# Observable adjustments for M-estimation in single index models

Pierre C Bellec — Rutgers University

Dec 18, ICSDS 2023, Lisbon

### Collaborators



Yiwei Shen (Former PhD student now facebook)



Cun-Hui Zhang (Rutgers)



Kai Tan (Rutgers, current PhD student)

## Single index model as $n/p \rightarrow$ constant

iid observations  $(x_i, y_i)_{i=1,...,n}$  with Gaussian feature vectors  $x_i \sim N(\mathbf{0}, \Sigma)$ ,  $\Sigma \in \mathbb{R}^{p \times p}$  and response  $y_i$ 

$$y_i = F(\mathbf{x}_i^T \mathbf{w}, U_i)$$

- $ightharpoonup F: \mathbb{R}^2 
  ightarrow \mathbb{R}$  is an unknown deterministic function
- $m{w} \in \mathbb{R}^p$  an unknown index, normalized with  $\mathsf{Var}[m{x}_i^Tm{w}] = \|m{\Sigma}^{1/2}m{w}\|^2 = 1$
- $ightharpoonup U_i$  is a latent variable independent of  $x_i$ .

## Single index model as $n/p \rightarrow constant$

iid observations  $(x_i, y_i)_{i=1,...,n}$  with Gaussian feature vectors  $x_i \sim N(\mathbf{0}, \Sigma)$ ,  $\Sigma \in \mathbb{R}^{p \times p}$  and response  $y_i$ 

$$y_i = F(\mathbf{x}_i^T \mathbf{w}, U_i)$$

- $ightharpoonup F: \mathbb{R}^2 \to \mathbb{R}$  is an unknown deterministic function
- $m{w} \in \mathbb{R}^p$  an unknown index, normalized with  $\mathsf{Var}[m{x}_i^Tm{w}] = \|m{\Sigma}^{1/2}m{w}\|^2 = 1$
- $\triangleright$   $U_i$  is a latent variable independent of  $x_i$ .

### Examples

- Linear regression:  $F(v, u) = ||\Sigma^{1/2}\beta^*||v + u$  for some  $\beta^* \in \mathbb{R}^p$ ,  $U_i \sim N(0, \sigma^2)$  and  $\mathbf{w} = \beta^* / ||\Sigma^{1/2}\beta^*||$ .
- ▶ Logistic regression: F(v, u) = 1 if  $u \le 1/(1 + e^{-\|\beta^*\|v})$  and 0 otherwise for some  $\beta^* \in \mathbb{R}^p$ ,  $U_i \sim \text{Unif}[0, 1]$  and  $\mathbf{w} = \beta^*/\|\mathbf{\Sigma}^{1/2}\beta^*\|$ .
- ▶ 1-bit compressed sensing with an  $\epsilon$ -proportion of bits flipped:  $F(v, u) = u \operatorname{sign}(v)$  for  $U_i \in \{-1, 1\}$  s.t.  $\mathbb{P}(U_i = -1) = \varepsilon$ .

## Least-Squares!

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

### When $y_i|x_i$ is nonlinear

### Examples:

- ▶ Logistic model  $\mathbb{E}[y_i|\mathbf{x}_i] = \frac{e^{\mathbf{x}_i^T \mathbf{w}}}{1+e^{\mathbf{x}_i^T \mathbf{w}}}$
- ▶ 1-bit compressed sensing

$$y_i = u_i \operatorname{sign}(\mathbf{x}_i^T \mathbf{w})$$

with  $u_i$  random sign.

Poisson model

Situation: Response  $y_i$  is far from linear in  $x_i^T w$ 

Least-Squares!  $\hat{m{\beta}} = (m{X}^Tm{X})^{-1}m{X}^Tm{y}; \ \Sigma = m{I}_p \ ext{and} \ \|m{w}\| = 1$ 

$$\hat{\boldsymbol{a}}^2 = \frac{1}{n} \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2 - \frac{p/n}{n-p} \|\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2 \quad \text{estimates} \quad (\boldsymbol{w}^T\hat{\boldsymbol{\beta}})^2$$

$$\text{QQplot} \quad \frac{n-p}{\Omega_{::}^{1/2} \|\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}\|} \left[\hat{\beta}_j - \pm \hat{\boldsymbol{a}} w_j\right] \approx N(0,1) \begin{cases} \text{shrinking adjustment } \hat{\boldsymbol{a}} \\ \text{variance adjustment} \end{cases}$$

Least-Squares!  $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}; \ \boldsymbol{\Sigma} = \boldsymbol{I}_p \ \text{and} \ \|\boldsymbol{w}\| = 1$ 

$$\hat{\boldsymbol{a}}^2 = \frac{1}{n} \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2 - \frac{p/n}{n-p} \|\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2$$
 estimates  $(\boldsymbol{w}^T\hat{\boldsymbol{\beta}})^2$ 

QQplot  $\frac{n-p}{\Omega_{ii}^{1/2}\|\mathbf{y}-\mathbf{X}\hat{\boldsymbol{\beta}}\|} \left[\hat{\beta}_j - \pm \hat{a}w_j\right] \approx N(0,1) \begin{cases} \text{shrinking adjustment } \hat{a} \\ \text{variance adjustment} \end{cases}$ 

| $\frac{p}{n} = 0.8$                  | Linear                                       | Logistic $y_i \in \{0,1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-bit $y_i \in \{\pm 1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ y_i x_i$                           | $y_i \sim N(\mathbf{x}_i^T \mathbf{w}, 0.5)$ | $\mathbb{E}[y_i \boldsymbol{x}_i] = \frac{e^{x_i^T w}}{1 + e^{x_i^T w}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $y_i = u_i \operatorname{sign}(\boldsymbol{x}_i^T \boldsymbol{w})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| â                                    | $.999\pm.021$                                | $ $ .407 $\pm$ .072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $.475\pm.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\mathbf{w}^{T}\hat{oldsymbol{eta}}$ | $.999 \pm .027$                              | $ 413 \pm .033$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $.483\pm.037$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                      |                                              | and the state of t | The second secon |

### M-estimator

 $\hat{oldsymbol{eta}}$  is a regularized  $\emph{M} ext{-estimator}$  of the form

$$\hat{\beta}(\boldsymbol{y}, \boldsymbol{X}) = \underset{\boldsymbol{b} \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \ell_{y_i}(\boldsymbol{x}_i^T \boldsymbol{b}) + g(\boldsymbol{b})$$

where

- ▶  $g: \mathbb{R}^p \to \mathbb{R}$  is a convex penalty function and for any  $y_0 \in \mathcal{Y}$ ,
- ▶ the map  $\ell_{y_0} : \mathbb{R} \to \mathbb{R}$ ,  $t \mapsto \ell_{y_0}(t)$  is a convex loss function.

For a fixed  $y_0$ , the derivatives of  $\ell_{y_0}$  are denoted by  $\ell'_{y_0}(t)$  and  $\ell''_{y_0}(t)$  where these derivatives exist.

▶ We never differentiate wrt  $y_0!$  ( $y_0$  may be discrete)

### Regime

$$\textit{n/p} \rightarrow \delta \; (= \text{constant})$$

## Ridge Logistic regression; sigmoid $\sigma(u) = 1/(1 + e^{-u})$

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{b} \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n (\log(1 + e^{\boldsymbol{x}_i^T \boldsymbol{b}}) - y_i \boldsymbol{x}_i^T \boldsymbol{b}) + \lambda \|\boldsymbol{b}\|^2 / 2$$

Define the adjustments  $\hat{r}^2$ ,  $\hat{a}^2$ ,  $\hat{v}$  by

$$\hat{r}^2 = \sum_{i=1}^n (y_i - \sigma(\mathbf{x}_i^T \hat{\boldsymbol{\beta}}))^2 / n$$

$$ightharpoonup \hat{a}^2 = \|\hat{oldsymbol{eta}}\|^2 - rac{p/n}{(\lambda+\hat{v})^2}\hat{r}^2$$
 where

$$\begin{cases} \hat{v} = \sum_{i=1}^{n} \sigma'(\mathbf{x}_{i}^{T} \hat{\boldsymbol{\beta}}) (1 - \sigma'(\mathbf{x}_{i}^{T} \hat{\boldsymbol{\beta}}) \mathbf{x}_{i}^{T} \mathbf{A} \mathbf{x}_{i}) \\ \mathbf{A} = (\sum_{i=1}^{n} \mathbf{x}_{i} \sigma'(\mathbf{x}_{i}^{T} \hat{\boldsymbol{\beta}}) \mathbf{x}_{i}^{T})^{-1} \text{ (Hessian)} \end{cases}$$

Approximately normal (e.g., for confidence intervals)

QQplot of 
$$Z_j = \left(\frac{p}{n}\right)^{1/2} \frac{\left(\hat{v} + \lambda\right)}{\hat{r}} \left(\hat{\beta}_j - \pm \hat{a}w_j\right) \begin{cases} \text{shrinking adjustment } \hat{a} \\ \text{variance adjustment} \end{cases}$$

## Logistic Lasso with q repeated measurements

$$\forall i \in [n] \text{ observe } (Y_i^k)_{k=1,\dots,q} \text{ iid } P(Y_i^k=1|\mathbf{x}_i) = \operatorname{sigmoid}(\mathbf{x}_i^T \boldsymbol{\beta}^*)$$

$$\hat{\boldsymbol{\beta}} = \min_{\boldsymbol{b}} \sum_{i=1}^n \sum_{k=1}^q \left[ \log(1 + e^{\mathbf{x}_i^T \boldsymbol{b}}) - Y_i^q \mathbf{x}_i^T \boldsymbol{b} \right] + \lambda \sqrt{n} \|\boldsymbol{b}\|_1.$$

Estimate/maximize correlation  $\|\hat{\beta}\|^{-1}\hat{\beta}^T\beta^*\|\hat{\beta}^*\|^{-1}$  over  $\lambda$ 

## Logistic Lasso with q repeated measurements

$$\forall i \in [n] \text{ observe } (Y_i^k)_{k=1,\ldots,q} \text{ iid } P(Y_i^k=1|\mathbf{x}_i) = \operatorname{sigmoid}(\mathbf{x}_i^T \boldsymbol{\beta}^*)$$

$$\hat{\boldsymbol{\beta}} = \min_{\boldsymbol{b}} \sum_{i=1}^{n} \sum_{k=1}^{q} \left[ \log(1 + \mathrm{e}^{\mathbf{x}_{i}^{T}\boldsymbol{b}}) - Y_{i}^{q} \mathbf{x}_{i}^{T} \boldsymbol{b} \right] + \lambda \sqrt{n} \|\boldsymbol{b}\|_{1}.$$

Estimate/maximize correlation  $\|\hat{\beta}\|^{-1}\hat{\beta}^T\beta^*\|\hat{\beta}^*\|^{-1}$  over  $\lambda$ 

Define Vector  $\hat{\psi} \in \mathbb{R}^n$  has components  $\hat{\psi}_i = -\sum_{k=1}^q \ell'(\mathbf{x}_i^T \hat{\boldsymbol{\beta}}; \ Y_i^k)$ 

$$\frac{\hat{\boldsymbol{\beta}}^T\boldsymbol{\beta}^*}{\|\hat{\boldsymbol{\beta}}^*\|} \approx \hat{\boldsymbol{a}} := \frac{\left(\frac{\hat{\boldsymbol{v}}}{n}\|\boldsymbol{X}\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\gamma}}\hat{\boldsymbol{\psi}}\|^2 + \frac{1}{n}\hat{\boldsymbol{\psi}}^\top\boldsymbol{X}\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\gamma}}\hat{\boldsymbol{r}}^2\right)^2}{\frac{1}{n^2}\|\boldsymbol{\Sigma}^{-1/2}\boldsymbol{X}^T\hat{\boldsymbol{\psi}}\|^2 + \frac{2\hat{\boldsymbol{v}}}{n}\hat{\boldsymbol{\psi}}^T\boldsymbol{X}\hat{\boldsymbol{\beta}} + \frac{\hat{\boldsymbol{v}}^2}{n}\|\boldsymbol{X}\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\gamma}}\hat{\boldsymbol{\psi}}\|^2 - \frac{p}{n}\hat{\boldsymbol{r}}^2}.$$

### Logistic Lasso with q repeated measurements

$$\forall i \in [n] \text{ observe } (Y_i^k)_{k=1,\dots,q} \text{ iid } P(Y_i^k=1|\mathbf{x}_i) = \operatorname{sigmoid}(\mathbf{x}_i^T \boldsymbol{\beta}^*)$$

$$\hat{\boldsymbol{\beta}} = \min_{\boldsymbol{b}} \sum_{i=1}^{n} \sum_{k=1}^{q} \left[ \log(1 + \mathrm{e}^{\mathbf{x}_{i}^{T}\boldsymbol{b}}) - Y_{i}^{q} \mathbf{x}_{i}^{T} \boldsymbol{b} \right] + \lambda \sqrt{n} \|\boldsymbol{b}\|_{1}.$$

Estimate/maximize correlation  $\|\hat{\beta}\|^{-1}\hat{\beta}^T\beta^*\|\hat{\beta}^*\|^{-1}$  over  $\lambda$ 

Define Vector  $\hat{\psi} \in \mathbb{R}^n$  has components  $\hat{\psi}_i = -\sum_{k=1}^q \ell'(\mathbf{x}_i^T \hat{\boldsymbol{\beta}}; \ Y_i^k)$ 

$$\frac{\hat{\boldsymbol{\beta}}^{\mathsf{T}}\boldsymbol{\beta}^{*}}{\|\hat{\boldsymbol{\beta}}^{*}\|} \approx \hat{\boldsymbol{a}} := \frac{\left(\frac{\hat{\boldsymbol{v}}}{n}\|\boldsymbol{X}\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\gamma}}\hat{\boldsymbol{\psi}}\|^{2} + \frac{1}{n}\hat{\boldsymbol{\psi}}^{\mathsf{T}}\boldsymbol{X}\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\gamma}}\hat{\boldsymbol{r}}^{2}\right)^{2}}{\frac{1}{n^{2}}\|\boldsymbol{\Sigma}^{-1/2}\boldsymbol{X}^{\mathsf{T}}\hat{\boldsymbol{\psi}}\|^{2} + \frac{2\hat{\boldsymbol{v}}}{n}\hat{\boldsymbol{\psi}}^{\mathsf{T}}\boldsymbol{X}\hat{\boldsymbol{\beta}} + \frac{\hat{\boldsymbol{v}}^{2}}{n}\|\boldsymbol{X}\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\gamma}}\hat{\boldsymbol{\psi}}\|^{2} - \frac{p}{n}\hat{\boldsymbol{r}}^{2}}.$$



## Logistic Lasso with repeated measurements: $\frac{\hat{\beta}^T \beta^*}{\|\hat{\beta}\| \|\beta^*\|}$





## Literature on generalized linear models (linear, logistic, ...)

Regime: $n/p \rightarrow \delta$  (=constant)

M-estimator with separable penalty

$$\hat{\boldsymbol{\beta}}(\boldsymbol{y}, \boldsymbol{X}) = \underset{\boldsymbol{b} \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \ell_{y_i}(\boldsymbol{x}_i^T \boldsymbol{b}) + \frac{1}{p} \sum_{j=1}^p \tilde{f}(b_j)$$

### Informal result:

If X has iid  $N(0, \frac{1}{p})$  entries, Then the empirical distribution of  $(\hat{\beta}_j)_{j=1,\dots,p}$  is approx. the same as the empirical distribution of

$$ext{prox} \left[ ar{m{ au}} \; ilde{f} 
ight] \left( ar{m{c}} \; eta_j^* \; + \; ar{m{c}}' \; Z_j 
ight), \qquad Z_j \sim {\it N}(0,1)$$

for some constants  $\bar{\gamma}, \bar{c}, \bar{c}'$  depending on  $\delta = \lim \frac{n}{p}$ , the penalty  $\tilde{f}$ , the data-generating process and loss function.

Why find  $\bar{\gamma}, \bar{c}, \bar{c}'$ ?

 $\bar{\gamma}, \bar{c}, \bar{c}'$  characterize MSE  $\frac{1}{p} ||\hat{\beta} - \beta^*||^2$ , correlation  $\frac{1}{p} \hat{\beta}^T \beta^*$ , etc

How to find  $\bar{\gamma}$ ,  $\bar{c}$ ,  $\bar{c}'$ ?



### Some literature in linear models

El Karoui et al (2013), Donoho and Montanari (2016)

 $\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{b} \in \mathbb{R}^p} \sum_{i=1}^n \mathcal{L}(y_i - \boldsymbol{x}_i^T \boldsymbol{b}) \text{ for some convex } \mathcal{L} : \mathbb{R} \to \mathbb{R}.$ 

System of two equations

$$\begin{cases} \delta^{-1}\sigma^2 = \mathbb{E}\big[(\operatorname{prox}[\gamma\mathcal{L}](\varepsilon_1 + \sigma Z) - \varepsilon_1 - \sigma Z)^2\big], \\ 1 - \delta^{-1} = \mathbb{E}\big[\operatorname{prox}[\gamma\mathcal{L}]'(\varepsilon_1 + \sigma Z)\big], \end{cases}$$

with two unknowns  $(\sigma, \gamma)$ , where  $Z \sim N(0, 1)$  is independent of  $\varepsilon_1$ .

If **X** has iid entries then  $\|\hat{\boldsymbol{\beta}}\|^2 \to^P \sigma^2$ 

Also, asymptotic normality results for  $\hat{eta}_j$ 

Similar work for the Lasso and X with iid N(0,1) entries (Bayati and Montanari 2011)

## Logistic Regression (Sur and Candes 2018)

- ▶ Logistic model,  $\rho'(u) = 1/(1 + e^{-u})$  is the sigmoid
- $ightharpoonup eta^*$  iid entries with law eta and  $\mathbb{E}[eta^2] = \kappa^2$
- $\mathbf{x}_i \sim N(0, \frac{1}{p} \mathbf{I}_p) \left( \mathbf{\Sigma} = \frac{1}{p} \mathbf{I}_p \right)$
- ▶  $n, p \to \infty$  with  $n/p \to \delta$ .

System with three unknowns  $\sigma, \alpha, \gamma$ 

$$\begin{cases} \delta^{-1}\sigma^2 = 2\mathbb{E}\big[\rho'(-\kappa Z_1)\big(\gamma\rho'(\mathsf{prox}[\gamma\rho](\kappa\alpha Z_1 + \sigma Z_2))\big)^2\big],\\ 0 = 2\mathbb{E}\big[\rho'(-\kappa Z_1)Z_1\gamma\rho'(\mathsf{prox}[\gamma\rho](\kappa\alpha Z_1 + \sigma Z_2))\big],\\ 1 - \delta^{-1} = 2\mathbb{E}\big[\rho'(-\kappa Z_1)\mathsf{prox}[\gamma\rho]'(\kappa\alpha Z_1 + \sigma Z_2)\big]. \end{cases}$$

With  $(\bar{\alpha}, \bar{\sigma}, \bar{\gamma})$  denoting the solution

$$\frac{1}{p} \sum_{i=1}^{p} \phi \left( \hat{\beta}_{j} - \bar{\alpha} \beta_{j}^{*}, \beta_{j}^{*} \right) \to^{\mathbb{P}} \mathbb{E} \left[ \phi \left( \bar{\sigma} Z, \beta \right) \right]$$

where  $Z \sim N(0,1)$  is independent of  $\beta$ .

## Logistic loss+penalty $g(\boldsymbol{b}) = \sum_{j=1}^p \frac{\tilde{f}(b_j)}{p}$ (Salehi et al 2019)

- Logistic model
- $ightharpoonup eta^*$  iid entries with law eta and  $\mathbb{E}[eta^2] = \kappa^2$
- lacksquare  $oldsymbol{x}_i \sim \mathcal{N}(0, rac{1}{
  ho} oldsymbol{I}_p) \ (oldsymbol{\Sigma} = rac{1}{
  ho} oldsymbol{I}_p)$

System with six unknowns  $(\alpha, \sigma, \gamma, \theta, \tau, r)$ ,

$$\begin{cases} \kappa^2\alpha = \mathbb{E}\big[\beta\mathsf{prox}[\sigma\tau\tilde{f}(\cdot)](\sigma\tau(\theta\beta+\delta^{-1/2}rZ))\big],\\ \sqrt{\delta}r\gamma = \mathbb{E}\big[Z\mathsf{prox}[\sigma\tau\tilde{f}(\cdot)](\sigma\tau(\theta\beta+\delta^{-1/2}rZ))\big],\\ \kappa^2\alpha^2 + \sigma^2 = \mathbb{E}\big[\{\mathsf{prox}[\sigma\tau\tilde{f}(\cdot)](\sigma\tau(\theta\beta+\delta^{-1/2}rZ))\}^2\big],\\ r^2\gamma^2 = 2\mathbb{E}\big[\rho'(-\kappa Z_1)(\kappa\alpha Z_1 + \sigma Z_2 - \mathsf{prox}[\gamma\rho](\kappa\alpha Z_1 + \sigma Z_2))^2\big],\\ -\theta\gamma = 2\mathbb{E}\big[\rho''(-\kappa Z_1)\mathsf{prox}[\gamma\rho](\kappa\alpha Z_1 + \sigma Z_2)\big],\\ 1 - \gamma/(\sigma\tau) = 2\mathbb{E}\big[\rho'(-\kappa Z_1)\mathsf{prox}[\gamma\rho]'(\kappa\alpha Z_1 + \sigma Z_2)\big] \end{cases}$$

Logistic loss+penalty 
$$g(\boldsymbol{b}) = \sum_{j=1}^p \frac{\tilde{f}(b_j)}{p}$$
 (Salehi et al 2019)

- Logistic model
- $\triangleright \beta^*$  iid entries with law  $\beta$  and  $\mathbb{E}[\beta^2] = \kappa^2$
- $ightharpoonup oldsymbol{x}_i \sim \mathcal{N}(0, rac{1}{
  ho} oldsymbol{I}_p) \ (oldsymbol{\Sigma} = rac{1}{
  ho} oldsymbol{I}_p)$
- ▶  $n, p \to \infty$  with  $n/p \to \delta$ .

System with six unknowns ( $\alpha, \sigma, \gamma, \theta, \tau, r$ ),

If unique solution  $(\bar{\alpha}, \bar{\sigma}, \bar{\gamma}, \bar{\theta}, \bar{\tau}, \bar{r})$  then for any locally Lipschitz  $\Phi$ 

$$\frac{1}{\rho} \sum_{i=1}^{\rho} \Phi \left( \hat{\beta}_{j}, \beta_{j}^{*} \right) \to^{\mathbb{P}} \mathbb{E} \left[ \Phi \left( \operatorname{prox} \left[ \bar{\sigma} \bar{\tau} \tilde{f} (\cdot) \right] \left( \bar{\sigma} \bar{\tau} (\bar{\theta} \beta + \delta^{-1/2} \bar{r} Z) \right), \beta \right) \right]$$

See Loureiro et al. (2021) for a unifying theory. Informally:

$$\hat{eta}_j pprox [ar{\sigma}ar{ au} ilde{f}(\cdot)] ig(ar{\sigma}ar{ au}(ar{ heta}eta_j^* + \delta^{-1/2}ar{r}Z_j)ig), \qquad ext{[where } Z_j \sim extit{N}(0,1)]$$

A peek at the results (informal)

### Single index model

iid  $(x_i,y_i)_{i=1,...,n}$  with Gaussian  $x_i \sim \mathcal{N}(\mathbf{0},\Sigma)$ ,  $\Sigma \in \mathbb{R}^{p \times p}$  and

$$y_i = F(\mathbf{x}_i^T \mathbf{w}, U_i),$$
  $Var[\mathbf{x}_i^T \mathbf{w}] = \|\mathbf{\Sigma}^{1/2} \mathbf{w}\|^2 = 1.$ 

M-estimator (in this slide, with separable penalty)

$$\hat{eta}(\mathbf{\emph{y}},\mathbf{\emph{X}}) = \operatorname{argmin}_{\mathbf{\emph{b}} \in \mathbb{R}^p} rac{1}{n} \sum_{i=1}^n \ell_{\mathit{Y}_i} ig(\mathbf{\emph{x}}_i^{\, \mathsf{T}} \mathbf{\emph{b}}ig) + rac{1}{p} \sum_{j=1}^p ilde{f}(b_j)$$

Result: empirical distribution  $(\hat{\beta}_j)_{j=1,...,p}$  well-approximated as

$$\hat{eta}_{j} pprox \left[rac{1}{\hat{m{v}}} ilde{f}
ight] \left(\pm w_{j}rac{\hat{m{t}}}{\hat{m{v}}} + rac{1}{\sqrt{\delta}}rac{\hat{m{r}}}{\hat{m{v}}}Z_{j}
ight), \qquad ext{where } Z_{j} \sim m{N}(0,1)$$

- $\blacktriangleright$   $\pm w_i$  the j-th entry of the index **w** up to an unidentifiable  $\pm$ .
- $(\hat{v}, \hat{t}, \hat{r})$  are **observable** scalars
- ▶ Why find  $(\hat{v}, \hat{t}, \hat{r})$ ? Confidence interval,  $\widehat{MSE}$ , correlation
- ► How to find  $(\hat{v}, \hat{t}, \hat{r})$ ?

Derivatives: for some matrix  $\hat{\mathbf{A}} \in \mathbb{R}^{p \times p}$ , with  $\hat{\psi}_i = -\ell_{y_i}(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})$ ,

$$\frac{\partial}{\partial x_{ij}} \hat{\boldsymbol{\beta}}(\boldsymbol{y}, \boldsymbol{X}) = \hat{\boldsymbol{A}} \boldsymbol{e}_{j} \hat{\psi}_{i} - \hat{\boldsymbol{A}} \boldsymbol{X}^{T} \boldsymbol{D} \boldsymbol{e}_{i} \hat{\beta}_{j}, \qquad \boldsymbol{D} = \operatorname{diag}(\ell''_{y_{i}}(\boldsymbol{x}_{i}^{T} \hat{\boldsymbol{\beta}}))$$

Notation  $V = D - DX \hat{A}X^T D$  (matrix  $n \times n$ ),  $\hat{df} = Tr[X \hat{A}X^T D]$ 

Derivatives: for some matrix  $\hat{\mathbf{A}} \in \mathbb{R}^{p \times p}$ , with  $\hat{\psi}_i = -\ell_{y_i}(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})$ ,

$$\frac{\partial}{\partial x_{ij}} \hat{\boldsymbol{\beta}}(\boldsymbol{y}, \boldsymbol{X}) = \hat{\boldsymbol{A}} \boldsymbol{e}_{j} \hat{\psi}_{i} - \hat{\boldsymbol{A}} \boldsymbol{X}^{T} \boldsymbol{D} \boldsymbol{e}_{i} \hat{\beta}_{j}, \qquad \boldsymbol{D} = \operatorname{diag}(\ell''_{y_{i}}(\boldsymbol{x}_{i}^{T} \hat{\boldsymbol{\beta}}))$$

Notation  $V = D - DX\hat{A}X^TD$  (matrix  $n \times n$ ),  $\hat{df} = Tr[X\hat{A}X^TD]$  ( $\hat{v}, \hat{t}, \hat{r}$ ) used to describe the empirical dist. of  $(\hat{\beta}_j)_{j=1,\dots,p}$  The three others  $\hat{\gamma}, \hat{a}^2, \hat{\sigma}^2$  for the empirical dist. of  $(x_i^T\hat{\beta})_{i=1,\dots,n}$ .

$$\begin{cases} \hat{\mathbf{v}} \stackrel{\text{def}}{=} \frac{1}{n} \operatorname{Tr}[\mathbf{V}], \\ \hat{\mathbf{r}} \stackrel{\text{def}}{=} (\frac{1}{n} \| \hat{\psi} \|^2)^{1/2} = (\frac{1}{n} \sum_{i=1}^n \ell'_{y_i} (\mathbf{x}_i^T \hat{\boldsymbol{\beta}})^2)^{1/2}, \\ \hat{\mathbf{t}}^2 \stackrel{\text{def}}{=} \frac{1}{n^2} \| \boldsymbol{\Sigma}^{-1/2} \mathbf{X}^T \hat{\psi} \|^2 + \frac{2\hat{\mathbf{v}}}{n} \hat{\psi}^T \mathbf{X} \hat{\boldsymbol{\beta}} + \frac{\hat{\mathbf{v}}^2}{n} \| \mathbf{X} \hat{\boldsymbol{\beta}} - \hat{\gamma} \hat{\psi} \|^2 - \frac{p}{n} \hat{\mathbf{r}}^2, \\ \hat{\gamma} \stackrel{\text{def}}{=} \frac{\hat{\mathbf{d}}\hat{\mathbf{f}}}{n\hat{\mathbf{v}}} = \frac{\hat{\mathbf{d}}\hat{\mathbf{f}}}{\operatorname{Tr}[\mathbf{V}]}, \\ \hat{a}^2 \stackrel{\text{def}}{=} \hat{t}^{-2} (\frac{\hat{\mathbf{v}}}{n} \| \mathbf{X} \hat{\boldsymbol{\beta}} - \hat{\gamma} \hat{\psi} \|^2 + \frac{1}{n} \hat{\psi}^T \mathbf{X} \hat{\boldsymbol{\beta}} - \hat{\gamma} \hat{r}^2)^2, \\ \hat{\sigma}^2 \stackrel{\text{def}}{=} \frac{1}{n} \| \mathbf{X} \hat{\boldsymbol{\beta}} - \hat{\gamma} \hat{\psi} \|^2 - \hat{a}^2. \end{cases}$$

## Much simpler expressions for special cases

E.g., for unregularized M-estimation (g = 0):

$$\frac{\partial}{\partial x_{ij}}\hat{\boldsymbol{\beta}}(\boldsymbol{y},\boldsymbol{X}) = \hat{\boldsymbol{A}}\boldsymbol{e}_{j}\hat{\psi}_{i} - \hat{\boldsymbol{A}}\boldsymbol{X}^{T}\boldsymbol{D}\boldsymbol{e}_{i}\hat{\boldsymbol{\beta}}_{j}, \qquad \hat{\boldsymbol{A}} = \left(\sum_{i=1}^{n}\boldsymbol{x}_{i}\ell_{y_{i}}^{\prime\prime}(\boldsymbol{x}_{i}^{T}\hat{\boldsymbol{\beta}})\boldsymbol{x}_{i}^{T}\right)^{-1}$$

$$\hat{\mathbf{v}} = \frac{1}{n} \sum_{i=1}^{n} \ell_{y_i}^{"}(\mathbf{x}_i^T \hat{\boldsymbol{\beta}}) \Big[ 1 - \ell_{y_i}^{"}(\mathbf{x}_i^T \hat{\boldsymbol{\beta}}) \mathbf{x}_i^T \hat{\boldsymbol{A}} \mathbf{x}_i \Big], \qquad \hat{\mathbf{r}}^2 = \frac{1}{n} \sum_{i=1}^{n} \ell_{y_i}^{"}(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})^2$$

$$\hat{\mathsf{df}} = p, \qquad \hat{\gamma} = \frac{p/n}{\hat{v}}, \qquad \hat{a}^2 = \frac{\|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2}{n} - \frac{p}{n} (1 - \frac{p}{n}) \frac{\hat{r}^2}{\hat{v}^2}$$
$$\hat{\boldsymbol{t}}^2 = \hat{a}^2 \hat{v}^2, \qquad \hat{\sigma}^2 = \frac{p}{n} (\frac{\hat{r}}{\hat{v}})^2.$$

Here, the fact that  $\hat{df} = p$  justifies the notation  $\hat{df}$ .



## Much simpler expressions for special cases

E.g., for Least-Squares  $\ell_{y_i}(u) = \frac{1}{2}(u - y_i)^2$ , penalty g = 0:

$$\begin{split} \frac{\partial}{\partial x_{ij}} \hat{\boldsymbol{\beta}}(\boldsymbol{y}, \boldsymbol{X}) &= \hat{\boldsymbol{A}} \boldsymbol{e}_{j} \hat{\psi}_{i} - \hat{\boldsymbol{A}} \boldsymbol{X}^{T} \boldsymbol{D} \boldsymbol{e}_{i} \hat{\boldsymbol{\beta}}_{j}, \qquad \hat{\boldsymbol{A}} = \left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \\ \hat{\boldsymbol{v}} &= 1 - p/n, \qquad \hat{\boldsymbol{r}}^{2} = \frac{1}{n} \|\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}\|^{2} \end{split}$$

$$\hat{\mathbf{df}} = p, \qquad \hat{\gamma} = \frac{p/n}{\hat{\mathbf{v}}}, \qquad \hat{\mathbf{a}}^2 = \frac{\|\mathbf{X}\hat{\mathbf{\beta}}\|^2}{n} - \frac{p}{n} (1 - \frac{p}{n}) \frac{\|\mathbf{y} - \mathbf{X}\hat{\mathbf{\beta}}\|^2/n}{\hat{\mathbf{v}}^2}$$
$$\hat{\mathbf{t}}^2 = \hat{\mathbf{a}}^2 \hat{\mathbf{v}}^2, \qquad \hat{\sigma}^2 = \frac{p}{n} (\frac{\hat{r}}{\hat{\mathbf{v}}})^2.$$

Here, the fact that  $\hat{df} = p$  justifies the notation  $\hat{df}$ .

### Theorem 4.1

### Assumptions:

- ▶  $x_i \sim N(0, \Sigma)$ , condition number of Σ bounded by  $\kappa$
- ▶  $1000 \ge n/p \ge \delta$
- ightharpoonup penalty au-strongly convex

$$\hat{\beta}_j^{(d)} = \hat{\beta}_j + \text{Tr}[\boldsymbol{V}]^{-1}\boldsymbol{e}_j^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\boldsymbol{X}^{\mathsf{T}}\hat{\psi}, \qquad \qquad \Omega_{jj} = (\boldsymbol{\Sigma}^{-1})_{jj}$$

Then for all j=1,...,p, there exists  $Z_j \sim N(0,1)$  such that

$$\frac{1}{p}\sum_{j=1}^{p}\mathbb{E}\left[\left(\frac{\sqrt{n}}{\Omega_{jj}^{1/2}}\left(\frac{\hat{v}}{\hat{r}}\hat{\beta}_{j}^{(d)}-\frac{\pm\hat{t}}{\hat{r}}w_{j}\right)-Z_{j}\right)^{2}\right]\leq\frac{C_{1}(\delta,\tau,\kappa)}{\sqrt{p}}$$

where  $\pm$  denotes an unidentifiable random sign.

### Theorem 4.1

### Assumptions:

- $x_i$  ∼ N(0,  $\Sigma$ ), condition number of  $\Sigma$  bounded by κ
- ▶  $1000 \ge n/p \ge \delta$
- ightharpoonup penalty au-strongly convex

$$\hat{\beta}_j^{(d)} = \hat{\beta}_j + \text{Tr}[\boldsymbol{V}]^{-1} \boldsymbol{e}_j^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{X}^{\mathsf{T}} \hat{\psi}, \qquad \qquad \Omega_{jj} = (\boldsymbol{\Sigma}^{-1})_{jj}$$

Then for all j=1,...,p, there exists  $Z_j \sim N(0,1)$  such that

$$\frac{1}{p}\sum_{j=1}^{p}\mathbb{E}\left[\left(\frac{\sqrt{n}}{\Omega_{jj}^{1/2}}\left(\frac{\hat{v}}{\hat{r}}\hat{\beta}_{j}^{(d)}-\frac{\pm\hat{t}}{\hat{r}}w_{j}\right)-Z_{j}\right)^{2}\right]\leq\frac{C_{2}(\delta,\tau,\kappa)}{\sqrt{p}}$$

where  $\pm$  denotes an unidentifiable random sign.

- Consequence of Theorem 4.1: proximal representation for  $\hat{\beta}$   $\hat{\beta}_{j} \approx \operatorname{prox}\left[\frac{1}{\hat{v}}\tilde{f}\right]\left(\pm w_{j}\frac{\hat{t}}{\hat{v}} + \frac{1}{\sqrt{\delta}}\frac{\hat{r}}{\hat{v}}Z_{j}\right) \text{ for sep. penalty, } \Sigma = \frac{1}{p}I_{p}$
- ▶ Theorem 4.3: Proximal representation for  $\mathbf{x}_i^T \hat{\boldsymbol{\beta}}$
- ▶ Theorem 4.4: correlation estimation  $\hat{a}^2 \approx (\mathbf{w}^T \hat{\beta})^2$



### Take home

- ► Empirical distribution  $\hat{\beta}_j \approx \text{prox} \left[ \frac{1}{\hat{v}} \tilde{f} \right] \left( \pm w_j \frac{\hat{t}}{\hat{v}} + \frac{1}{\sqrt{\delta}} \frac{\hat{f}}{\hat{v}} Z_j \right)$  and confidence intervals for the entries  $\pm w_j$  of the index  $\boldsymbol{w}$
- Data-driven parameters in the proximal representation can be read in the derivatives of  $\hat{\beta}(y, X)$  with respect to X,

$$\frac{\partial}{\partial x_{ij}}\hat{\boldsymbol{\beta}}(\boldsymbol{y},\boldsymbol{X}) = \hat{\boldsymbol{A}}\boldsymbol{e}_{j}\hat{\psi}_{i} - \hat{\boldsymbol{A}}\boldsymbol{X}^{T}\boldsymbol{D}\boldsymbol{e}_{i}\hat{\beta}_{j},$$

$$\hat{\mathbf{v}} = \frac{1}{n} \operatorname{Tr}[\mathbf{D} - \mathbf{D} \mathbf{X} \hat{\mathbf{A}} \mathbf{X}^T \mathbf{D}] \text{ where } \mathbf{D} = \operatorname{diag}(\ell''_{y_i}(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})).$$

 Without solving the deterministic fixed-point equations obtained by Approximate Message Passing or Gordon's CGMT



## Linear models: Estimating Generalization/param. tuning

$$\hat{\boldsymbol{\beta}}(\boldsymbol{y}, \boldsymbol{X}) = \underset{\boldsymbol{b} \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \ell(\boldsymbol{x}_i^\top \boldsymbol{b} - y_i) + \frac{\lambda}{n} \|\boldsymbol{b}\|_1 + \frac{\tau}{n} \|\boldsymbol{b}\|^2 / 2$$

Huber Loss  $\ell(u) = \int_0^{|u|} \min(1,t) dt$  with Elastic-Net penalty Two tuning parameters  $(\lambda,\tau)$  in the Elastic-Net penalty





## Linear models: Estimating Generalization/param. tuning

$$\hat{\boldsymbol{\beta}}(\boldsymbol{y}, \boldsymbol{X}) = \underset{\boldsymbol{b} \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \ell(\boldsymbol{x}_i^{\top} \boldsymbol{b} - y_i) + \frac{\lambda}{n} \|\boldsymbol{b}\|_1 + \frac{1}{n} \|\boldsymbol{b}\|^2 / 2$$

Huber Loss  $\ell(u) = \int_0^{|u|} \min(1, t) dt$  with Elastic-Net penalty Two tuning parameters  $(\lambda, \tau)$  in the Elastic-Net penalty



With  $\hat{df} = \text{Tr}[\boldsymbol{X}\hat{\boldsymbol{A}}\boldsymbol{X}^T\boldsymbol{D}], \ \hat{v} = \text{Tr}[\boldsymbol{D}] - \hat{df}/n$ , Theory gives approx.:

$$\|\boldsymbol{\Sigma}^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^*)\|^2 + \frac{\|\boldsymbol{\varepsilon}\|^2}{n} \approx \frac{1}{n} \|(\boldsymbol{y}-\boldsymbol{X}\hat{\boldsymbol{\beta}}) + \frac{\hat{\mathsf{df}}/n}{\hat{\boldsymbol{y}}} \ell'(\boldsymbol{y}-\boldsymbol{X}\hat{\boldsymbol{\beta}})\|^2$$

## K-Fold Cross-validation suffers sample-size bias

Figure 1 from

Consistent Risk Estimation in Moderately HighDimensional Linear Regression
by Xu, Maleki, Rad, Hsu
(arXiv:1902.01753)



### References

### Approximate Message Passing (AMP)

- ► The LASSO risk for Gaussian matrices (Bayati and Montanari 2011)
- ► A unifying tutorial on Approximate Message Passing, (Feng, Venkataramanan, Rush, Samworth, 2021)
- Logistic Regression (Sur and Candes 2018)

#### Gordon's Convex Gaussian Min-Max Theorem

- ► Precise Error Analysis of Regularized M-estimators in High-dimensions Thrampoulidis et al (2015)
- ▶ Reguarlized logistic regression: Salehi, Abbasi Hassibi (2019)
- Lasso: Miolane, Montanari (2018)
- ▶ Lasso, correlated X: Celentano, Montanari and Wei (2021)
- ► Learning curves of generic features maps for realistic datasets with a teacher-student model (Loureiro et al 2021)



### This work and related techniques

- ► Linear model: Out-of-sample error estimate for robust M-estimators with convex penalty (B, 2020)
- ► Linear model: Asymptotic normality of robust M-estimators with convex penalty, (Bellec, Shen, Zhang 2021)
- ► Linear model: Derivatives and residual distribution of regularized M-estimators with application to adaptive tuning, (B and Shen 2021)
- ➤ Single-index: Observable adjustments in single-index models for regularized M-estimators, (B, 2022)