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Motivation

> In the recent years certain versions of differential privacy are being de-
ployed by Microsoft, Apple, Mozilla, Google and the US Census Bureau

» Lack of general differentially private tools for parametric inference

P Establish connections between privacy-preserving data analysis and ro-
bust statistics

> Study private counterparts of most commonly implemented algorithms
for M-estimators in statistical software.



Diffferentially private inference via
noisy optimization

Based on joint work with Casey Bradshaw and Po-Ling Loh



Our contribution

» Global finite-sample convergence analysis of private gradient descent
and Newton method.

» The theory relies on local strong convexity and self-concordance.

> |dentify loss functions that avoid bounded data, bounded parameter
space and truncation arguments.

» Propose differentially private asymptotic confidence regions.



Related work

» DP and noisy optimization : Song et al. (2013), Bassily et al. (2014),
Duchi et al. (2018), Feldman et al. (2020), Cai et al. (2021) among

many many others...

> Private confidence intervals : Wang, Kifer and Lee (2019) proposes
a similar technique. Other work includes Sheffet (2017), Karwa and
Vadhan (2017), Barrientos et al. (2019), Canonne et al. (2019), Avella-
Medina (2021)...



Differential privacy framework

> Setting : a trusted curator holds a sensitive database constituted by n
individual rows.

> Goal : protect every individual row while allowing statistical analysis of
the database as a whole
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Gaussian differential privacy
Dong, Roth and Su (2022, JRSS B)

Interpretation : telling whether someone is in the dataset is harder than
telling apart N(0,1) and N(u,1)

» New intuitive definition of differential privacy via hypothesis testing
o Gaussian mechanism : m(xy,...,x,) = m(xy, ..., %) + iGS(m)N(O, 1)
o Gaussian differential privacy : Hy : P = N(0,1) V. Hy : P = N(u,1)

» Nice characterization of composition

¢ Product : G, @ G, - ® Gy, = G\/m
cCLT:A® @ fk =~ G,



M-estimators

An M-estimator 0 = T(F,) of 6y € RP (Huber, 1964) is defined as

~ _ 1 :
0 = argmingcp, > oz, 0) = argmingego Er, [0(Z, 0)),
i=1

or by an implicit equation as

% S (2, 8) = Er, [W(Z,0)] = 0.
i=1



M-estimators : properties

» For M-estimators the IF is proportional to W :
IF(z; F, T) = M(V,F)'W(z F, T)

i.e. bounded if W(z; F, T) is bounded.

> M-estimators are asymptotically normal :
V(0 — 60) = N (0, V(V. F)).

where

V(W,F) = MV, F)1QV, F)M(V, F)!
M(V,F) = —%EF[W(Z,G)])GZT(F)
Q. F) = EF[W(Z,T(F)) - W(Z.T(F))'].



Noisy Gradient Descent

» Noisy gradient descent :
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Noisy Gradient Descent

» Noisy gradient descent :

1 ¢ 2sup [V|2 - VK
(k+1) _gk) _ (£ (k)
9 0 n(n;\li(x,,e ) + y 7

{Zi} N(O, 1)

(g S (jra&ien'l')



Noisy Gradient Descent

» Noisy gradient descent :
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Noisy Gradient Descent

» Noisy gradient descent :

plk+1) — g(k) _ ( Zw k) 25UP V]2 - \/Rzk>
ny

{Z) N0, 1)

Theorem. Assuming local strong convexity, after K > C log n iterations of
NGD we have that

1. 1K) is u-GDP
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3. ﬁ( K) — 00) —d N(O, V(\U, F))




Remark

Optimal rates of convergence : our estimators attain near minimax rates

of covergence under (e,0)-DP according to Cai, Wang and Zhang (2021,
AoS)
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Remark

Optimal rates of convergence : our estimators attain near minimax rates

of covergence under (e,0)-DP according to Cai, Wang and Zhang (2021,
AoS)

log(1/9)
inf  sup E|A(F,) — 6o > o \[ cg(1/9)
AG-Ae 5 PeP(o,p)



Example : linear regression

» Consider a linear regression model

y;:x;TB+u; fori=1,...,n

x; € RP
u; ~ N(0,0?)
> We want to solve
. 1 < = xT 1
(B,6) = argming [; ;Upc(y’axlﬁ) w(x;) + SHno

where w(x;) = min (1, m) and k is a Fisher consistency constant.



Example : linear regression

Parameter Estimate
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Noisy Newton

» Noisy Newton :

n

5 1
plt1) _ gk _ (L S W(x60) + 2BV2K W,
ni= 7 pn

(2wt o+ 282K, )
i=1

7

where {Ny} and {Wj} are i.i.d. sequences of vectors and symmetric
matrices with i.i.d. standard normal components.

» Condition. Hessian of the form

n

V2L(0) = " alx 0)a(x.6)

i=1

where sup, ¢ [|a(x, 0) |3 < B < oo.



Noisy Newton theory

log(norm of gradient)
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Noisy Newton theory

orm of gradient)

log(n

0 20 40 60 80 100 120

Iteration

Theorem. Assuming local strong convexity, a Liptschitz continuous Hessian
2
and ||[VL, () < % after K > Cloglog n iterations of noisy Newton

1. 8K) is ui-GDP is differentially private
K _p VK

2. 00K) — 0y = — 0o+ O, (75)

3. /n(0F) — 6y) =4 N(O, V(V, F))




Discussion
Why is our approach interesting ?

1. Algorithms are easy to implement and computationally efficient !

2. Importance of (local) strong convexity for optimal parametric rates of
convergence

3. General framework for differentially private parametric inference

4. Connections between optimization, differential privacy and robust sta-
tistics.



M-estimators with user-level local
differential privacy contraints

Based on joint work with Lekshmi Ramesh, Elise Han and Cindy Rush



Two variants of differential privacy

» Local Differential Privacy : Kasiviswanathan, Lee, Nissim, Raskhodni-
kova, Smith (STOC, 2008), Duchi, Jordan, Wainwright (JASA, 2018)

» User-level differential privacy : Liu, Suresh, Yu, Kumar, Riley (NeurlPS
2020), Levy, Sun, Amin, Kale, Kulesza, Mohri, Suresh. (NeurlPS 2021).



Central Server

Local Differential Privacy
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User-level privacy

P> There are n users, and each user has m samples. We denote the samples
of user i as

x() = (xp,...,x,(,;'))

where xj(i) e R4

> For a given i € [n], x() = (X:Ei),...,x,(,f)) and x( = (X}'-)I,...,x,(,;.)/)

are user-level neighbors if there exists S C [m] such that
() )
X7

forall j€ S



User-level privacy

» A mechanism M : RY*™ — Z is said to be user-level (e,5)-LDP if,
for every x = (x1,...,Xxm) and X’ = (x{,...,x},) that are user-level
neighbors and every Z C Z, there exists € > 0 and § € (0,1) such that

P(M(x) € Z) < €€ P(M(X') € Z) + 4.



Empirical Risk Minimization
> Samples {><j(")} drawn i.i.d. from Py, for 6y € ©

» Loss function /:RY x © - R

» Find a minimizer of the empirical risk

5 1 Z" Z’" (7 :
6 = argmin — Ux:7,0) = argmin L, m(0).
egee mn =1 j=1 ( ] ) 9ge® ( )



Empirical Risk Minimization
> Samples {><j(")} drawn i.i.d. from Py, for 6y € ©

» Loss function /:RY x © - R

» Find a minimizer of the empirical risk

5 1SRN ) :
6 = argmin — U(x:"7,0) = argmin L, (0).
gmin ;_1 j§_1 (x5, 0) = argmin Ln,m(6)

» We will assume ¢ is differentiable, smooth and locally strongly convex
» The per-sample gradients are bounded :
18Ol = Ve, 6)]l2 < B

for all /,j,0
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User-level LDP ERM

» Users and the center communicate over multiple rounds to obtain 0

» Round t involves the following steps :

o Users compute local gradients
g"(6: Zé}

o Users and center run the user-level LDP mean estimation algorithm with
{g7(0¢)} e[ as inputs to obtain £(6;)

o Center updates parameter
Ori1 =0 —ng(0:)

and sends it to all users



User-level LDP ERM

» The update rule can be rewritten as

Orr1=0r — % Zgj(i)wt) —nZ1e +1lo
i

where
210 =8(0 )—E[gf"’( )
ZZt—*Z —Elg"(0:)]



Mean estimation under user-level local privacy constraints
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Problem setting

> Samples {xj(i)},-e[,,],je[m] drawn i.i.d. from a distribution with mean p

» User i communicates its sample through mechanism M : R™ — Z to
a center

» The center uses an estimator f : Z" — RY to output an estimate
= M), M)

» Design mechanism M and an estimation procedure f such that
1. The mechanism M is user-level (¢,d)-LDP
2. The estimation error || — w2 is small with high probability



A naive estimator

» Each user sends a noisy version of its local mean estimate

» Assume d =1 and |><J-(i)| < B. Local mean

has sensitivity 2B

» User / sends

M(X(I)) =yit+w

id 2
where w; i (2% In %)
» Center computes final estimate

S|



A naive estimator

» M is user-level (¢,6)-LDP

» The estimator has error

Efl ~ plla] = 0 <\/[jT i ﬁe)

» Error term due to privacy constraint does not improve with m



An improved estimator

» We will use the fact that the local averages y; concentrate in an interval
of size O(B/+/m) around the mean with high probability

> Projecting y; onto this interval reduces sensitivity (and therefore noise)
by a factor of 1/y/m



An improved estimator

» We will use the fact that the local averages y; concentrate in an interval
of size O(B/+/m) around the mean with high probability

> Projecting y; onto this interval reduces sensitivity (and therefore noise)
by a factor of 1/y/m

» Two-round estimator :

o Round 1 : Center computes private estimate for an O(B//m) sized
interval containing the mean with high probability and sends it to users

> Round 2 : Users send projected private local means to center which then
computes the final average



Algorithm

» Round 1

o At each user i : Divide the interval [— B, B] into disjoint intervals of width

2B+/21In(2n/&)/+/m. Find interval where y; lies and send randomized bin
index.

o At center : find most popular interval I and send to all users



Algorithm

» Round 1

o At each user i : Divide the interval [— B, B] into disjoint intervals of width

2B+/21In(2n/&)/+/m. Find interval where y; lies and send randomized bin
index.

o At center : find most popular interval I and send to all users

» Round 2

o At each user i : compute the noisy truncated mean
fii = Proj,~(y,-) + wj,

where w; ~ N(0,8021In(6/5)/"?) where &’ = /4,/In(3/6).

o At center : Aggregate local estimates :

=

S



Theorem

The two-round mean estimation algorithm is user-level (e, §)-LDP.
Moreover, the output i of the algorithm satistfies

R B 1 B n 1
(1= (g ) <

provided n = Q(1/e).




Results for the multivariate case

» Running the univariate algorithm coordinate-wise leads to an error of
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Results for the multivariate case

» Running the univariate algorithm coordinate-wise leads to an error of

O(d/+/mne)
> This can be improved to O(v/d/+/mne) by using a preprocessing step

» Random rotation trick : Rotate local averages using matrix HD where
H is a d x d Hadamard matrix and D is diagonal with i.i.d. Rademacher
entries

> The rotation ensures that ||HDy;|.c = O(B/\/d) for all i € [n] with
high probability



Results for the multivariate case

Theorem

The algorithm described before is user-level (e,0)-LDP. Further, provided
n = Q(\/d/e), the output [i of the algorithm satisfies

1.5
Hﬂ_u‘h:o(B.an(lnnd.nd) )
vmn & \/mne & 0

with probability at least 1 — £.




Back to ERM under user-level local privacy constraints



User-level LDP ERM

» The update rule can be rewritten as

Orr1 =0¢ — Zg — N1t + Nl

where
210 =8(0 )—E[gf"’( )
ZZt—*Z —Elg"(0:)]



Bounding the noise terms

> We want an upper bound on
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that holds for all t € [T]
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Bounding the noise terms

> We want an upper bound on
1Z1cll2 = 12(6:) — Elg (0012
that holds for all ¢t € [T]

» For a fixed 8 € ©,

12(0) - Elg(0)]]2 = 6( vd )

v/ mne

with high probability (guarantee of the mean estimation algorithm)

> But cannot use this guarantee for ; since the inputs {g()(6;)} to the
mean estimation algorithm are not independent anymore



Bounding the noise term : key steps

> Let [ be a A-net for ©. Using union bound
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aroy  mor (i) BvVd nd|T| 15 ng
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Bounding the noise term : key steps

> Let [ be a A-net for ©. Using union bound

suo 12(8) — B[ BV (| nd|[[\'** d
P(epug(e) Bl Ol > %2 (™) )gs

> With probability at least 1 — &,

1.5
HZLtHz—o<\ij[n5 (I ?erl ( TTE» |ng>_rn,m

provided n = Q(v/d/e)

> Convergence of 6; follows analysis of noisy gradient descent similar to
the one seen in the central model.



Guarantees for user-level LDP ERM

» Noisy gradient descent :
Oe+1 = 0 —nE(0:)

Theorem

Suppose L, m is locally T1-strongly convex and m-smooth. Further let
1 < 3 min {?12’ 1}, vmn = Q(Bd?/¢) and T = Q(log n). Then, with
probability at least 1 — &,

HHT - éHZ < Cﬁrn,my

where C is a constant depending on B, 11, T, and 1.
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Thank you!

Questions? ? ?



