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Can we develop learning algorithms that are robust to 
a constant fraction of corruptions in the data?



MOTIVATION

• Model Misspecification/Robust Statistics 
[Fisher 1920s, Tukey 1960s, Huber 1960s]

• Outlier Detection/Removal 

• Adversarial/Secure ML



THE STATISTICAL LEARNING PROBLEM

• Input: sample generated by a statistical model with unknown
• Goal: estimate parameters    so that  

Question 1: Is there an efficient learning algorithm?

Unknown 
θ* samples ✓

✓⇤

✓ ✓ ⇡ ✓⇤

Main performance criteria:
• Sample size
• Running time

Question 2: Are there tradeoffs between these criteria?

• Robustness



(OUTLIER-) ROBUSTNESS

Strong Contamination Model:
Let     be a family of statistical models.
We say that a set of N samples is -corrupted from     if 
it is generated as follows: 
• N samples are drawn from an unknown
• An omniscient adversary inspects these samples and 

changes arbitrarily an   -fraction of them.

F

F 2 F

F

✏

cf. Huber’s contamination model [1964]



EXAMPLE: PARAMETER ESTIMATION

Given i.i.d. samples from an unknown distribution

e.g., a 1-D Gaussian

how do we accurately estimate its parameters?

empirical mean: empirical variance: 



John W. Tukey

Model Misspecification 
(1960s)

Robust Estimation of Location
(1964)

Peter J. Huber



ROBUST STATISTICS

What estimators behave well in the presence of outliers?



ROBUST ESTIMATION: ONE DIMENSION

• A single corrupted sample can arbitrarily corrupt the empirical mean and 
variance

• But the median and interquartile range work

Given corrupted samples from a one-dimensional Gaussian, can we 
accurately estimate its parameters?



Fact [Folklore]: Given a set S of N -corrupted samples from a one-dimensional 
Gaussian

with high constant probability we have that:                           

where

What about robust estimation in high-dimensions?



HIGH-DIMENSIONAL ROBUST MEAN ESTIMATION

Remark: Above convergence rate is optimal [Tukey’75, Donoho’82]

Robust Mean Estimation: Given an     - corrupted set of samples 
from an unknown mean, identity covariance Gaussian                in 
d dimensions, recover      with   

✏



PREVIOUS APPROACHES: ROBUST MEAN ESTIMATION

Error Rate Running Time

Tukey Median NP-Hard

Geometric Median

Tournament

Distance-Based Pruning

Estimator

Coordinate-wise Median



DISTANCE-BASED PRUNING



DISTANCE-BASED PRUNING = NAÏVE OUTLIER REMOVAL



All known estimators either require exponential time to compute 
or can tolerate a negligible fraction of outliers.

Is robust estimation algorithmically possible in high-dimensions?

HIGH-DIMENSIONAL ROBUST STATISTICS: 1960-2016



“The bad news is that with all currently known algorithms the effort of computing those 
estimates increases exponentially in d. We might say they break down by failing to give a 
timely answer! 
Only simple algorithms (i.e., with a low degree of computational complexity) will survive the
onslaught of huge data sets. This runs counter to recent developments in computational robust
statistics. It appears to me that none of the above problems will be amenable to a
treatment through theorems and proofs. They will have to be attacked by heuristics and
judgment, and by alternative “what if” analyses.[…]”

Robust Statistical Procedures, 1996, Second Edition.

Peter J. Huber, 1975



Meta-Theorem [D-Kamath-Kane-Li-Moitra-Stewart’16]
Efficient robust estimators with dimension-independent error for robust 
mean and covariance estimation, if inlier distribution has bounded 
moments/nice concentration.

Related results by [Lai-Rao-Vempala’16]



ROBUST UNSUPERVISED LEARNING

Robustly Learning Graphical Models

List-decodable Learning and 
Robustly Learning Mixture Models

Computational/Statistical-Robustness Tradeoffs



ROBUST SUPERVISED LEARNING

Robust Supervised 
Learning

Stochastic Convex OptimizationRobust Regression
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APPLICATIONS [D-Kamath-Kane-Li-Moitra-Stewart, ICML’17]

[D-Kamath-Kane-Li-Moitra-Steinhardt, ICML’19] OOD Detection

Detecting Patterns
in Biological Data

Provable Defenses 
against Data Poisoning

[Du-Fang-D-Li, ’23]

Wild data scenario 2

Wild data scenario 1

(a) Data setup (b)    Filtered outliers (in green) (c)    Uncertainty score



SUBSEQUENT WORKS

• Sparse Models [Balakrishan-Du-Li-Singh’17, D-Karmalkar-Kane-Price-Stewart’19, D-Kane-Lee-Pensia’22,…]
• Graphical Models [Cheng-D-Kane-Stewart’18, D-Kane-Stewart-Sun’21, D-Kane-Sun’22] 
• Robust Regression/Classification [D-Kane-Stewart’18, Klivans-Kothari-Meka’18, D-Kong-Stewart’19 Bakshi-

Prasad’21, …]
• Robust Stochastic Optimization [Prasad-Suggala-Balakrishnan-Ravikumar’19, D-Kamath-Kane-Li-

Steinhard-Stewart’19, …]
• Robust Estimation via SoS [Hopkins-Li’18, Kothari-Steinhardt-Steurer’18, Karmalkar-Klivans-Kothari’19, 

Raghavendra-Yau’19, Bakshi-Kothari’20, D-Hopkins-Kane-Karmalkar’20, Liu-Moitra’21, Bakshi-D-Jia-Kane-Kothari-
Vempala’21, Ivkov-Kothari’22, …]

• Near-Linear Time Algorithms [Chen-D-Ge’18, Cheng-D-Ge-Woodruff’19, Depersin-Lecue’19, Dong-Hopkins-
Li’19, Li-Ye’20, Cherapanamjeri-Mohanty-Yau’20, D-Kane-Koongsgard-Li-Tian’21, …]

• Computational-Statistical Tradeoffs [D-Kane-Stewart’17, D-Kong-Stewart’19, Hopkins-Li’19, …]
• Connections to Non-Convex Optimization [Chen-D-Ge-Soltanolkotabi’20, Zhu-Jiao-Steinhardt’20, …]
• List-Decodable Learning [Charikar-Steinhardt-Valiant’17, D-Kane-Stewart’18, Meister-Valiant’18, Karmalkar-

Klivans-Kothari’19, Raghavendra-Yau’19, D-Kane-Koongsgard’20, D-Kane-Koongsgard-Li-Tian’21, D-Kane-
Karmalkar-Pensia-Pittas’22]

• Applications in Data Analysis [D-Kamath-Kane-Li-Moitra-Stewart’17, Tran-Li-Madry’18, D-Kamath-Kane-Li-
Steinhardt-Stewart’19, Hayase-Kong-Somani-Oh’21, Du-Fang-D-Li’23, … ]





HIGH-DIMENSIONAL ROBUST MEAN ESTIMATION



ROBUST MEAN ESTIMATION: GAUSSIAN CASE

First-term of RHS Independent of d  ! 

Theorem 1: Let                   If D is a spherical Gaussian, there is an 
efficient algorithm that outputs an estimate      that with high probability 
satisfies

in the additive contamination model.                                           

Problem: Given an   -corrupted set of points                                 from an 
unknown distribution D in a known family    , estimate the mean     of D.

[D-Kamath-Kane-Li-Moitra-Stewart, SODA’18; D-Kane-Pensia-Pittas, NeurIPS’23]



ROBUST MEAN ESTIMATION: SUB-GAUSSIAN CASE

Theorem 2: Let                   If D is a spherical sub-Gaussian, there is an 
efficient algorithm that outputs an estimate      that with high probability 
satisfies

in the strong contamination model.                                           

Problem: Given an   -corrupted set of points                                 from an 
unknown distribution D in a known family    , estimate the mean     of D.

[D-Kamath-Kane-Li-Moitra-Stewart, FOCS’16, ICML’17;  D-Kane-Pensia-Pittas, ICML’22]

Information-theoretically optimal error. 



ROBUST MEAN ESTIMATION: BOUNDED COVARIANCE CASE

Theorem 3: Let                   If D has covariance            , there is an 
efficient algorithm that outputs an estimate      that with high probability 
satisfies

in the strong contamination model.                                           

Problem: Given an   -corrupted set of points                                 from an 
unknown distribution D in a known family    , estimate the mean     of D.

Information-theoretically optimal error. 

[D-Kamath-Kane-Li-Moitra-Stewart, ICML’17; Steinhardt, Charikar, Valiant, ITCS’18]



CERTIFICATE OF ROBUSTNESS FOR EMPIRICAL ESTIMATOR

Idea #1: If the empirical covariance is “close to what it should be”, then 
the empirical mean works.



CERTIFICATE FOR EMPIRICAL MEAN

Detect when the empirical estimator may be compromised

= uncorrupted
= corrupted

There is no direction of large empirical variance



Lemma: Let X1, X2, …, XN be an    -corrupted set of samples from              and                      
for 

with high probability we have: 

in strong contamination model.



Idea #2: Removing any    - fraction of inliers does not move the 
empirical mean and covariance by much. 



Idea #3: Iteratively “remove outliers” to “fix” the empirical covariance.



ITERATIVE FILTERING

Iterative Two-Step Procedure:

Step #1: Test certificate of robustness of “standard” estimator

Step #2: If certificate is violated, detect and remove outliers

Iterate on “cleaner” dataset.

General recipe that works in general settings.

We’ll see how this works for robust mean estimation.



FILTERING SUBROUTINE

Either output empirical mean or remove many outliers.

Filtering Approach: Suppose that:

Let    be the direction of maximum variance.
T



FILTERING SUBROUTINE

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Let     be the direction of maximum variance.

• Project all the points on the direction of .
• Find a threshold T such that

• Throw away all points x such that 

• Iterate on new dataset.



FILTERING SUBROUTINE: ANALYSIS SKETCH

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Claim: In each iteration, we remove more outliers than inliers.

After a bounded number of iterations, we stop removing points.

Eventually the empirical mean works

Runtime: 



STABILITY CONDITION

Definition Fix                     and             A set              is            stable with respect to     if 
for all               and every             such that                           , we have:

•

•

• Intended for inlier distributions with 

• Similar definition for distributions as opposed to datasets.

• A sufficiently large clean sample from a well-behaved distribution is stable with high 
probability. 



EFFICIENT ROBUST MEAN ESTIMATION UNDER STABILITY

General Theorem Let     be           stable with respect to a vector    , and     an   - corruption of      
There is an efficient algorithm that given           it computes an estimate     such that 

Fact A set of      i.i.d. samples from a well-behaved distribution is              stable with high probability. 

• For identity covariance sub-Gaussians,                             and

• For identity covariance sub-exponentials,                           and

• For identity covariance with bounded      th central moments               ,                     and    

• For bounded covariance distributions,                and
(after removing   - fraction of inliers) 



CERTIFICATE FOR EMPIRICAL MEAN

Lemma Let     be           stable with respect to    , and     be an    - corruption of   
If                         , for             then 

Proof Let         be uniform distribution over        respectively. Can write                                 ,
where      is      subtraction of  

Let    be normalized version of

Rearranging  

⌃Y = (1� ✏)⌃X0 + ✏⌃E + ✏(1� ✏)(µX0 � µE)(µX0 � µE)
>



CERTIFICATE FOR EMPIRICAL MEAN

Proof Let         be uniform distribution over        respectively. Can write                                 ,
where      is      subtraction of  

For the means, have that

Lemma Let     be           stable with respect to    , and     be an    - corruption of   
If                         , for             then 



Condition Given any              such that                                    , if  
there is an explicit                       such that

RANDOMIZED FILTERING: IDEA

Main Idea: Suppose we can find                       such that

Then we can randomly filter by removing each point           with probability

Need this property to hold across iterations, assuming certificate not satisfied.



RANDOMIZED FILTERING: PROPERTIES

Condition Given any              such that                                    , if  
there is an explicit                       such that

Theorem If condition holds, there is an efficient randomized algorithm that computes an 
estimate     such that with high probability 



RANDOMIZED FILTERING

1. Compute
2. If                    return 
3. Else

• Compute the function f.
• Remove each            with probability
• Return to Step 1 with new set     . 

Randomized Filtering Pseudocode



Claim With probability at least 2/3, throughout the algorithm have that  

RANDOMIZED FILTERING: ANALYSIS

At least one point is removed in each iteration, so algorithm runs in polynomial time.

Proof Consider
Have

Since                 and                                              by Ville’s inequality 

This implies that                                   throughout. 

d(Ti)�d(Ti�1) = (#Inliers removed in iteration i)�(#Outliers removed in iteration i)

E[d(Ti)� d(Ti�1)] =
X

x2S\Ti

f(x)�
X

x2Ti\S

f(x) = 2
X

x2S\Ti

f(x)�
X

x2Ti

f(x)  0 .

d(Ti) � 0 E[d(Ti)]  E[d(T0)]  ✏|S| ,

Pr[maxi d(Ti) > 3✏|S|]  1/3 .

|S \ Ti| � (1� 4✏)|S| .



FINDING : UNIVERSAL FILTERING

Proposition Let     be             stable and     be an      corruption of       Suppose that 
There exists an efficient algorithm that given           

it computes a function                      such that  

Proof Define the function                                       where    is the top eigenvector. 
Let    be the set of            points           for which        is largest. 
Then  



UNIVERSAL FILTERING: ANALYSIS

• By definition

and
• By stability and our lemma                    is small so that

• By the definition of     and 

• Similarly 



WEIGHTED FILTERING

1. Set           and                      for   
2. While                                  

• Compute the function f.
• Set
• Set
• Set    to 

3.   Return 

Weighted Filtering Pseudocode

For

Assign weights to the samples so that weighted empirical mean works.



Lemma: Let      be an     corruption of a             stable set. For any                 , if

NON-CONVEX OPTIMIZATION FORMULATION (I)

Non-Convex Optimization Formulation: 

• Consider the convex set: 



NON-CONVEX OPTIMIZATION FORMULATION (II)

Problem Formulation: 
Assign weights to the samples so that weighted empirical mean works.

Non-Convex Optimization Formulation: 

Algorithmic Approaches:
• This is what filtering does!
• Ellipsoid Method [DKKLMS’16]
• Bi-level optimization [Cheng-D-Ge’18] 
• Gradient Descent [Cheng-D-Ge-Soltanolkotabi’20]

Let



CONCRETE OPEN PROBLEMS

• Design near-linear time algorithms for robust statistics tasks

Robust Mean Estimation [Cheng-D-Ge, SODA’19; Dong-Hopkins-Li, NeurIPS’19; Depersin-Lecue’19]
Robust Covariance Estimation [Cheng-D-Ge-Woodruff, COLT’19]
Clustering mixture models [D-Kane-Koongsgard-Li-Tian, STOC’22]
Robust sparse estimation?

• Can we design robust estimators using first-order methods?

Robust Mean Estimation [Cheng-D-Ge-Soltanolkotabi, ICML’20; Zhu et al. 2020]
More general tasks?

• Obtain low-memory streaming robust learning algorithms

[D-Kane-Pensia-Pittas, ICML’22] Tradeoffs between memory and sample size?

• Robust Online Estimation?


