
Demonstration-Regularized RL, MMS-2023 December, 2023

Demonstration-Regularized RL
Daniil Tiapkin1,2, Denis Belomestny3,2, Daniele Calandriello4, Éric Moulines1,5,
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Statistical thinking in the age of AI

What is the story about?

How to enhance reinforcement learning with an additional expert data?

How to incorporate both human preferences and expert data?
Application: ChatGPT training pipeline;

Instruments:
▶ Behaviour cloning (conditional density estimation);
▶ Regularized RL algorithms.
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Reinforcement Learning
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Markov Decision Processes

We consider an episodic MDP

M =
(
S, s1,A,H, {ph}h∈[H], {rh}h∈[H]

)
where

S is the set of states with initial state s1;
A is the finite set of actions of size A;
H is the number of steps in one episode;
ph(s ′|s, a) is the probability transition from state s to state s ′ by
performing action a in step h;
rh(s, a) ∈ [0, 1] is the reward obtained by taking action a in state s at
step h.
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Markov Decision Processes
A policy π is a collection of functions πh : S → ∆(A) for all h ∈ [H].
We denote by Π the set of policies.
The value functions of policy π at step h and state s,

V π
h (s; r) = Eπ

[ H∑
h′=h

rh′(sh′ , ah′) | sh = s
]
.

Q-functions,
Qπ

h (s, a) = rh(s, a) + phV π
h+1(s, a).

The optimal value functions, denoted by V ⋆
h = supπ∈Π V π

h , are given by
the optimal Bellman equations

Q⋆
h (s, a) = rh(s, a) + phV ⋆

h+1(s, a) V ⋆
h (s) = max

a
Q⋆

h (s, a)

where by definition, V ⋆
H+1 = 0.

Goal of RL: find the best policy π⋆ = argmaxπ∈Π V π
h , it could be

described as a Dirac measure on maximal Q-value:
π⋆

h(s) = argmaxa∈A Q⋆
h (s, a).
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Best Policy Identification

Before episode t ∈ N, select a policy πt = {πt
h}h∈[H] based on all the

data available before episode t;
During the episode, start st

1 = s1 and interact with the environment as
follows

1. While in state s t
h, choose and play action at

h ∼ πt
h(s t

h) from the policy;
2. Receive a reward rh(s t

h, at
h) and a next state s t

h+1 ∼ ph(s t
h, at

h);
3. Continue with s t

h+1 till h ≤ H.
Decide to stop by the stopping rule is ι = t;
If agent is stopped, output an output policy π̂;

Definition
An algorithm ((πt)t∈N, ι, π̂) is (ε, δ)-PAC for BPI with sample complexity
C(ε, λ, δ) if

P
(

V ⋆
1 (s1)− V π̂

1 (s1) ≤ ε, ι ≤ C(ε, δ)
)
≥ 1 − δ.
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Real life: we also have data!

Observation: In the real-life applications we often have a lot of expert data.
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Best Policy Identification with demonstration
Before the interaction with MDP, we are provided an expert
(demonstration) dataset

DE = {τi = (s i
1, ai

1, . . . , s i
H , ai

H), i ∈ [NE]}

of NE independent reward-free trajectories sampled from a fixed
unknown expert policy πE.
Interaction phase: for each episode t ∈ N, select a policy πt = {πt

h}h∈[H]

based on all the data available before episode t, including DE.
Output policy: πRL;

Definition
An algorithm ((πt)t∈N, ι, π

RL) is (ε, δ)-PAC for BPI with demonstration with
sample complexity C(ε,NE, δ) if

P
(

V ⋆
1 (s1)− V πRL

1 (s1) ≤ ε, ι ≤ C(ε,NE, δ)
)
≥ 1 − δ.
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Demonstration-Regularized
Reinforcement Learning
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Demonstration-Regularized RL

Assumption
Assume that the expert policy is close to the optimal π⋆, that is,
V ⋆

1 (s1)− V πE

1 (s1) ≤ εE for some small εE > 0.

Idea: reconstruct the expert policy and optimize rewards, staying close to the
reconstructed expert policy.

Questions:
How to reconstruct the expert policy and what guarantees we have?
How to keep close to the reconstructed expert policy?

Goal: Decrease number of interactions with MDP given large enough dataset;
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Behavior Cloning

Setting
In imitation learning, we are provided an expert (demonstration) dataset

DE ≜ {τi = (s i
1, ai

1, . . . , s i
H , ai

H), i ∈ [NE]}

of NE independent reward-free trajectories sampled from a fixed unknown
expert policy πE.

Objective
Learn from these demonstrations a policy close to the optimal one.
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Behavior Cloning (or conditional density estimation)

Empirical minimization
The behavior cloning policy πBC is obtained by minimizing the
negative-loglikelihood over a class of policies F = {π ∈ Π : πh ∈ Fh} with Fh
being a class of conditional distributions S → P(A) and Rh some regularizer,

πBC ∈ argmin
π∈F

H∑
h=1

 NE∑
i=1

log
1

πh(ai
h|s i

h)
+Rh(πh)


Trajectory Kullback-Leibler divergence

KLtraj(π∥π′) ≜ KL(qπ∥qπ′
) = Eπ

[ H∑
h=1

KL(πh(sh), π
′
h(sh))

]
,

where qπ(τ) = π1(a1|s1)
∏H

h=1 ph(sh+1|sh, ah) · πh(ah+1|sh+1).
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General Guarantees
For all h ∈ [H], there are two positive constants dF ,RF > 0 such that

∀h ∈ [H],∀ε ∈ (0, 1) : logN (ε,Fh, ∥·∥∞) ≤ dF log(RF/ε).

Moreover, there is a constant γ > 0 such that for any h ∈ [H], πh ∈ Fh
it holds πh(a|s) ≥ γ for any (s, a) ∈ S ×A.
There is a constant κ ∈ (0, 1/2) such that a κ-greedy version of the
expert policy defined by πE,κ

h (a|s) = (1 − κ)πE
h (a|s) + κ/A belongs to

the hypothesis class of policies: πE,κ ∈ F .

Theorem
Let assumptions above be satisfied and let 0 ≤ Rh(πh) ≤ M for all h ∈ [H]
and any policy π ∈ Fh. Then with probability at least 1 − δ, the behavior
policy πBC satisfies

KLtraj(π
E∥πBC) ≤ 6dFH · (log(Ae3/(Aγ ∧ κ)) · log(2HNERF/(γδ))

NE

+
2HM
NE

+
18κ

1 − κ
.
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Special Case: Finite MDPs

Finite MDPs
For all NE ≥ A, the class of policies

F = {π ∈ Π : πh(a|s) ≥ 1/(NE + A)}

and the regularizer
Rh(πh) =

∑
s,a

log(1/πh(a|s)),

it holds with probability at least 1 − δ,

KLtraj(π
E∥πBC) ≤ 6SAH · log(2e4NE) · log(12H(NE)2/δ)

NE
+

18AH
NE

.

Lower bound

min
π̂

max
π∈F

Eτ1,...,τNE∼π[KLtraj(π∥π̂)] ≥
SAH

128NE log(e2(NE + A)) .
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Special case: Linear MDPs
Assumptions
For ε > 0 and δ ∈ (0, 1), assume that an expert policy πE is ε/8-optimal and
for all h ∈ [H], there exists an unknown parameter wE

h ∈ Rd with ∥wE
h ∥2 ≤ R

for some known R ≥ 0 such that

πE
h (a|s) =

exp(ψ(s, a)TwE
h )∑

a′∈A exp(ψ(s, a′)TwE
h )

Consider

Fh =

{
πh(a|s) =

κ

A + (1 − κ)
exp(ψ(s, a)Twh)∑

a′∈A exp(ψ(s, a′)Twh)
: wh ∈ Rd , ∥wh∥2 ≤ R

}
.

Corollary
Under assumption above, the function class F defined above and regularizer
Rh = 0 for all h ∈ [H], it holds for all NE ≥ A with probability at least 1 − δ,

KLtraj(π
E∥πBC) ≤ 8dH · (log(2e3ANE) · (log(48(NE)2R) + log(H/δ)))

NE
+

18AH
NE

.
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Demonstration-Regularized RL

Implementation of the initial idea:
1. Perform behavior cloning and compute πBC;
2. Solve RL problem with an additional regularization λ ·KLtraj(π∥πBC)

Algorithm:
1: Input: Precision parameter εRL, probability parameter δRL,

demonstrations DE, regularization parameter λ.
2: Compute behavior cloning policy πBC = BehaviorCloning(DE).
3: Perform regularized BPI πRL = RegBPI(πBC, λ, εRL, δRL)
4: Output: policy πRL.
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Regularized best policy identification (BPI)

Setting
Given some reference policy π̃ and some regularization parameter λ > 0, we
consider the trajectory Kullback-Leibler divergence regularized value function

V π
π̃,λ,1(s1) = V π

1 (s1)− λKLtraj(π∥π̃).

In this value function, the policy π is penalized for moving too far from the
reference policy π̃.

Bellman’s equations

Qπ
π̃,λ,h(s, a) = rh(s, a) + phV π

π̃,λ,h+1(s, a)
V π
π̃,λ,h(s) = πhQπ

π̃,λ,h(s)− λKL(πh(s)∥π̃h(s)) ,

where V π
π̃,λ,H+1 = 0.
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Best Policy Identification in Regularized Finite MDPs

Optimistic planning in a regularized MDP

Qt
h(s, a) = clip

(
rh(s, a) + p̂t

hV t
h+1(s, a) + bp,t

h (s, a), 0,H
)
,

V t
h(s) = max

π∈∆A

{
πQt

h(s)− λKL(π∥π̃h(s))
}
,

π̄t+1
h (s) = argmax

π∈∆A

{
πQt

h(s)− λKL(π∥π̃h(s))
}
,

with V t
H+1 = 0 by convention, where p̂t is an estimate of the transition

probabilities. Here bp,t is some bonus term taking into account estimation
error for transition probabilities.
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Best Policy Identification in Regularized Finite MDPs

Sampling rule
For h′ ∈ [0,H], the policy πt,(h′) first follows the optimistic policy π̄t until
step h where it selects an action leading to the largest confidence interval for
the optimal Q-value,

π
t,(h′)
h (a|s) =

π
t,(h′)
h (a|s) = π̄t

h(a|s) if h ̸= h′

π
t,(h′)
h (a|s) = 1

{
a ∈ argmaxa′∈A(Qt

h(s, a′)− Qt
h(s, a

′))
}

if h = h′

where Qt is a lower bound on the optimal regularized Q-value function.
The sampling rule is obtained by picking up uniformly at random one policy
among the family πt = πt,(h′), h′ ∼ Unif[0,H] .
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Best Policy Identification in Regularized Finite MDPs

Stopping rule and decision rule
First recursively build an upper-bound on the difference between the value of
the optimal policy and the value of the current optimistic policy π̄t ,

W t
h (s, a) =

(
1 +

1
H

)
p̂t

hG t
h+1(s) + bgap,t

h (s, a),

G t
h(s) = clip

(
π̄t+1

h W t
h (s) +

1
2λ max

a∈A

(
Qt

h(s, a)− Qt
h(s, a)

)2
, 0,H

)
,

where bgap,t
h is a bonus, V t is a lower-bound on the optimal value function

and G t
H+1 = 0 by convention.

The stopping time ι = inf{t ∈ N : G t
1(s1) ≤ ε}. At this episode ι we return

the policy π̂ = π̄ι.
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Best Policy Identification in Regularized Finite MDPs

1: Input: Target precision ε, target probability δ, bonus functions bt , bt,KL.
2: while true do
3: Compute π̄t by optimistic planning.
4: Compute bound on the gap G t

1(s, a).
5: if G t

1(s1) ≤ ε then break
6: Sample h′ ∼ Unif[H] and set πt = πt,(h′).
7: for h ∈ [H] do
8: Play at

h ∼ πt
h(st

h)
9: Observe st

h+1 ∼ ph(st
h, at

h)
10: end for
11: Update transition estimates p̂t .
12: end while
13: Output policy π̂ = π̄t .
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Final sample complexity for Demonstration-Regularized RL

Theorem
Assume that the expert policy is εE = ε/2-optimal and satisfies some
assumption in the linear case. Let πBC be the behavior cloning policy, then
demonstration-regularized RL with parameters εRL = ε/4, δRL = δ/2 and
λ = Õ

(
NEε/(SAH)

)
/ Õ

(
NEε/(dH)

)
is (ε, δ)-PAC for BPI with

demonstration in finite / linear MDPs and has sample complexity of order

C(ε,NE, δ) = Õ
(

H6S3A2

NEε2

)
(finite) C(ε,NE, δ) = Õ

(
H6d3

NEε2

)
(linear).
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Demonstration-Regularized
Reinforcement Learning
with Human Feedback
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Preference-Based Model

Setting
We do not know the true reward function r⋆ but have access to an oracle
that provides a preference feedback between two trajectories.

Reward
Given a reward function r = {rh}H

h=1, we define the reward of a trajectory
τ ∈ (S ×A)H as the sum of rewards collected over this trajectory
r(τ) ≜

∑H
h=1 rh(sh, ah).
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Instruct GPT
Ouyang, Long, et al. ”Training language models to follow instructions with
human feedback.” Advances in Neural Information Processing Systems 35
(2022): 27730-27744.

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section 3 for more details
on our method.

sizes (1.3B, 6B, and 175B parameters), and all of our models use the GPT-3 architecture. Our main
findings are as follows:

Labelers significantly prefer InstructGPT outputs over outputs from GPT-3. On our test set,
outputs from the 1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3,
despite having over 100x fewer parameters. These models have the same architecture, and differ only
by the fact that InstructGPT is fine-tuned on our human data. This result holds true even when we
add a few-shot prompt to GPT-3 to make it better at following instructions. Outputs from our 175B
InstructGPT are preferred to 175B GPT-3 outputs 85 ± 3% of the time, and preferred 71 ± 4% of the
time to few-shot 175B GPT-3. InstructGPT models also generate more appropriate outputs according
to our labelers, and more reliably follow explicit constraints in the instruction.

InstructGPT models show improvements in truthfulness over GPT-3. On the TruthfulQA
benchmark, InstructGPT generates truthful and informative answers about twice as often as GPT-3.
Our results are equally strong on the subset of questions that were not adversarially selected against
GPT-3. On “closed-domain” tasks from our API prompt distribution, where the output should not
contain information that is not present in the input (e.g. summarization and closed-domain QA),
InstructGPT models make up information not present in the input about half as often as GPT-3 (a
21% vs. 41% hallucination rate, respectively).

InstructGPT shows small improvements in toxicity over GPT-3, but not bias. To measure
toxicity, we use the RealToxicityPrompts dataset (Gehman et al., 2020) and conduct both automatic
and human evaluations. InstructGPT models generate about 25% fewer toxic outputs than GPT-3
when prompted to be respectful. InstructGPT does not significantly improve over GPT-3 on the
Winogender (Rudinger et al., 2018) and CrowSPairs (Nangia et al., 2020) datasets.

We can minimize performance regressions on public NLP datasets by modifying our RLHF
fine-tuning procedure. During RLHF fine-tuning, we observe performance regressions compared
to GPT-3 on certain public NLP datasets, notably SQuAD (Rajpurkar et al., 2018), DROP (Dua et al.,
2019), HellaSwag (Zellers et al., 2019), and WMT 2015 French to English translation (Bojar et al.,
2015). This is an example of an “alignment tax” since our alignment procedure comes at the cost of

3
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Preference-based RL with demonstration

Assumption
Let τ0, τ1 be two trajectories. The preference for τ1 over τ0 is a Bernoulli
random variable o with a parameter q⋆(τ0, τ1) = σ(r⋆(τ1)− r⋆(τ0)), where
σ : R → [0, 1] is a monotone increasing link function that satisfies
infx∈[−H,H] σ

′(x) = 1/ζ for ζ > 0. This function can also be viewed as a
utility or preference.

Example
A sigmoid function σ(x) = 1/(1 + exp(−x)) leads to the Bradley-Terry-Luce
(BTL) model widely used in the literature.
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Preference-based RL with demonstration

The agent observes NE independent trajectories DE sampled from an expert
policy πE. Learning is divided in two phases.

Preference collection. Based on the observed expert trajectories DE, the
agent selects a sampling policy πBC to generate a data set of
preferences DRM = {(τ k

0 , τ
k
1 , ok)}NRM

k=1 consisting of pairs of trajectories
and the sampled preferences.

Reward-free interaction. The agent interacts with the reward-free MDP
as follows: at episode t, agent selects a policy πt based on the collected
transitions up to time t, demonstrations and preferences. Then a new
trajectory (reward-free) is sampled following the policy πt and is
observed by the agent.

At the end of each episode, the agent can decide to stop according to a
stopping rule ι, and outputs a policy πRLHF.
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Preference-based RL with demonstration

PAC algorithm
An algorithm ((πt)t∈N, π

BC, ι, πRLHF) is (ε, δ)-PAC for preference-based best
policy identification (BPI) with demonstrations and sample complexity
C(ε,NE, δ) if

P
(

V ⋆
1 (s1)− V πRLHF

1 (s1) ≤ ε, ι ≤ C(ε,NE, δ)
)
≥ 1 − δ,

where the unknown true reward function r⋆ is used in the value-function V ⋆.
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Demonstration-regularized RLHF

Idea
The agent starts with behavior cloning applied to the expert dataset,
resulting in the policy πBC. During the preference collection phase, the agent
generates a dataset DRM = {(τ k

0 , τ
k
1 , ok)}NRM

k=1 by executing the previously
computed policy πBC. Using this dataset, the agent can infer the reward r̂
via MLE:

max
r∈G

NRM∑
k=1

ok log

(
σ
(
r(τ k

1 )− r(τ k
0 )
))

+ (1 − ok) log

(
1 − σ

(
r(τ k

1 )− r(τ k
0 )
))

where G is a function class for trajectory reward functions.

Finally, the agent computes πRL by performing regularized BPI with policy
πBC, a properly chosen regularization parameter λ and the estimated reward
r̂ .
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Demonstration-regularized RLHF

Role of πBC

We use the behavior cloning policy πBC for two purpose.
1. First, it allows efficient offline collection of the preference dataset DRM,

from which a high-quality estimate of the reward can be derived.
2. Second, a regularization towards the behavior cloning policy πBC enables

the injection of information obtained from the demonstrations.
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Demonstration-regularized RLHF

Connection RL fine-tuning for LLM
Our algorithm’s policy learning phase is similar to solving an RL problem with
policy-dependent rewards

rRLHF
h (s, a) = r̂h(s, a)− λ log

(
πRLHF

h (a|s)/πBC
h (a|s)

)
.

This formulation, coupled with our prior stages of the behavior cloning, akin
to supervised fine-tuning (SFT), and reward estimation through MLE based
on trajectories generated by the SFT-policy, mirrors a simplified version of
the three-phase GPT RLHF pipeline.
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Demonstration-regularized RLHF

Single-policy concentrability coefficient Cr(G, πE, πBC)

max

0, sup
r∈G

Eτ0∼πE,τ1∼πBC [r⋆(τ0)− r⋆(τ1)− (r(τ0)− r(τ1))]√
Eτ0,τ1∼πBC

[
(r⋆(τ0)− r⋆(τ1)− (r(τ0)− r(τ1)))

2
]


Assumptions
For ε > 0 and δ ∈ (0, 1), assume that an expert policy πE is ε/8-optimal and
for all h ∈ [H], there exists an unknown parameter wE

h ∈ Rd with ∥wE
h ∥2 ≤ R

for some known R ≥ 0 such that

πE
h (a|s) =

exp(ψ(s, a)TwE
h )∑

a′∈A exp(ψ(s, a′)TwE
h )
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Demonstration-regularized RLHF

Theorem
If the following two conditions hold

NE · NRM ≥ Ω̃
(
ζ2H2D̃2/ε2

)
NE ≥ Ω̃

(
H2D̃/ε

)
or NRM ≥ Ω̃

(
Crζ

2HD̃/ε2
)

for D̃ = SA / d in finite / linear MDPs, then demonstration-regularized RLHF
is (ε, δ)-PAC for BPI with demonstration in finite / linear MDPs with sample
complexity

C(ε,NE, δ) = Õ
(

H6S3A2

NEε2

)
(finite) C(ε,NE, δ) = Õ

(
H6d3

NEε2

)
(linear)
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Demonstration-regularized RLHF

Remarks
The conditions (1) and (2) control two different terms in the reward
estimation error presented.
The condition (1) shows that small size of the expert dataset should be
compensated by a larger dataset used for reward estimation and vice
versa.
The condition (2) requires that at least one of these datasets is large
enough to overcome sub-exponential behavior of the error in the reward
estimation problem.
The second part of the condition (2) NRM ≥ Cr/ε

2 is unavoidable in the
general case of offline learning even if the transitions are known due to a
lower bound.
As soon as reward estimation error is small enough, we obtain the same
sample complexity guarantees as in the demonstration-regularized RL.
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Takeaways & Open problems

Combine almost known 3 statistical problem 7→ real-world problem;
Reinforcement Learning 7→ Reinforcement Learning with Demonstrations;
Simple and implementable approach: Demonstration-Regularized RL;
Incorporation human feedback 7→ InstructGPT pipeline;

Open questions
Optimal sample complexity for the regularized BPI?
Optimal sample complexity for the BPI with demonstrations?
Optimal sample complexity for RLHF?
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