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Introduction I

I This is joint with Atticus Stonestrom. No arXiv preprint yet,
but soon.

I First, best wishes to Frank for his 60th birthday and hopefully
there is time tonight to say a few words?

I It is nice to talk about this material in this conference as it
involves all the words in the conference title.

I The title of the talk is a bit different from our title in the
schedule, but it is the identical content.

I The general idea (which has been germinating for some time)
is to adapt Tao’s algebraic regularity lemma for graphs
(uniformly) definable in finite fields, to pairs (G,D), G a
group, D ⊆ G, uniformly definable in finite fields.

I Tao’s improvement over the conclusion of Szemeredi graph
regularity consisted of so-called “power-saving” as well as the
non-existence of exceptional pairs.
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Introduction II

I This regime of looking at pairs (G,D) is often called the
“arithmetic regularity” regime, begun by Green, 2005, and
continued by Terry-Wolf in a stable “finite field model”
environment, then by Conant-Pillay-Terry (stable, NIP ) and
then much more, including a recent functional or analytic
version with Conant.

I Anyway, to a pair (G,D) we can associate the bipartite graph
(G,G,E) where E(x, y) means xy−1 ∈ D, to which Tao
applies.

I Our main point is that Tao’s algebraic regularity lemma
applies in the optimal manner, in particular there is a
(uniformly definable, bounded index, normal) subgroup H of
G such that for any two cosets V , W of H in G, the
bipartitite graph (V,W,E|(V ×W )) is regular.

I I did not give all the background (Szemeredi graph regularity,
Tao algebraic regularity), but I will now state our results in a
precise manner, so things should hopefully be clarified.
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Statements of results I

I The expressions ε-quasirandom, ε-regular, ε-uniform for both
finite bipartite graphs and subsets of finite groups, are more or
less synonymous. We will state definitions and relationships
later:

Theorem 0.1
Given M there is C > 0 such that for any finite field F and D ⊆ G
both definable of complexity at most M in F (G a group), there is
a normal subgroup H of G definable in F with complexity at most
C and index at most C such that for any two cosets V,W of H in
G, the bipartite graph (V,W, xy−1 ∈ D) is C|F|−1/2-quasirandom.

I Complexity can be read as number of symbols in the language
of unitary rings used in the formulas defining the data. The
Theorem can also be stated in the language of uniform
definability: given formula φ(x, y) there is formula ψ(x, z) etc.
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Statements of results II

Here is a Fourier analytic restatement:

Corollary 0.2

Given M there is C > 0 such that for any finite field F, group G
definable in F and definable subset D of G, there is a definable
normal subgroup H of G of complexity and index at most C, such
that for all g ∈ G, H ∩Dg is a C|F|−1/8-quasirandom subset of
H, in the Fourier analytic sense; the Fourier coefficients of the
indicator function 1H∩Dg : H → C are bounded by C|F|−1/8

I We give some definitions and relationships, taken partly from
Gowers’ “Quasirandom groups”.

I Let (V,W,E) be a finite bipartite graph, with d equal its
density |E|/|V ||W |. (V,W,E) is ε-quasirandom if∑

v,v′∈V |E(v,W ) ∩ E(v′,W )|2 ≤ (d+ ε)|V |2|W |2 (or
equivalently with the same bound reversing the roles of V,W ).

I The notion has origin in work of Chung, Graham, Wilson (for
unipartite graphs).
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Statement of results III

I It is a fact that (i) ε-quasirandomness of (V,W,E) implies
ε1/4-regularity of (V,W,E), namely for any A ⊆ V , B ⊆W ,
((|E ∩ (A×B)|/|A||B|)− d| ≤ ε1/4|V ||W |/|A||B|,

I (So for |A| ≥ ε1/2|V | and |B| ≥ ε1/2|W |, the difference
between the density of the induced graph on vertex sets A,B
and the density of (V,W,E) is at most ε1/2),

I (ii) ε-regularity of (V,W,E) implies 12ε-quasirandomness of
(V,W,E).

I Quasirandomness of subsets of finite groups is widely used in
additive combinatorics on abelian groups.

I We discuss the version for possibly nonabelian groups.
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Statement of results IV

I Given a finite group H let Ĥ be the set of irreducible complex
(unitary) representations of H, and for f : H → C, the
Fourier transform f̂ of f is the map taking π ∈ Ĥ to
1/|H|(

∑
h∈H f(h)π(h

−1)) an endomorphism of Vπ.

I The Fourier coefficient of f at π is ||f̂(π)|| (operator norm).
And we will call D ⊆ H ε-quasirandom if for all nontrivial
π ∈ Ĥ, ||1̂D−1(π)|| ≤ ε, equivalently ||

∑
h∈D π(d)|| ≤ ε|H|.

I Then the relevant facts are that if D ⊆ H is ε-quasirandom,
then the graph (H,H, xy−1 ∈ D) is ε2-quasirandom, as
defined above, and

I If (H,H, xy−1 ∈ D) is ε-quasirandom, then D is
ε1/4-quasirandom.

I So the conclusion of Corollary 0.2 is that there is this
definable normal subgroup H of G of complexity and index at
most C such that for all g ∈ G, and nontrivial π ∈ Ĥ,
||
∑

h∈H∩Dg π(h)|| ≤ C|F |−1/8.
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Comments

I In the usual Szemeredi graph regularity statement (and tame
variants), ε is given in advance, and then one finds N such
that any finite bipartite graph can be partitioned into at most
N2 subgraphs such that outside some exceptions all these
subgraphs are ε-regular (or better, such as ε-homogeneous).

I In both Tao’s algebraic regularity lemma and Theorem 1.1, no
ε is given in advance, and the degree of regularity of the
subgraphs is better as the finite field gets bigger. (Power
saving?)

I Moreover there are no exceptional pairs. And as mentioned in
our “arithmetic case” the decomposition of the associated
bipartite graph (G,G, xy−1 ∈ D) is compatible, in the best
possible sense, with the group structure.

I One may have expected Bohr neighbourhoods of one kind or
another to have shown up. The reason they do not is that if
G is a group definable in a supersimple theory then G00

A = G0
A

(intersection of A-definable subgroups of finite index).
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I One may have expected Bohr neighbourhoods of one kind or
another to have shown up. The reason they do not is that if
G is a group definable in a supersimple theory then G00

A = G0
A

(intersection of A-definable subgroups of finite index).
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Connections I

I Theorem 0.1 appears to be a fairly powerful statement which
should (together with other things) have interesting
consequences we have not yet explored. For example we kind
of checked that it yields the results in Daniel’s talk on
Tuesday.

I Let us first note that the (uniformly) definable groups in finite
fields F are essentially of the form G(F) for G an algebraic
group over F.

I Two extreme cases of such groups are semisimple algebraic
groups and commutative algebraic groups.

I Let us consider the first case. Suppose G is a connected,
simply connected, semisimple algebraic group over Z (such as
SL2).

I So (maybe assuming some good reduction) there are no
uniformly definable finite index subgroups of G(F) as F
ranges over all finite fields. (Explain?)
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Connections II

I So by Theorem 0.1, given M , there is C such that for any
finite field F and definable subset D of G(F) of complexity at
most M , D is C|F|1/8-quasirandom.

I On the other hand, In the Gowers paper I referred to there is
a notion of quasirandomness of finite groups G, with several
equivalent characterizations, such as G is d-quasirandom if
there are no (irreducible, unitary, nontrivial) representations of
G of dimension < d.

I A couple of things are proved/observed; If d is the minimial
dimension of a nontrivial irreducible representation of G then
every subset of G is d−1/2-quasirandom as defined earlier.

I Also in the special case of SL2, for every finite field Fq,
SL2(Fq) is (q − 1)/2 quasirandom , whence every (not just
uniformly definable) subset of it is 2q−1/2-quasirandom.

I There should be related computations of the degree of
quasirandomess of arbitrary semisimple algebraic groups, in
which case Theorem 0.1 may not say very much new.
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Connections III

I We now consider the abelian case.

I Green’s paper “ A Szemeredi-type regularity lemma in abelian
groups...” (GAFA 2005), which initiated the arithmetic
regularity project (I think) gives a somewhat complicated
result about all pairs (G,A) where G is a finite abelian group
and A an arbitrary subset.

I In the special case case when G varies among
finite-dimensional vector spaces over Fp for fixed p (in fact he
does it explicitly only for p = 2), Szemeredi regularity for
(G,G, x− y ∈ A) does apply in the optimal manner, as
follows:

I (Green) Fix p and ε. Then there is C > 0 such that for any n
if G = (Fp)

n and D is an arbitrary subset of G, then there is
a subgroup (subspace) H of G, such that, outside a small
exceptional set, for all cosets V,W of H in G,
(V,W, x− y ∈ D) is ε-regular (as described earlier).
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Connections IV

I Notice that the groups Fnp as p and n vary are precisely the
additive groups of the finite fields Fq.

I So we can apply Theorem 0.1 to get that for any M there is
C such that for any finite field F and definable subset D of
complexity at most M of F, there is a subspace H of (F,+)
of index at most C, such that for all cosets V,W of H in
(F,+), (V,W, x− y ∈ D) is C|F|−1/8-regular.

I The disadvantage is that we are only discussing uniformly
definable subsets.

I The advantage is that this is uniform in p, and is “power
bounded” with no exceptional pairs.
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Methods I

I We briefly describe some key points of the proof.

I As usual we prove a theorem in pseudofinite fields (and then
use the “pseudofinite yoga”).

I So F =M is a (saturated) pseudofinite field, G a group
definable in F and D a definable over M subset of G. We
may also use G to denote the points in a bigger saturated
model. And we also have the nonstandard counting measure
ν.

I Here generic means maximal dimension (in the geometric
structure M).

I Th(M) is supersimple of SU -rank 1 and dimension
independence agrees with nonforking independence.

I What Daniel called the p, q, r theorem is due to Amador and
me (and is a relatively straightforward extension of a result by
Scanlon, Wagner and me);
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Methods II

I If p, q, r ∈ SG(M) are types of maximal dimension (generic),
and (p/G0

M )× (q/G0
M ) = r/G0

M in G/G0
M , then there are

pairwise independent over M realizations a, b, c of p, q, r with
a× b = c.

I The second point (using stability of suitable relations) is that
if b, c realise generic types over M and are independent over
M , then ν(bD ∩ cD) depends only on the cosets of b, c
modulo G0

M .

I Using compactness we find a normal definable (over M)
subgroup H of G and an M -definable subset F of G×G of
dimension < 2dim(G) such that for any cosets V,W of H in
G, the value of ν(bD ∩ cD) is constant as b, c range over
elements of V,W respectively.

I This plus a symmetric version and methods from Tao’s paper
will be enough to get the results.
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