PSL_2(F)$:

• May assume: G has no strongly embedded subgroup, $m_2(G) > 2$, $\forall i \in I(G)$ we have $\dim(C_G(i)) \ge 1$, and, if $\dim(G) = 2$ then $\forall i \in I(G)$ we have $\dim(C_G(i)) = 1$.

Set $C_j = \widetilde{C}_G(C_G(j))$ for $j \in I(G)$.

Claim 1: There is $i \in I(G)$ with $\dim(C_G(i)) = 1$. For such *i*, there is $k \in N_G(C_i) \setminus C_i$. If there is $j \in I(G)$ with $\dim(C_G(j)) = 2$ then *k* can be chosen from $C_G(i)$.

Fix *i* as in Claim 1 and set $N = N_G(C_i)$.

- Claim 2: An involution $k \in N \setminus C_i$ fixes unique involution ℓ in C_i and $\dim(C_G(k)) = \dim(C_G(\ell)) = 1$.
- Claim 3: Any two $x, y \in I(C_i)$ with $\dim(C_G(x)) = \dim(C_G(y)) = 1$ commute. Further, if $x, y, z \in I(C_i)$ are distinct with $\dim(C_G(x)) = \dim(C_G(y)) = \dim(C_G(z)) = 1$ then xyz = 1.

• Claim 4: $\dim(C_G(j)) = 1$ for all $j \in I(G)$.

⇒: By $m_2(G) > 2$ there are pairwise commuting $x, y, z \in I(G)$ with $xyz \neq 1$. Claim 4 and 3: either $C_x = C_y \neq C_z$ or $C_x \neq C_y \neq C_z$; in the former case $z \in N_G(C_x) \setminus C_x$ centralises $x, y \in C_x$ contradicts Claim 2 and in the latter case $yz \in C_x$ is centralised by $y \in N_G(C_x) \setminus C_x$, thus Claim 2 implies yz = x contradicting $xyz \neq 1$.

Finite-dimensional pseudofinite groups of small dimension, without CFSG 1.

Let G be an almost simple pseudofinite finite-dimensinal group with $\dim(G) \leq 3$; if $\dim(G) = 3$, let 2-dimensional subgroups be soluble-by-finite. Then G is a finite extension of $PSL_2(F)$:

• May assume: G has no strongly embedded subgroup, $m_2(G) > 2$, $\forall i \in I(G)$ we have $\dim(C_G(i)) \ge 1$, and, if $\dim(G) = 2$ then $\forall i \in I(G)$ we have $\dim(C_G(i)) = 1$.

Set $C_j = \widetilde{C}_G(C_G(j))$ for $j \in I(G)$.

Claim 1: There is $i \in I(G)$ with $\dim(C_G(i)) = 1$. For such *i*, there is $k \in N_G(C_i) \setminus C_i$. If there is $j \in I(G)$ with $\dim(C_G(j)) = 2$ then *k* can be chosen from $C_G(i)$.

Fix *i* as in Claim 1 and set $N = N_G(C_i)$.

- Claim 2: An involution $k \in N \setminus C_i$ fixes unique involution ℓ in C_i and $\dim(C_G(k)) = \dim(C_G(\ell)) = 1$.
- Claim 3: Any two $x, y \in I(C_i)$ with $\dim(C_G(x)) = \dim(C_G(y)) = 1$ commute. Further, if $x, y, z \in I(C_i)$ are distinct with $\dim(C_G(x)) = \dim(C_G(y)) = \dim(C_G(z)) = 1$ then xyz = 1.

• Claim 4: $\dim(C_G(j)) = 1$ for all $j \in I(G)$.

Concluding our results

• Let G be finite-dimensional pseudofinite group with $\dim(G) = 2$. Then G is soluble-by-finite:

Proof: If $\exists N \trianglelefteq G$ definable with $\dim(N) = 1$ then, setting $\overline{G} = G/C_N((\widetilde{Z}(N))')$, $\overline{S} = C_{\overline{G}}((\widetilde{Z}(\overline{G}))')$ is 2-nilpotent of finite index in \overline{G} ; its preimage is soluble of finite index in G. Otherwise, every finite normal subgroup of G is contained in $\widetilde{Z}(G)$; if G is not finite-by-abelian-by-finite then $\widetilde{Z}(G)$ is finite and $G/\widetilde{Z}(G)$ is almost simple of dimension 2. By the last slide, $G/\widetilde{Z}(G)$ is a finite extension of $PSL_2(F)$ so $\dim(G) = 3$; a contradiction.

■ Let G be finite-dimensional pseudofinite group with dim(G) = 3. If G is not soluble-by-finite then Z̃(G) is finite and G/Z̃(G) is a finite extension of PSL₂(F).

Proof: If $\exists N \trianglelefteq G$ definable with $1 \leq \dim(N) \leq 2$, then, by the above, N and G/N are soluble-by-finite and $C_G(N/\operatorname{Rad}(N))$ is a soluble-by-finite finite index subgroup of G. If such N does not exists and G is not finite-by-abelian-by-finite then $\widetilde{Z}(G)$ is finite and we get that $G/\widetilde{Z}(G)$ is a finite extension of $\operatorname{PSL}_2(F)$.

Concluding our results

• Let G be finite-dimensional pseudofinite group with $\dim(G) = 2$. Then G is soluble-by-finite:

Proof: If $\exists N \trianglelefteq G$ definable with $\dim(N) = 1$ then, setting $\overline{G} = G/C_N((\widetilde{Z}(N))')$, $\overline{S} = C_{\overline{G}}((\widetilde{Z}(\overline{G}))')$ is 2-nilpotent of finite index in \overline{G} ; its preimage is soluble of finite index in G. Otherwise, every finite normal subgroup of G is contained in $\widetilde{Z}(G)$; if G is not finite-by-abelian-by-finite then $\widetilde{Z}(G)$ is finite and $G/\widetilde{Z}(G)$ is almost simple of dimension 2. By the last slide, $G/\widetilde{Z}(G)$ is a finite extension of $PSL_2(F)$ so $\dim(G) = 3$; a contradiction.

■ Let G be finite-dimensional pseudofinite group with dim(G) = 3. If G is not soluble-by-finite then Z̃(G) is finite and G/Z̃(G) is a finite extension of PSL₂(F).

Proof: If $\exists N \trianglelefteq G$ definable with $1 \leq \dim(N) \leq 2$, then, by the above, N and G/N are soluble-by-finite and $C_G(N/\operatorname{Rad}(N))$ is a soluble-by-finite finite index subgroup of G. If such N does not exists and G is not finite-by-abelian-by-finite then $\widetilde{Z}(G)$ is finite and we get that $G/\widetilde{Z}(G)$ is a finite extension of $\operatorname{PSL}_2(F)$.

Thank you!