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INFORMATION-COMPUTATION TRADEOFFS
(IN ROBUST STATISTICS)



OBSERVED STATISTICAL-INFORMATION GAPS

Problem 1: Robust Mean Estimation for              in strong contamination model

- Information-theoretic:
- Computational:                           [D-Kane-Kamath-Li-Moitra-Stewart’16]  

Problem 2: Robust Sparse Mean Estimation for              in Huber’s model

- Information-theoretic:
- Computational:                           [Li’17]                       

Problem 3: Robust covariance estimation for              in spectral norm
- Information-theoretic:
- Computational:            [D-Kane-Kamath-Li-Moitra-Stewart’16] 

Are these observed information-computation gaps inherent?



STATISTICAL QUERY (SQ) MODEL [KEARNS’93] 

Unrestricted algorithm

SQ algorithm

Q2

Qq

......

Statistical Query:

returns      :
tolerance of 
the query

Complexity measures
• Number of queries: 
• Query tolerance: 

Runtime
Sample complexity



POWER OF SQ ALGORITHMS

• Restricted Model: Can prove unconditional lower bounds.

• Powerful Model: Wide range of algorithmic techniques in ML are implementable using SQs:
- PAC Learning: AC0, decision trees, linear separators, boosting
- Unsupervised Learning: stochastic convex optimization, moment-based methods, 

k-means clustering, EM, … [Feldman-Grigorescu-Reyzin-Vempala-Xiao, JACM’17]

• Exceptions: Gaussian elimination, lattice basis-reduction [D-Kane’22, Zadik-Song-Wein-
Bruna’22]

• SQ Model     Low-degree Polynomial Tests [Brennan-Bresler-Hopkins-Li-Schramm’21]



INTERPRETATION OF SQ LOWER BOUNDS

Suppose we have proved:

Any SQ algorithm for problem P
• either requires queries of tolerance at most    
• or makes at least q queries.

Then we can interpret:

Any SQ algorithm* for problem P
• either requires at least           samples
• or has runtime at least q.



SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION

Theorem: Any SQ algorithm that learns an    - corrupted Gaussian              in the strong 
contamination model within error

requires either:
• SQ queries of accuracy 
or
• at least           many SQ queries.

o(✏
p
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Take-away: Any asymptotic improvement in error guarantee over filtering algorithm requires super-
polynomial time.
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SQ LOWER BOUND FOR ROBUST SPARSE MEAN ESTIMATION

Theorem: Any SQ algorithm that learns an    - corrupted Gaussian              where is 
k-sparse within constant error requires either:
• samples 
or
• at least           many SQ queries.

Take-away: Any asymptotic improvement in error guarantee over known efficient algorithms [Li’17, 
DKKPS’19,…] requires super-polynomial time.

Minimax sample complexity is 



SQ LOWER BOUND FOR LEARNING GMMS

Theorem: Any SQ algorithm that learns GMMs on      to constant total variation error requires 
either:
• samples 
or
• at least           many SQ queries.

even if the components are pairwise separated in total variation distance.

Take-away: Computational complexity of learning separated GMMs is inherently exponential in 
number of components.

Minimax sample complexity is 



NON-GAUSSIAN COMPONENT ANALYSIS (NGCA)

Given samples from a distribution on      , find a hidden “non-Gaussian” direction.

• Introduced in [Blanchard-Kawanabe-Sugiyama-Spokoiny-Muller’06].

• Studied extensively from algorithmic standpoint.
[ Kawanabe-Theis’06; Kawanabe-Sugiyama-Blanchard-Muller’07; 
Diederichs-Juditsky-Spokoiny-Schutte’10; Diederichs-Juditsky-Nemirovski-Spokoiny’13; 
Bean’14; Sasaki-Niu-Sugiyama’16; Virta-Nordhausen-Oja’16; 
Vempala-Xiao’11; Tan-Vershynin’18; Goyal-Shetty’19]



NON-GAUSSIAN COMPONENT ANALYSIS (NGCA): DEFINITION

Definition: Let     be a unit vector in       and                       be a pdf. We define        to be the 
distribution with    - projection equal to     and       - projection an independent standard Gaussian.

NGCA Problem: Given     that matches the first      moments with              :
Using i.i.d. samples from         where    is unknown, find the hidden direction    .



NGCA captures interesting instances of several (robust) learning tasks



• Learning Gaussian Mixtures [D-Kane-Stewart’17, D-Kane-Pittas-Zarifis’23]
• Robust mean and covariance estimation [D-Kane-Stewart’17]
• Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’17, D-Stewart’18]
• Robust linear regression [D-Kong-Stewart’19]
• List-decodable learning [D-Kane-Stewart’18, D-Kane-Pensia-Pittas-Stewart’21]
• Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’18]
• Agnostic PAC Learning [Goel-Gollakota-Klivans’20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis’21]
• Learning LTFs with (Semi)-random Noise [D-Kane’20, Nasser-Tiegal’22, D-J.D.-Kane-Wang-

Zarifis’23]
• Learning (Very Simple) NNs and Generative Models [Goel-Gollakota-Jin-Karmalkar-Klivans’20,

D-Kane-Kontonis-Zarifis’20 Chen-Li-Li’22]
• Learning Mixtures of LTFs [D-Kane-Sun’23]
• …



INFORMAL LOWER BOUND RESULT

*holds for any Statistical Query (SQ) algorithm

[D-Kane-Stewart, FOCS’17; D-Kane-Ren-Sun, NeurIPS’23]

Fact: Non-Gaussian Component Analysis
• Can be solved with                    samples. 
• All known efficient algorithms require at least            samples (and time).

Informal Theorem: For any “nice” univariate distribution      matching its first m moments with 
the standard Gaussian, any* algorithm that solves NGCA 
• either draws at least            samples
• or has runtime            . 



GENERAL METHODOLOGY FOR SQ LOWER BOUNDS

Pairwise correlation: 

Hypothesis Testing Problem: Given access to a distribution     on       with promise that
• either                 
• or     is selected randomly from                          according to prior 
the goal is to distinguish between the two cases.

Theorem [FGRVX’17]: Suppose there exists a “large” set of distributions in     with “small” 
pairwise correlation with respect to       . Then any SQ algorithm for hypothesis testing task:
• either requires at least one “high-accuracy” query
• or requires a ”large” number of queries. 



STATISTICAL QUERY HARDNESS OF NGCA

Main Theorem [D-Kane-Stewart’17]
Suppose that A matches its first m moments with              and                                   . 
Any SQ algorithm for the testing version of NGCA:
• either requires a query of tolerance at most 
• or requires at least            many queries. 

Testing Version of NGCA: Given access to a distribution     on       with the promise that
• either                 
• or                 , where    is a uniformly random unit vector
the goal is to distinguish between the two cases.



INTUITION: WHY IS NGCA “HARD”?

Claim 1: Low-degree moments do not help.

• Degree at most m moment tensor of        identical to that of 

Claim 2: Random projections do not help.

Distinguishing requires exponentially many random projections.



KEY LEMMA: RANDOM PROJECTIONS ARE ALMOST GAUSSIAN

Key Lemma: Let Q be the distribution of            , where                . Then, we have that:

Ornstein-Uhlenbeck
operator



SQ LOWER BOUND: PROOF OVERVIEW

Want exponentially many       ’s that are nearly uncorrelated.

• Pick set     of near-orthogonal unit vectors. Can get 

• Have 



RECIPE FOR SQ HARDNESS RESULTS

Main Theorem [D-Kane-Stewart’17]
Suppose that A matches its first m moments with              and                                   . 
Any SQ algorithm for the testing version of NGCA:
• either requires a query of tolerance at most 
• or requires at least            many queries. 

Recipe.  Encode     as a NGCA instance:

• Construct moment-matching distribution A such that        is a valid instance of

• Match as many low-degree moments as possible.



MOMENT-MATCHING FOR ROBUST MEAN ESTIMATION

Lemma: There exists a univariate distribution A such that:
• A agrees with               on the first m moments
• A satisfies 

Proof Idea:
• Take 
• Define

where p is degree-m moment-matching polynomial.



MOMENT-MATCHING FOR LEARNING GMMS

Proof Idea:
• Construct discrete distribution B with support k matching its first  
2k-1 moments with              . 

• Rescale B and add a “skinny” Gaussian to get A.

Lemma: There exists a univariate k-GMM A with nearly non-overlapping components such that:
A agrees with               on the first 2k-1 moments.



SQ HARD INSTANCES FOR GMMS: PARALLEL PANCAKES



NGCA captures SQ hard instances of several well-studied learning tasks

• Learning GMMs [D-Kane-Stewart’17, D-Kane-Pittas-Zarifis’23]
• Robust mean and covariance estimation [D-Kane-Stewart’17]
• Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’17, D-Stewart’18]
• Robust linear regression [D-Kong-Stewart’19]
• List-decodable learning [D-Kane-Stewart’18, D-Kane-Pensia-Pittas-Stewart’21]
• Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’18]
• Agnostic PAC Learning [Goel-Gollakota-Klivans’20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis’21]
• Learning LTFs with (Semi)-random Noise [D-Kane’20, Nasser-Tiegal’22, D-J.D.-Kane-Wang-Zarifis’23]
• Learning (Very Simple) NNs and Generative Models [Goel-Gollakota-Jin-Karmalkar-Klivans’20, D-

Kane-Kontonis-Zarifis’20 Chen-Li-Li’22]
• Learning Mixtures of LTFs [D-Kane-Sun’23]
• …

SQ HARDNESS FOR WIDE RANGE OF PROBLEMS



OPEN PROBLEMS
NGCA leads to wide range of hardness results in SQ model

Open Problem 3: Prove SoS lower bounds for NGCA.

Open Problem 1: Alternative evidence of hardness?

Already known for special cases (reductions):
v Robust sparse mean estimation [Brennan-Bresler’20]
v Learning GMMs [Bruna-Regev-Song-Tang’21]
v Learning with Semi-random Noise [D-Kane-Panurangsi-

Ren’22, D-Kane-Ren’23]

SQ hard instances are 
computationally hard

Open Problem 2: How general is this phenomenon?



LEARNING WITH A MAJORITY OF OUTLIERS

• So far focused on setting where

• What can we learn from a dataset in which the majority of points are corrupted?

Problem: Given a set of points                                 and                        such that:
• An unknown subset of         points are drawn from an unknown             , and
• The remaining                  points are arbitrary,
approximate the mean     of D.

Which is the “real” D?



LIST-DECODABLE LEARNING

• Return several hypotheses with the guarantee that at least one is close.

List-Decodable Mean Estimation: 
Given a set of points                                 and                        such that:
• An unknown subset of         points are drawn from an unknown             , and
• The remaining                  points are arbitrary,
output a small list of s hypotheses vectors such that one is close to the mean     of D.

• Model defined in [Balcan-Blum-Vempala’08]
• First studied for mean estimation [Charikar-Steinhardt-Valiant’17]
• Application: Learning Mixture Models



LIST-DECODABLE MEAN ESTIMATION

Theorem [Charikar-Steinhardt-Valiant’17]: Let                       . If D has covariance                    
there is an efficient algorithm that uses                  corrupted points, and outputs a list of

vectors                    such that with high probability

Theorem [D-Kane-Stewart’18] Any list-decodable mean estimator for bounded covariance 
distributions must have error                  as long as the list size is any function of    .

• Initial algorithm [CSV’17] based on ellipsoid method. 
• Generalization of filtering (“multi-filtering”) works for list-decodable setting [DKS’18].
• Near-linear time algorithm [D-Kane-Koongsgard-Li-Tian’22].



FUTURE DIRECTIONS: ALGORITHMS

• Pick your favorite high-dimensional probabilistic model for 
which a (non-robust) efficient learning algorithm is known. 

• Make it robust!



BROADER RESEARCH DIRECTIONS

Broader Challenges:
• Relation to Related Notions of Algorithmic Stability

(Differential Privacy, Adaptive Data Analysis)
• Resource tradeoffs (e.g., memory, communication)
• Further Applications (ML Security, Computer Vision, …)
• Connections to Adversarial Examples/Distribution Shift
• Other notions of robustness?

(heavy-tailed, semi-random, oblivious noise, missing data,…)

General Algorithmic Theory of Robustness

How can we robustly learn rich representations of data, based on natural hypotheses about 
the structure in data?
Can we robustly test our hypotheses about structure in data before learning?

Thank you! 
Questions?


