Algorithmic Robust Statistics

Ilias Diakonikolas (UW Madison) Mathematical Methods of Statistics, CIRM December 2023 INFORMATION-COMPUTATION TRADEOFFS (IN ROBUST STATISTICS)

OBSERVED STATISTICAL-INFORMATION GAPS

Problem 1: Robust Mean Estimation for $\mathcal{N}(\mu, I)$ in strong contamination model

- Information-theoretic: $O(\epsilon)$
- Computational: $O(\epsilon \sqrt{\log(1/\epsilon)})$ [D-Kane-Kamath-Li-Moitra-Stewart'16]

Problem 2: Robust Sparse Mean Estimation for $\mathcal{N}(\mu, I)$ in Huber's model

- Information-theoretic: $O(k \log(d)/\epsilon^2)$
- Computational: $O(k^2 \log(d)/\epsilon^2)$ [Li'17]

Problem 3: Robust covariance estimation for $\mathcal{N}(0, \Sigma)$ in spectral norm

- Information-theoretic: O(d)
- Computational: $\Omega(d^2)$ [D-Kane-Kamath-Li-Moitra-Stewart'16]

Are these observed information-computation gaps inherent?

STATISTICAL QUERY (SQ) MODEL [KEARNS'93]

POWER OF SQ ALGORITHMS

- **Restricted Model**: Can prove unconditional lower bounds.
- **Powerful Model**: Wide range of algorithmic techniques in ML are implementable using SQs:
 - PAC Learning: AC⁰, decision trees, linear separators, boosting
 - Unsupervised Learning: stochastic convex optimization, moment-based methods, *k*-means clustering, EM, ... [Feldman-Grigorescu-Reyzin-Vempala-Xiao, JACM'17]
- Exceptions: Gaussian elimination, lattice basis-reduction [D-Kane'22, Zadik-Song-Wein-Bruna'22]
- SQ Model ≈ Low-degree Polynomial Tests [Brennan-Bresler-Hopkins-Li-Schramm'21]

INTERPRETATION OF SQ LOWER BOUNDS

Suppose we have proved:

Any SQ algorithm for problem P

- either requires queries of tolerance at most au
- or makes at least *q* queries.

Then we can interpret:

Any SQ algorithm* for problem P	
- either requires at least $1/ au^2$ samples	i
• or has runtime at least <i>q</i> .	1
	2

SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION

Theorem: Any SQ algorithm that learns an ϵ - corrupted Gaussian $\mathcal{N}(\mu, I)$ in the strong contamination model within error

 $o(\epsilon \sqrt{\log(1/\epsilon)})$

requires either:

• SQ queries of accuracy
$$d^{-\omega(1)}$$

or

• at least $d^{\omega(1)}$ many SQ queries.

Take-away: Any asymptotic improvement in error guarantee over filtering algorithm requires superpolynomial time.

SQ LOWER BOUND FOR ROBUST SPARSE MEAN ESTIMATION

Theorem: Any SQ algorithm that learns an ϵ - corrupted Gaussian $\mathcal{N}(\mu, I)$ where is *k*-sparse within constant error requires either:

- $\Omega(k^2)$ samples
- or
- at least $d^{k^{\Omega(1)}}$ many SQ queries.

Minimax sample complexity is $\Theta(k \log(d/k)/\epsilon^2)$

Take-away: Any asymptotic improvement in error guarantee over known efficient algorithms [Li'17, DKKPS'19,...] requires super-polynomial time.

SQ LOWER BOUND FOR LEARNING GMMS

Theorem: Any SQ algorithm that learns GMMs on \mathbb{R}^d to constant total variation error requires either:

- $d^{\Omega(k)}$ samples
- or
- at least $2^{d^{\Omega(1)}}$ many SQ queries.

even if the components are pairwise separated in total variation distance.

Minimax sample complexity is poly(d, k)

Take-away: Computational complexity of learning separated GMMs is inherently exponential in **number of components**.

NON-GAUSSIAN COMPONENT ANALYSIS (NGCA)

Given samples from a distribution on \mathbb{R}^d , find a hidden "non-Gaussian" direction.

• Introduced in [Blanchard-Kawanabe-Sugiyama-Spokoiny-Muller'06].

 Studied extensively from algorithmic standpoint.
[Kawanabe-Theis'06; Kawanabe-Sugiyama-Blanchard-Muller'07; Diederichs-Juditsky-Spokoiny-Schutte'10; Diederichs-Juditsky-Nemirovski-Spokoiny'13; Bean'14; Sasaki-Niu-Sugiyama'16; Virta-Nordhausen-Oja'16; Vempala-Xiao'11; Tan-Vershynin'18; Goyal-Shetty'19]

NON-GAUSSIAN COMPONENT ANALYSIS (NGCA): DEFINITION

Definition: Let v be a unit vector in \mathbb{R}^d and $A : \mathbb{R} \to \mathbb{R}_+$ be a pdf. We define \mathbf{P}_v^A to be the distribution with v-projection equal to A and v^{\perp} -projection an independent standard Gaussian.

NGCA Problem: Given *A* that matches the first *m* moments with $\mathcal{N}(0,1)$: Using i.i.d. samples from \mathbf{P}_v^A where *v* is unknown, find the hidden direction *v*. NGCA captures interesting instances of several (robust) learning tasks

- Learning Gaussian Mixtures [D-Kane-Stewart'17, D-Kane-Pittas-Zarifis'23]
- Robust mean and covariance estimation [D-Kane-Stewart'17]
- Robust sparse mean estimation, sparse PCA [D-Kane-Stewart'17, D-Stewart'18]
- Robust linear regression [D-Kong-Stewart'19]
- List-decodable learning [D-Kane-Stewart'18, D-Kane-Pensia-Pittas-Stewart'21]
- Adversarially robust PAC learning [Bubeck-Price-Razenshteyn'18]
- Agnostic PAC Learning [Goel-Gollakota-Klivans'20, D-Kane-Zarifis'20, D-Kane-Pittas-Zarifis'21]
- Learning LTFs with (Semi)-random Noise [D-Kane'20, Nasser-Tiegal'22, D-J.D.-Kane-Wang-Zarifis'23]
- Learning (Very Simple) NNs and Generative Models [Goel-Gollakota-Jin-Karmalkar-Klivans'20, D-Kane-Kontonis-Zarifis'20 Chen-Li-Li'22]
- Learning Mixtures of LTFs [D-Kane-Sun'23]
- ...

INFORMAL LOWER BOUND RESULT

Fact: Non-Gaussian Component Analysis

- Can be solved with poly(d, m) samples.
- All known efficient algorithms require at least $d^{\Omega(m)}$ samples (and time).

Informal Theorem: For *any* "nice" univariate distribution A matching its first *m* moments with the standard Gaussian, any^{*} algorithm that solves NGCA

- either draws at least $d^{\Omega(m)}$ samples
- or has runtime $2^{d^{\Omega(1)}}$

*holds for any Statistical Query (SQ) algorithm

[D-Kane-Stewart, FOCS'17; D-Kane-Ren-Sun, NeurIPS'23]

GENERAL METHODOLOGY FOR SQ LOWER BOUNDS

Hypothesis Testing Problem: Given access to a distribution D on \mathbb{R}^d with promise that • either $D = D_0$

• or *D* is selected randomly from $\mathcal{D} = \{D_u\}_{u \in S}$ according to prior μ

the goal is to distinguish between the two cases.

Pairwise correlation: $\chi_{D_0}(p,q) = \mathbf{E}_{x \sim D_0}[(p/D_0)(x)(q/D_0)(x)] - 1$

Theorem [FGRVX'17]: Suppose there exists a "large" set of distributions in \mathcal{D} with "small" pairwise correlation with respect to D_0 . Then any SQ algorithm for hypothesis testing task:

- either requires at least one "high-accuracy" query
- or requires a "large" number of queries.

STATISTICAL QUERY HARDNESS OF NGCA

Testing Version of NGCA: Given access to a distribution D on \mathbb{R}^d with the promise that

- either $D = \mathcal{N}(0, I)$
- or $D = \mathbf{P}_v^A$, where v is a uniformly random unit vector

the goal is to distinguish between the two cases.

Main Theorem [D-Kane-Stewart'17]

Suppose that *A* matches its first *m* moments with $\mathcal{N}(0,1)$ and $\chi^2(A, \mathcal{N}(0,1)) < \infty$. Any SQ algorithm for the testing version of NGCA:

- either requires a query of tolerance at most $d^{-\Omega(m)} \ \chi^2(A,\mathcal{N}(0,1))^{1/2}$
- or requires at least $2^{d^{\Omega(1)}}$ many queries.

INTUITION: WHY IS NGCA "HARD"?

Claim 1: Low-degree moments do not help.

• Degree at most *m* moment tensor of \mathbf{P}_v^A identical to that of $\mathcal{N}(\mathbf{0}, I_d)$

Claim 2: Random projections do not help.

Distinguishing requires exponentially many random projections.

KEY LEMMA: RANDOM PROJECTIONS ARE ALMOST GAUSSIAN

Key Lemma: Let Q be the distribution of $v' \cdot X$, where $X \sim \mathbf{P}_v^A$. Then, we have that: $\chi^2(Q, \mathcal{N}(0, 1)) \leq (v \cdot v')^{2(m+1)} \chi^2(A, \mathcal{N}(0, 1))$

SQ LOWER BOUND: PROOF OVERVIEW

Want exponentially many \mathbf{P}_v^A is that are nearly uncorrelated.

- Pick set ${\mathcal V}$ of near-orthogonal unit vectors. Can get $|{\mathcal V}|=2^{d^{\Omega(1)}}$
- Have

$$\chi_{\mathcal{N}(\mathbf{0},I_d)}(\mathbf{P}_v^A,\mathbf{P}_{v'}^A) = \chi_{\mathcal{N}(0,1)}(A,U_{\theta}A) \le |\cos^{m+1}(\theta)|\chi^2(A,\mathcal{N}(0,1))$$

RECIPE FOR SQ HARDNESS RESULTS

Main Theorem [D-Kane-Stewart'17]

Suppose that A matches its first m moments with $\mathcal{N}(0,1)$ and $\chi^2(A,\mathcal{N}(0,1)) < \infty$. Any SQ algorithm for the testing version of NGCA:

- either requires a query of tolerance at most $d^{-\Omega(m)} \chi^2(A, \mathcal{N}(0, 1))^{1/2}$ or requires at least $2^{d^{\Omega(1)}}$ many queries.

Recipe. Encode Π as a NGCA instance:

- Construct moment-matching distribution A such that \mathbf{P}_{v}^{A} is a **valid instance** of Π . •
- Match as many low-degree moments as possible. •

MOMENT-MATCHING FOR ROBUST MEAN ESTIMATION

Lemma: There exists a univariate distribution *A* such that:

- A agrees with $\mathcal{N}(0,1)$ on the first *m* moments
- A satisfies $d_{\text{TV}}(A, N(\delta, 1)) \leq O(\delta m^2 / \sqrt{\log(1/\delta)})$

Proof Idea:

- Take $C = \Theta(\sqrt{\log(1/\delta)})$
- Define

$$A(x) = \begin{cases} G(x - \delta), \ x \notin [-C, C] \\ G(x - \delta) + p(x), \ x \in [-C, C] \end{cases}$$

where p is degree-m moment-matching polynomial.

MOMENT-MATCHING FOR LEARNING GMMS

Lemma: There exists a univariate *k*-GMM *A* with nearly non-overlapping components such that: *A* agrees with $\mathcal{N}(0, 1)$ on the first 2k-1 moments.

Proof Idea:

- Construct discrete distribution *B* with support *k* matching its first 2k-1 moments with $\mathcal{N}(0,1)$.
- Rescale *B* and add a "skinny" Gaussian to get *A*.

SQ HARD INSTANCES FOR GMMS: PARALLEL PANCAKES

SQ HARDNESS FOR WIDE RANGE OF PROBLEMS

NGCA captures SQ hard instances of several well-studied learning tasks

- Learning GMMs [D-Kane-Stewart'17, D-Kane-Pittas-Zarifis'23]
- Robust mean and covariance estimation [D-Kane-Stewart'17]
- Robust sparse mean estimation, sparse PCA [D-Kane-Stewart'17, D-Stewart'18]
- Robust linear regression [D-Kong-Stewart'19]
- List-decodable learning [D-Kane-Stewart'18, D-Kane-Pensia-Pittas-Stewart'21]
- Adversarially robust PAC learning [Bubeck-Price-Razenshteyn'18]
- Agnostic PAC Learning [Goel-Gollakota-Klivans'20, D-Kane-Zarifis'20, D-Kane-Pittas-Zarifis'21]
- Learning LTFs with (Semi)-random Noise [D-Kane'20, Nasser-Tiegal'22, D-J.D.-Kane-Wang-Zarifis'23]
- Learning (Very Simple) NNs and Generative Models [Goel-Gollakota-Jin-Karmalkar-Klivans'20, D-Kane-Kontonis-Zarifis'20 Chen-Li-Li'22]
- Learning Mixtures of LTFs [D-Kane-Sun'23]
- ...

OPEN PROBLEMS

NGCA leads to wide range of hardness results in SQ model

Open Problem 1: Alternative evidence of hardness?

Already known for special cases (reductions):

- Robust sparse mean estimation [Brennan-Bresler'20]
- Learning GMMs [Bruna-Regev-Song-Tang'21]
- Learning with Semi-random Noise [D-Kane-Panurangsi-Ren'22, D-Kane-Ren'23]

Open Problem 2: How general is this phenomenon?

Open Problem 3: Prove SoS lower bounds for NGCA.

SQ hard instances are computationally hard

LEARNING WITH A MAJORITY OF OUTLIERS

- So far focused on setting where $\epsilon < 1/2$.
- What can we learn from a dataset in which the *majority* of points are corrupted?

Problem: Given a set of points $x_1, \ldots, x_N \in \mathbb{R}^d$ and $0 < \alpha \le 1/2$ such that:

- An unknown subset of lpha N points are drawn from an unknown $D\in \mathcal{F}$, and
- The remaining $(1 \alpha)N$ points are arbitrary,

approximate the mean μ of D.

LIST-DECODABLE LEARNING

• Return several hypotheses with the guarantee that at least one is close.

List-Decodable Mean Estimation:

Given a set of points $x_1, \ldots, x_N \in \mathbb{R}^d$ and $0 < \alpha \leq 1/2$ such that:

- An unknown subset of lpha N points are drawn from an unknown $D\in \mathcal{F}$, and
- The remaining $(1 \alpha)N$ points are arbitrary,

output a small list of s hypotheses vectors such that one is close to the mean μ of D.

- Model defined in [Balcan-Blum-Vempala'08]
- First studied for mean estimation [Charikar-Steinhardt-Valiant'17]
- Application: Learning Mixture Models

LIST-DECODABLE MEAN ESTIMATION

Theorem [Charikar-Steinhardt-Valiant'17]: Let $0 < \alpha \le 1/2$. If D has covariance $\Sigma \preceq I$ there is an efficient algorithm that uses $N \ge d/\alpha$ corrupted points, and outputs a list of $s = O(1/\alpha)$ vectors $\hat{\mu}_1, \ldots, \hat{\mu}_s$ such that with high probability $\min_i \|\hat{\mu}_i - \mu\|_2 = \tilde{O}(1/\sqrt{\alpha}).$

Theorem [D-Kane-Stewart'18] Any list-decodable mean estimator for bounded covariance distributions must have error $\Omega(1/\sqrt{\alpha})$ as long as the list size is any function of α .

- Initial algorithm [CSV'17] based on ellipsoid method.
- Generalization of filtering ("multi-filtering") works for list-decodable setting [DKS'18].
- Near-linear time algorithm [D-Kane-Koongsgard-Li-Tian'22].

FUTURE DIRECTIONS: ALGORITHMS

- Pick your favorite high-dimensional probabilistic model for which a (non-robust) efficient learning algorithm is known.
- Make it robust!

BROADER RESEARCH DIRECTIONS

General Algorithmic Theory of Robustness

How can we robustly learn rich representations of data, based on natural hypotheses about the structure in data?

Can we robustly *test* our hypotheses about structure in data before learning?

Broader Challenges:

- Relation to Related Notions of Algorithmic Stability (Differential Privacy, Adaptive Data Analysis)
- Resource tradeoffs (e.g., memory, communication)
- Further Applications (ML Security, Computer Vision, ...)
- Connections to Adversarial Examples/Distribution Shift
- Other notions of robustness? (heavy-tailed, semi-random, oblivious noise, missing data,...)

Thank you! Questions?