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Statistical thinking in the age of Al

What is the story about?

m How to enhance reinforcement learning with an additional expert data?

m How to incorporate both human preferences and expert data?
Application: ChatGPT training pipeline;

m Instruments:
» Behaviour cloning (conditional density estimation);

» Regularized RL algorithms.
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Reinforcement Learning

State s; Reward r; Action a;

Environment
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Markov Decision Processes

We consider an episodic MDP
M = (87 51, Aa H) {ph}hE[H]7 {rh}hE[H])

where

m S is the set of states with initial state sq;

m A is the finite set of actions of size A;

m H is the number of steps in one episode;

m py(s’|s, a) is the probability transition from state s to state s’ by
performing action a in step h;

m (s, a) € [0,1] is the reward obtained by taking action a in state s at
step h.
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Markov Decision Processes
m A policy 7 is a collection of functions 7, : & — A(A) for all h € [H].
We denote by I the set of policies.
m The value functions of policy 7 at step h and state s,

H

V,:T(S; r) = E,r Z rh/(shf,ah/) | Sh = S|.
h'=h

m Q-functions,
Qn (s, a) = (s, a) + pnViia(s, a).

m The optimal value functions, denoted by V| = sup,.cn V', are given by
the optimal Bellman equations

Qi(s:a) = (s, a) + prViia(s, @) Vi(s) = max Q;(s, a)

where by definition, V7, ; = 0.

m Goal of RL: find the best policy 7* = argmax, . V|7, it could be
described as a Dirac measure on maximal Q-value:
mr(s) = arg max,c 4 Qf (s, a).
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Best Policy Identification

m Before episode t € N, select a policy 7° = {7} } e based on all the
data available before episode t;

m During the episode, start sf = s; and interact with the environment as
follows

1. While in state sf, choose and play action aj, ~ 7} (sf) from the policy;
2. Receive a reward ry(sf, a;) and a next state sf.; ~ ps(sf, af,);
3. Continue with s; 4 till h < H.

m Decide to stop by the stopping rule is ¢ = t;
m If agent is stopped, output an output policy 7;

An algorithm ((7%)¢en, ¢, ) is (g, 6)-PAC for BPI with sample complexity
C(e, A, 0) if

IP(Vl*(sl) CVi(s)<e 1< C(e,é)) >1-4.
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Real life: we also have data!

Observation: In the real-life applications we often have a lot of expert data.
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Best Policy ldentification with demonstration

m Before the interaction with MDP, we are provided an expert
(demonstration) dataset

D= {1 =(s],al,... s}, al), i € [N*]}

of N¥ independent reward-free trajectories sampled from a fixed
unknown expert policy 7.

m Interaction phase: for each episode t € N, select a policy 7t = {Wf,}he[,.,]
based on all the data available before episode t, including Dg.

m Output policy: 7RE;

An algorithm ((7%)¢en, ¢, 72E) is (e, )-PAC for BPI with demonstration with
sample complexity C(g, N¥, §) if

]P’(Vl*(sl) Vi (s) <6 1< Cle, NE,6)) >1-6.
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Demonstration-Regularized
Reinforcement Learning
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Demonstration-Regularized RL

Assume that Ethe expert policy is close to the optimal 7*, that is,
Vi (s1) — VT (s1) < eg for some small eg > 0.

Idea: reconstruct the expert policy and optimize rewards, staying close to the

reconstructed expert policy.

Questions:
m How to reconstruct the expert policy and what guarantees we have?
m How to keep close to the reconstructed expert policy?

Goal: Decrease number of interactions with MDP given large enough dataset;
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Behavior Cloning

In imitation learning, we are provided an expert (demonstration) dataset
Dg £ {Ti = (5:{7 aiv oo 7sli-l7 35_1)7 ie [NE]}

of N¥ independent reward-free trajectories sampled from a fixed unknown
expert policy 7.

Objective

Learn from these demonstrations a policy close to the optimal one.
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Behavior Cloning (or conditional density estimation)

Empirical minimization

The behavior cloning policy 72€ is obtained by minimizing the
negative-loglikelihood over a class of policies F = {m € I : 7wy € Fp} with Fp,
being a class of conditional distributions S — P(.A) and R, some regularizer,

. 1
B¢ € arg mmZ Z Iogm + Rau(mh)

Trajectory Kullback-Leibler divergence

H

KLraj(7[|7') £ KL(q"[lg™) Z KL(7h(sn), 7h(sh)) |+
h=1

where q"(7) = m1(av|s1) [Tj_y Ph(Shr1]sh, n) - Th(ant1]shs1).
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General Guarantees
m For all h € [H], there are two positive constants dr=, R > 0 such that

Vh e [H],Ve € (0,1) : log N(g, F, |||l o) < dr log(RF/¢).
Moreover, there is a constant v > 0 such that for any h € [H], 7, € Fj,
it holds 7p(als) > ~ for any (s,a) € S x A.
m There is a constant k € (0,1/2) such that a k-greedy version of the
expert policy defined by 7" (als) = (1 — x)7}(als) + x/A belongs to
the hypothesis class of policies: 7% ¢ F .

Let assumptions above be satisfied and let 0 < Rp(wn) < M for all h € [H]
and any policy m € Fp,. Then with probability at least 1 — d, the behavior
policy mB€ satisfies

6drH - (log(Ae®/(Ay A k)) - log(2HNERZ /(76))

KLtraj(ﬂ'E”ﬂ'BC) < NE

2HM . 18k
NE 1—k'
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Special Case: Finite MDPs
Finite MDPs
For all NE > A, the class of policies
F={meN:mals) > 1/(N® + A)}

and the regularizer

Ra(mn) = > log(1/ma(als)),

s,a

it holds with probability at least 1 — ¢,

65AH - log(2¢*N™) - log(12H(N")?/3) | 18AH

KLtraj (T"E”T(BC) S NE NE

Lower bound

SAH
| ]ET TR ~TT KL raj T Z :
min maxBr, 7 [KLtraj(m[|77)] 128N log(2(NF 1 A))
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Special case: Linear MDPs

For e > 0 and 6 € (0,1), assume that an expert policy 7 is £/8-optimal and
for all h € [H], there exists an unknown parameter w> € R9 with ||wf|, < R
for some known R > 0 such that

o exp(t(s,a) wh)
) = S (057 )W)
Consider
7= (o) = § 1) P o <Rl < )

Corollary

Under assumption above, the function class F defined above and regularizer
Ry =0 for all h € [H], it holds for all N® > A with probability at least 1 — 6,

8dH - (log(2:°AN®) - (Iog(48(N")°R) + log(H/%))) , 18AH

KLy (n®72C) < e -l
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Demonstration-Regularized RL

Implementation of the initial idea:

1. Perform behavior cloning and compute 7B¢;

2. Solve RL problem with an additional regularization A - KL;(r||72¢)

Algorithm:

1: Input: Precision parameter egy,, probability parameter dgp,,
demonstrations Dy, regularization parameter \.

2: Compute behavior cloning policy 72¢ = BehaviorCloning(Dg).

3: Perform regularized BPI 7 = RegBPI (7€, \, ery, OrL)

4: Output: policy 7R
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Regularized best policy identification (BPI)

Given some reference policy ™ and some regularization parameter A > 0, we
consider the trajectory Kullback-Leibler divergence regularized value function

Vs a(51) = Vi (1) ~ AKL s ().

In this value function, the policy 7 is penalized for moving too far from the
reference policy 7.

Bellman’s equations

Q;,)\,h(& a) = rh(sv a) + Ph V7~Z-r,)\,h+1(s7 a)
VEAn(8) = mhQF 5 n(s) = AKL(ma(s)[[7a(s)) ,

us —
where V') 1.1 =0.
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Best Policy ldentification in Regularized Finite MDPs

Optimistic planning in a regularized MDP

Qi(s.2) = clip(ra(s. 2) + P Vi (s, 2) + b (5, ),0, H)

—t

Vi(s) = max {Q3(s) — AKL(rl[7n(s))}

7t (s) = arg max{ﬂ(_?;(s) —A KL(W”%”(S))} ’
TEAA

o ot . =0 . -
with V.1 = 0 by convention, where p* is an estimate of the transition
probabilities. Here bP:! is some bonus term taking into account estimation
error for transition probabilities.
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Best Policy ldentification in Regularized Finite MDPs

Sampling rule

For h € [0, H], the policy 7t:(h) first follows the optimistic policy 7t until
step h where it selects an action leading to the largest confidence interval for
the optimal Q-value,

ﬂ_t,(h/)( s) = 70" (als) = 7i(als) if h#£ h
h ﬂ;’(h )(a|s) = ]l{a € arg maxa/eA(af,(Sa a') = Q,(s, 3/))} if h=H

where Qt is a lower bound on the optimal regularized Q-value function.
The sampling rule is obtained by picking up uniformly at random one policy
among the family ¢ = 7&(") A" ~ Unif[0, H] .
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Best Policy ldentification in Regularized Finite MDPs

Stopping rule and decision rule

First recursively build an upper-bound on the difference between the value of
the optimal policy and the value of the current optimistic policy 7t,

1., 8
Wi(s,a) = <1 A ﬁ>pf,G,§+1(s) + bt (s, a),

A 1 ¢ 2
63(5) = clin(FF () + 55 max(@h(s.2) - Qs 2)) 0.1,
where bfap’t is a bonus, V' is a lower-bound on the optimal value function
and Gf, ; = 0 by convention.

The stopping time ¢ = inf{t € N : Gf(s;) < €}. At this episode ¢ we return
the policy 7 = 7.
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Best Policy ldentification in Regularized Finite MDPs

1: Input: Target precision ¢, target probability §, bonus functions b*
2: while true do

3:  Compute " by optimistic planning.

4:  Compute bound on the gap Gi(s, a).

5. if Gi(s1) < ¢ then break

6:  Sample b’ ~ Unif[H] and set wt = 7t:(").
7. for he [H] do

8 Play aj ~ 7} (st)

9 Observe s; ., ~ pn(s}, a},)

10:  end for

11:  Update transition estimates p°.

12: end while

13: Qutput policy 7 = 7.

t,KL
KL,
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Final sample complexity for Demonstration-Regularized RL

Theorem

Assume that the expert policy is eg = £/2-optimal and satisfies some
assumption in the linear case. Let 7B be the behavior cloning policy, then
demonstration-regularized RL with parameters ery, = €/4, orr, = 0/2 and
A = O(NFe/(SAH)) /O(NFe/(dH)) is (e, 8)-PAC for BPI with
demonstration in finite / linear MDPs and has sample complexity of order

" H6 3A2 . H6d3
C(e, N®,6) = (9(%) (finite)  C(e, N¥,6) = O(NE52> (linear).
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Demonstration-Regularized
Reinforcement Learning
with Human Feedback
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Preference-Based Model

We do not know the true reward function r* but have access to an oracle
that provides a preference feedback between two trajectories.

Reward

Given a reward function r = {r,}!"_, we define the reward of a trajectory
7 € (S x A)H as the sum of rewards collected over this trajectory

r(r) £ 3200 (s, an).
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Instruct GPT

Ouyang, Long, et al. "Training language models to follow instructions with
human feedback.” Advances in Neural Information Processing Systems 35

(2022): 27730-27744.

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our Explmemm
prompt dataset. landing to a 6 year old
\J
Alabeler
demonstrates the @
desired output
z

behavior. ‘Some people went

tothe moon.

\J
This data is used SFT
to fine-tune GPT-3 2o
. : L
with supervised \.\SA{/
learning. 2
EEE

Step 2 Step 3
Collect comparison data, Optimize a policy against
and train a reward model. the reward model using

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

reinforcement learning.

Explain the moon
landing to a 6 year old

Demonstration-Regularized RL, MMS-2023

25



Preference-based RL with demonstration

Assumption

Let 79, 71 be two trajectories. The preference for 71 over 74 is a Bernoulli
random variable o with a parameter g, (70, 71) = o(r*(71) — r*(70)), where
o: R — [0,1] is a monotone increasing link function that satisfies
infye—H,m 0'(x) = 1/¢ for ¢ > 0. This function can also be viewed as a
utility or preference.

Example

A sigmoid function o(x) = 1/(1 + exp(—x)) leads to the Bradley-Terry-Luce
(BTL) model widely used in the literature.
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Preference-based RL with demonstration

The agent observes N¥ independent trajectories Dy sampled from an expert
policy 7F. Learning is divided in two phases.

m Preference collection. Based on the observed expert trajectories Dg, the
agent selects a sampling policy 72€ to generate a data set of
£ Dy — k -k kyyNEM fet f pairs of trai ;
preferences Dryv = {(7¢, 71, 0°) }r; consisting of pairs of trajectories
and the sampled preferences.

m Reward-free interaction. The agent interacts with the reward-free MDP
as follows: at episode t, agent selects a policy w* based on the collected
transitions up to time t, demonstrations and preferences. Then a new
trajectory (reward-free) is sampled following the policy 7' and is
observed by the agent.

At the end of each episode, the agent can decide to stop according to a
stopping rule ¢, and outputs a policy 7RUHE,
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Preference-based RL with demonstration

PAC algorithm

An algorithm ((7%)cen, 78, ¢, 7REHF) is (g, §)-PAC for preference-based best
policy identification (BPI) with demonstrations and sample complexity

C(e, NE 5) if

RLHF

P(Vi(s) = W (s1) S 20 S C(e NP,0)) 2136,

where the unknown true reward function r* is used in the value-function V*.
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Demonstration-regularized RLHF

The agent starts with behavior cloning applied to the expert dataset,
resulting in the policy 7 Durlng the preference collection phase, the agent
generates a dataset Dy = {(7§, 7, 0%) }AL iw by executing the previously
computed policy 78€. Using this dataset, the agent can infer the reward #

via MLE:
mz o*log (o (r(r}) ~ (7)) ) + (1 = 0o (1= o (r(rF) (7)) )

where G is a function class for trajectory reward functions.

Finally, the agent computes 7% by performing regularized BPI with policy
7BC  a properly chosen regularization parameter A and the estimated reward

~

r.
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Demonstration-regularized RLHF

Role of 7B¢

We use the behavior cloning policy 72 for two purpose.
1. First, it allows efficient offline collection of the preference dataset Dryy,
from which a high-quality estimate of the reward can be derived.

2. Second, a regularization towards the behavior cloning policy 7€ enables
the injection of information obtained from the demonstrations.
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Demonstration-regularized RLHF

Connection RL fine-tuning for LLM

Our algorithm's policy learning phase is similar to solving an RL problem with
policy-dependent rewards

(s, a) = Pu(s, a) — Alog(mh" (als) /mP(als)) -

This formulation, coupled with our prior stages of the behavior cloning, akin
to supervised fine-tuning (SFT), and reward estimation through MLE based
on trajectories generated by the SFT-policy, mirrors a simplified version of
the three-phase GPT RLHF pipeline.
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Demonstration-regularized RLHF

BC)

Single-policy concentrability coefficient C,(G, 7%, 7

max< 0, sup Erynn® my e [r*(10) = (1) — (r(70) — r(m1))]

B [(72() = () = ((70) = )]

For ¢ >0 and 6 € (0,1), assume that an expert policy 7 is £/8-optimal and
for all h € [H], there exists an unknown parameter w € R9 with ||wf|, < R
for some known R > 0 such that

exp(¥(s, a) ;)
2area&p(U(s, a’)TW;;E)

my (als) =
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Demonstration-regularized RLHF

If the following two conditions hold
NE . NRM > ﬁ(<2H252/52)
NE > §<H2/5/5) or NRM > ﬁ(c,<2H/5/e2)
for D = SA/d in finite / linear MDPs, then demonstration-regularized RLHF

is (¢,0)-PAC for BPI with demonstration in finite / linear MDPs with sample
complexity

- 6 C3 A2 _ 6 43
C(e, NE,6) :0(%) (finite)  C(e, N®,6) _O(ZEC;> (linear)
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Demonstration-regularized RLHF

m The conditions (1) and (2) control two different terms in the reward
estimation error presented.

m The condition (1) shows that small size of the expert dataset should be
compensated by a larger dataset used for reward estimation and vice
versa.

m The condition (2) requires that at least one of these datasets is large
enough to overcome sub-exponential behavior of the error in the reward
estimation problem.

m The second part of the condition (2) N®M > C, /2 is unavoidable in the
general case of offline learning even if the transitions are known due to a
lower bound.

m As soon as reward estimation error is small enough, we obtain the same
sample complexity guarantees as in the demonstration-regularized RL.
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Takeaways & Open problems

Combine almost known 3 statistical problem +— real-world problem;
m Reinforcement Learning — Reinforcement Learning with Demonstrations;
m Simple and implementable approach: Demonstration-Regularized RL;
m Incorporation human feedback > InstructGPT pipeline;

Open questions
m Optimal sample complexity for the regularized BPI?
m Optimal sample complexity for the BPl with demonstrations?
m Optimal sample complexity for RLHF?
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