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Single index model as n/p —constant
iid observations (X;, y;j)i=1,...» with Gaussian feature vectors
xi ~ N(0,X), ¥ € RP*P and response y;

vi = F(x w, Uy)

» F:R? — R is an unknown deterministic function

» w ¢ RP an unknown index, normalized with
Var[x" w] = |=Y2w|]? = 1

» U; is a latent variable independent of x;.
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Examples

> Linear regression: F(v,u) = ||XY/28*||v + u for some
B* €RP, U; ~ N(0,0%) and w = 3*/|| 21237

> Logistic regression: F(v,u) =1if u<1/(1+ e 181") and 0
otherwise for some 3* € RP, U; ~ Unif]0,1] and
w=g"/||S1267.

» 1-bit compressed sensing with an e-proportion of bits flipped.
F(v,u) = usign(v) for U; € {—1,1} s.t. P(U; = —1) =¢.



Least-Squares!

~

B=(XTX)"'XTy
When y;|x; is nonlinear
Examples:
XTW
» Logistic model E[y;|x;] = <+
1+exi w
P 1-bit compressed sensing
yi = ujsign(x; w)
with u; random sign.

» Poisson model

Situation: Response y; is far from linear in x." w



Least-Squares! 3 = (X"X)'X"y; ¥ =1,and |w| =1
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Least-Squares! 3 = (X"X)"'XTy; ¥ =1, and |w| =1

||x5H2 / Hy XB|?> estimates (w!3)?
— hrinking adjustment 4

QQp|0t 1 . P [6 —iawj] ~ N(O 1) S r!n ng a.Jus ment a

/ Hy X@H variance adjustment
| 2=0.8 ‘ Linear | Logistic y; € {0,1} | L-bit y; € {+1} |
yilxi | vi~ N w,05) | Blyile] = <5
K | 1999 +.021 | 407 £ .072 | 475+ .05
| wTB | .999 £ .027 | —.413 +.033 | 483 +.037

y,—u,S|gnx w)
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M-estimator
Bis a regularized M-estimator of the form

Bly. X) = argmin ~ ny, (xi"b) + g(b)

ber, N <

where

> g :RP — R is a convex penalty function and for any yp € ),
» the map £, : R = R, t — £, (t) is a convex loss function.

For a fixed yp, the derivatives of £y, are denoted by ¢} (t) and
£y, (t) where these derivatives exist.

» We never differentiate wrt yo! (yo may be discrete)
Regime
n/p — 0 (=constant)



Ridge Logistic regression; sigmoid o(u) =1/(1+ e~ ")

. 1<
B = argmin = > (log(1 + €% ®) — yix] b) + A|[b]|*/2
berr N5

Define the adjustments 72, 4%, ¥ by
> P2 =30y —a(xB))/n

> 8 = ||B]2 — L2 ? where

0= Y0, T AL o (T BT Ax)
A= (3 XiU/(X;TB)X,-T)_l (Hessian)

Approximately normal (e.g., for confidence intervals)

QQplot of Z; = (3>
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variance adjustment
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B = argmin,, LS (log(1+ eX'b) — yixb) + A||b||?/2
| 2 f2 = 27 ]_(yl - ( TB))2/n

HﬁHz PIn_ 72 where

(A+9)2
{ 210 Tﬁ)(l - U’(X;TB)X,'TAX:')
S %0 (xT B)xT)~1 (Here o(t) = (1 + e t)~! sigmoid)
> P1/p/n(0 + N)(B; — +aw;)
A 0.01 | 0.10 | 1.00
52 0.630+£0.167 |  0.170+0.039 |  0.01640.003

a2 = (w'B)? 0.610£0.039 |  0.164:£0.009 | 0.016-£0.0009

Zjfor j:w; =0

Zjfor j:w; #0




Logistic Lasso with g repeated measurements
Vi € [n] observe (Y/)k—1, 4 iid P(Y¥ = 1|x;) = sigmoid(x;” 3*)

B=miny >0, 39, [Iog(l 4 erby Y,"x,Tb] ISWoT

Estimate /maximize correlation ||3]|~237 3*3*|~* over A



Logistic Lasso with g repeated measurements
Vi € [n] observe (Y/)k—1, 4 iid P(Y¥ = 1|x;) = sigmoid(x;” 3*)

B=miny >0, 39, [Iog(l +exb) - y,.qx,.Tb] + A/nllb]s.

Estimate /maximize correlation ||3]|~237 3*3*|~* over A
Define Vector ¥ € R” has components t); = — Py (x7B; YF)

a " A a7 N 3 _ ap2)2
BTB .. (ZIIXB — 492 + 2T X3 — 47?)
18| LIS-12XTh|2 + 22hTXB + 2| XB — 43|12 — £72



Logistic Lasso with g repeated measurements
Vi € [n] observe (Y/)k—1, 4 iid P(Y¥ = 1|x;) = sigmoid(x;” 3*)

B=miny >0, 39, [Iog(l +exb) - y,.qx,.Tb] + A/nllb]s.
Estimate /maximize correlation ||3]|~237 3*3*|~* over A
Define Vector ¥ € R” has components t); = — Py (x7B; YF)

BTB .. (X8~ 4| + 39X~ 47)°
||5*|| 2||2 VRXT2 + ZEHTXB + TIXB — 4|12 - &7

IBII118* I
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Logistic Lasso with repeated measurements: —=—-+——
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Literature on generalized linear models (linear, logistic,
Regime:n/p — 0 (=constant)

M-estimator with separable penalty

By, X) = argmln = Zﬁy, (x” b) +

> 7(s)
Informal result: a
If X has iid N(0, ) entries, Then the empirical distribution of

(/81)121,...,p is approx. the same as the empirical distribution of

‘O\H

proxh f} (E B+ ¢ ZJ), Z; ~ N(0,1)

for some constants 7, ¢, ¢’ depending on § = lim g, the penalty 7,
the data-generating process and loss function.

Why find 7, ¢, ¢'?
5, ¢, ¢ characterize MSE %HB — B*||2, correlation %BT,B*, etc

How to find 7, ¢, c'?



Some literature in linear models

El Karoui et al (2013), Donoho and Montanari (2016)
B = argmingcge S0 L(y; — x;” b) for some convex £ : R — R.

System of two equations
6~ to? = E[(prox[vL](e1 + 0Z) — &1 — 0Z)?],
1— 671 =E[prox[vL] (c1 + 02)],
with two unknowns (o,7), where Z ~ N(0,1) is independent of &7.

If X has iid entries then || 3|2 —F o2

Also, asymptotic normality results for Bj

Similar work for the Lasso and X with iid N(0, 1) entries
(Bayati and Montanari 2011)



Logistic Regression (Sur and Candes 2018)
> Logistic model, p/(u) = 1/(1 + e™") is the sigmoid
» 3% iid entries with law 3 and E[3?] = x?

> Xj~ N(O')%IP) (Z= %'p)
» n,p — oo with n/p — ¢.

System with three unknowns o, o,y

67 to? = 2E[p'(—kZ1) (vp (prox[yp](kaZy + UZZ)))2],
0 = 2E[p'(—rZ1)Zivp (prox|yp)(kaZy + 02))],
1— 61 =2E[p/(—rZy)prox[yp] (kaZi + 0 2)].
With (&, &, %) denoting the solution
1 & A — 0% ok P =
pjzlqs(ﬂj —ap;, ) <" E|o(52.8)]

where Z ~ N(0.1) is independent of 3.



Logistic loss+penalty g(b) =>7_, f(sf) (Salehi et al 2019)

» Logistic model
» 3% iid entries with law 3 and E[3?] = x?
> Xxi~ N(O’%’p) (2= %lp)

System with six unknowns (o, 0,7, 6,7, r),

Kia = [ﬁprox[an [(o7(05 + 0~ 1/2rZ))]
Viory = E[Zprox[orf(-)](oT(08 + 0~ 1/2rZ))]7
k2a? +o0® =E[{ prox[orF()](o7(08 + 671/%¢Z))}? 1,
r’y? = 2B ¢/ (—kZ1)(kaZy + 0 Zo — prox[yp|(kaZy + 0 22)) ],
—0y = 2E[p" (—rZ1)prox[yp)(kaZy + 0 25)],
(1 —~/(o7) = 2E[p'(—rZ1)prox[yp] (raZy + 0 25)]




Logistic loss+penalty g(b) =>7_, f(sf) (Salehi et al 2019)
» Logistic model
» (3" iid entries with law 3 and E[3?] = x?
> Xj~ N(07%Ip) (X = %lp)
> n,p— oo with n/p — 0.
System with six unknowns («, 0,7, 0,7, r),

If unique solution (&, 7,7, d, 7, F) then for any locally Lipschitz ¢

1$ A ax) P —=Z(\(2=(] ~1/2>
5 glcb(ﬁj, 87) =" E|o(prox(577()] (57(88 + 67/272)), 8) |
See Loureiro et al. (2021) for a unifying theory. Informally:

Bj ~ prox[&%f(-)](&?(éﬁf + 5_1/2FZJ')), [where Z;j ~ N(0,1)]



A peek at the results (informal)



Single index model
iid (xj,yi)i=1,...n with Gaussian x; ~ N(0,X), 3 € RP*P and

yi = F(x,-Tw, Up), Var[x,-Tw] = ||21/2WH2 =1.
M-estimator (in this slide, with separable penalty)

B(}’v X) = argminpcg, % > i1ty (x,-Tb) + %Zj?:l F(bj)
Result: empirical distribution (31-)]:17,”7,, well-approximated as
Bi ~ rox[lf} (iw-f + ifZ) where Z; ~ N(0,1)

j =P 0 i T s ) J )

» +w; the j-th entry of the index w up to an unidentifiable +.

» (0,t,7) are observable scalars
» Why find (7, £ 7)? Confidence interval, MSE, correlation
» How to find (0, £, 7)?



Derivatives: for some matrix A € RP*P, with ¢); = —fy,(x,-TB),

0
Oxjj

B(y. X) = Aej); — AXTDe;3;, D = diag(¢},(x B))

Notation V = D — DXAXT D (matrix n x n), df = Tr[XAX T D]



Derivatives: for some matrix A € RP*P, with ¢); = —(,,(x 3),

0

5By, X) = Aeji); — AXTDe;fyj, D = diag(t}(x B))
7

Notation V = D — DXAXT D (matrix n x n), df = Tr[XAX T D]

(7, t,7) used to describe the empirical dist. of (/5])] 1.,
The three others 4, 42, 52 for the empirical dist. of (x,-TB),:lmn.

PEGIPINY? = (AL, 6, (B2,
2 de %H271/2XT,¢;H2 2V¢TX,3+ 02 ”X,B ,Y,d)H2 %

f
n

FEP(FIXB - 4P| + LT XB A7),




Much simpler expressions for special cases

E.g., for unregularized M-estimation (g = 0):

a_ﬂ(y, X) = Aej)i—AX T De;3;, A= (Z Xif;,(XiTB)XiT)
i-1

-1

V= % Z E//-(XITB) [ E// ( iTB)XiTAXi} 3 Fz = % z_n; gli(xiTlé)2

" . p/n o X812 p,. p\ P
f=p =% F= R0
2 _ 5202 &2:B(f>2

’ n\9/ "~

Here, the fact that df = p justifies the notation df.



Much simpler expressions for special cases

E.g., for Least-Squares ¢,,(u) = %(u — y;)?, penalty g = 0:

0 AL AvT . B A Ty\ !
6XU,@(y,X)—Aeﬂ/),—AX Deif;, A= (x x)
~ ~2 1 112
v=1-p/n. P =y X
. . p/n o IXBI% p,, pilly —XB|?*/n
f: = = — 1ff Jik o S L S A
P; v v’ a n n( n) 02
2 _ 5202 &2:B(f>2
’ n\v/

Here, the fact that df = p justifies the notation df.



Theorem 4.1

Assumptions:

» x; ~ N(0,X), condition number of ¥ bounded by x

» 1000 > n/p >

P> penalty 7-strongly convex

> B = B+ TV e =X T, Q; = (=Y
Then for all j =1, ..., p, there exists Z; ~ N(0,1) such that

2l (A - w) - 2)] < 805

where i denotes an unidentifiable random sign.




Theorem 4.1

Assumptions:

» x; ~ N(0,X), condition number of ¥ bounded by x

» 1000 > n/p >

P> penalty 7-strongly convex

> B = B+ TV e =X T, Q; = (=Y
Then for all j =1, ..., p, there exists Z; ~ N(0,1) such that

2l (a0 ) - 2)] < 505

where i denotes an unidentifiable random sign.

» Consequence of Theorem 4.1: proximal representation for 3
B- ~ prox[ f} (iwj =+ \}SCZ) for sep. penalty, ¥ = %Ip

» Theorem 4.3: Proximal representation for x TB

» Theorem 4.4: correlation estimation 42 ~ (w’ 3)2



Take home

» Empirical distribution BJ =~ prox[Af] (:l:vvj L 4 \/SVZ)
and confidence intervals for the entries £w; of the index w

» Data-driven parameters in the proximal representation can be
read in the derivatives of 3(y, X) with respect to X,

o . o .
8XUIB(y’ X) = Aejy; — AX " De;f3;,

7 =1 Tr[D — DXAXT D] where D = diag(¢},(x,” 3)).
» Without solving the deterministic fixed-point equations
obtained by Approximate Message Passing or Gordon's CGMT



Linear models: Estimating Generalization/param. tuning

. 1
By, X) = argmin — > ((x b — y;) + A[|b||1 + 7[|b||* /2
berr N°—7

Huber Loss /(u) = fé"' min(1, t)dt with Elastic-Net penalty
Two tuning parameters (A, 7) in the Elastic-Net penalty

IIr + o (nl12/n ~ lel/n

~~~~~~~~~~~

=] 5 = = =

DA



Linear models: Estimating Generalization/param. tuning

R 1
Bly. X) = argmin _ > Ux"b — yi) + A|lbllx + 7]|b][*/2
€ i=1

Huber Loss /(u) = fé"' min(1, t)dt with Elastic-Net penalty
Two tuning parameters (A, 7) in the Elastic-Net penalty

IIr + o (nl12/n ~ lel/n

With df = Tr[XAXT D], ¢ = Tr[D] — df/n, Theory gives approx.:

Lt 2y xp) +

n

IZV2(8 - 7P + ety -xp)|

m]



K-Fold Cross-validation suffers sample-size bias

Out-of-sample error

\ versi
. k-fold cross validation

error

. ~ 3fold CV
Figure 1 from Z acy
Consistent Risk Estima- 1

tion in Moderately High-

Dimensional Linear Re-

gression

by Xu, Maleki, Rad, Hsu
(arXiv:1902.01753) W
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