
M-estimation, noisy optimization and
user-level local privacy

Marco Avella Medina

Meeting in Mathematical Statistics, CIRM

December 20, 2023

Motivation

I In the recent years certain versions of di↵erential privacy are being de-
ployed by Microsoft, Apple, Mozilla, Google and the US Census Bureau

I Lack of general di↵erentially private tools for parametric inference

I Establish connections between privacy-preserving data analysis and ro-
bust statistics

I Study private counterparts of most commonly implemented algorithms
for M-estimators in statistical software.

Motivation

I In the recent years certain versions of di↵erential privacy are being de-
ployed by Microsoft, Apple, Mozilla, Google and the US Census Bureau

I Lack of general di↵erentially private tools for parametric inference

I Establish connections between privacy-preserving data analysis and ro-
bust statistics

I Study private counterparts of most commonly implemented algorithms
for M-estimators in statistical software.

Di↵ferentially private inference via
noisy optimization

Based on joint work with Casey Bradshaw and Po-Ling Loh

Our contribution

I Global finite-sample convergence analysis of private gradient descent
and Newton method.

I The theory relies on local strong convexity and self-concordance.

I Identify loss functions that avoid bounded data, bounded parameter
space and truncation arguments.

I Propose di↵erentially private asymptotic confidence regions.

Related work

I DP and noisy optimization : Song et al. (2013), Bassily et al. (2014),
Duchi et al. (2018), Feldman et al. (2020), Cai et al. (2021) among
many many others...

I Private confidence intervals : Wang, Kifer and Lee (2019) proposes
a similar technique. Other work includes She↵et (2017), Karwa and
Vadhan (2017), Barrientos et al. (2019), Canonne et al. (2019), Avella-
Medina (2021)...

Di↵erential privacy framework

I Setting : a trusted curator holds a sensitive database constituted by n
individual rows.

I Goal : protect every individual row while allowing statistical analysis of
the database as a whole

Gaussian di↵erential privacy

Dong, Roth and Su (2022, JRSS B)

Interpretation : telling whether someone is in the dataset is harder than
telling apart N(0, 1) and N(µ, 1)

I New intuitive definition of di↵erential privacy via hypothesis testing
⇧ Gaussian mechanism : m̃(x1, . . . , xn) = m(x1, . . . , xn) +

1
µGS(m)N(0, 1)

⇧ Gaussian di↵erential privacy : H0 : P = N(0, 1) V. H1 : P = N(µ, 1)

I Nice characterization of composition
⇧ Product : Gµ1 ⌦ Gµ2 · · ·⌦ GµK = GpPK

k=1 µ
2
k

⇧ CLT : f1 ⌦ · · ·⌦ fK ⇡ Gµ

Gaussian di↵erential privacy

Dong, Roth and Su (2022, JRSS B)

Interpretation : telling whether someone is in the dataset is harder than
telling apart N(0, 1) and N(µ, 1)

I New intuitive definition of di↵erential privacy via hypothesis testing
⇧ Gaussian mechanism : m̃(x1, . . . , xn) = m(x1, . . . , xn) +

1
µGS(m)N(0, 1)

⇧ Gaussian di↵erential privacy : H0 : P = N(0, 1) V. H1 : P = N(µ, 1)

I Nice characterization of composition
⇧ Product : Gµ1 ⌦ Gµ2 · · ·⌦ GµK = GpPK

k=1 µ
2
k

⇧ CLT : f1 ⌦ · · ·⌦ fK ⇡ Gµ

Gaussian di↵erential privacy

Dong, Roth and Su (2022, JRSS B)

Interpretation : telling whether someone is in the dataset is harder than
telling apart N(0, 1) and N(µ, 1)

I New intuitive definition of di↵erential privacy via hypothesis testing
⇧ Gaussian mechanism : m̃(x1, . . . , xn) = m(x1, . . . , xn) +

1
µGS(m)N(0, 1)

⇧ Gaussian di↵erential privacy : H0 : P = N(0, 1) V. H1 : P = N(µ, 1)

I Nice characterization of composition
⇧ Product : Gµ1 ⌦ Gµ2 · · ·⌦ GµK

= GpP
K

k=1 µ
2
k

⇧ Universality (CLT) : f1 ⌦ · · ·⌦ fK ⇡ Gµ

Meetto mix) -mixe

x,x', dr(x,x) =1

Gaussian di↵erential privacy

Dong, Roth and Su (2022, JRSS B)

Interpretation : telling whether someone is in the dataset is harder than
telling apart N(0, 1) and N(µ, 1)

I New intuitive definition of di↵erential privacy via hypothesis testing
⇧ Gaussian mechanism : m̃(x1, . . . , xn) = m(x1, . . . , xn) +

1
µGS(m)N(0, 1)

⇧ Gaussian di↵erential privacy : H0 : P = N(0, 1) V. H1 : P = N(µ, 1)

I Nice characterization of composition
⇧ Product : Gµ1 ⌦ Gµ2 · · ·⌦ GµK = GpPK

k=1 µ
2
k

⇧ CLT : f1 ⌦ · · ·⌦ fK ⇡ Gµ

M-estimators

An M-estimator ✓̂ = T (Fn) of ✓0 2 Rp (Huber, 1964) is defined as

✓̂ = argmin✓2Rp
1

n

nX

i=1

⇢(zi , ✓) = argmin✓2RpEFn [⇢(Z , ✓)],

or by an implicit equation as

1

n

nX

i=1

 (zi , ✓̂) = EFn [(Z , ✓̂)] = 0.

M-estimators : properties

I For M-estimators the IF is proportional to :

IF (z ;F ,T) = M(,F)�1 (z ;F ,T)

i.e. bounded if (z ;F ,T) is bounded.

I M-estimators are asymptotically normal :

p
n(✓̂ � ✓0)

D�! N (0,V (,F)),

where

V (,F) = M(,F)�1Q(,F)M(,F)�1

M(,F) = � @
@✓EF [(Z , ✓)]

���
✓=T (F)

Q(,F) = EF [(Z ,T (F)) · (Z ,T (F))>].

Noisy Gradient Descent

I Noisy gradient descent :

✓(k+1) = ✓(k) � ⌘

✓
1

n

nX

i=1

 (xi , ✓
(k)) +

2 sup k k2 ·
p
K

nµ
Zk

◆

{Zk}
iid⇠N(0, Ip)

Theorem. Assuming local strong convexity, after K � C log n iterations of
NGD we have that

1. ✓(K) is µ-GDP

2. ✓(K) � ✓0 = ✓̂ � ✓0 + Op

⇣p
Kp
µn

⌘

3.
p
n(✓(K) � ✓0) !d N(0,V (,F))

Noisy Gradient Descent

I Noisy gradient descent :

✓(k+1) = ✓(k) � ⌘

✓
1

n

nX

i=1

 (xi , ✓
(k)) +

2 sup k k2 ·
p
K

nµ
Zk

◆

{Zk}
iid⇠N(0, Ip)

Theorem. Assuming local strong convexity, after K � C log n iterations of
NGD we have that

1. ✓(K) is µ-GDP

2. ✓(K) � ✓0 = ✓̂ � ✓0 + Op

⇣p
Kp

µn

⌘

3.
p
n(✓(K) � ✓0) !d N(0,V (,F))

I
↳S(gradient)

Noisy Gradient Descent

I Noisy gradient descent :

✓(k+1) = ✓(k) � ⌘

✓
1

n

nX

i=1

 (xi , ✓
(k)) +

2 sup k k2 ·
p
K

nµ
Zk

◆

{Zk}
iid⇠N(0, Ip)

Theorem. Assuming local strong convexity, after K � C log n iterations of
NGD we have that

1. ✓(K) is µ-GDP

2. ✓(K) � ✓0 = ✓̂ � ✓0 + Op

⇣p
Kp
µn

⌘

3.
p
n(✓(K) � ✓0) !d N(0,V (,F))

Noisy Gradient Descent

I Noisy gradient descent :

✓(k+1) = ✓(k) � ⌘

✓
1

n

nX

i=1

 (xi , ✓
(k)) +

2 sup k k2 ·
p
K

nµ
Zk

◆

{Zk}
iid⇠N(0, Ip)

Theorem. Assuming local strong convexity, after K � C log n iterations of
NGD we have that

1. ✓(K) is µ-GDP

2. ✓(K) � ✓0 = ✓̂ � ✓0 + Op

⇣p
Kp

µn

⌘

3.
p
n(✓(K) � ✓0) !d N(0,V (,F))

Op() statistical error
~

privacy error

Noisy Gradient Descent

I Noisy gradient descent :

✓(k+1) = ✓(k) � ⌘

✓
1

n

nX

i=1

 (xi , ✓
(k)) +

2 sup k k2 ·
p
K

nµ
Zk

◆

{Zk}
iid⇠N(0, Ip)

Theorem. Assuming local strong convexity, after K � C log n iterations of
NGD we have that

1. ✓(K) is µ-GDP

2. ✓(K) � ✓0 = ✓̂ � ✓0 + Op

⇣p
Kp

µn

⌘

3.
p
n(✓(K) � ✓0) !d N(0,V (,F))

Remark

Optimal rates of convergence : our estimators attain near minimax rates
of covergence under (", �)-DP according to Cai, Wang and Zhang (2021,
AoS)

inf
A2A",�

sup
P2P(�,p)

EkA(Fn)� ✓0k & �

✓r
p

n
+

p
p

log(1/�)

n"

◆

Remark

Optimal rates of convergence : our estimators attain near minimax rates
of covergence under (", �)-DP according to Cai, Wang and Zhang (2021,
AoS)

inf
A2A",�

sup
P2P(�,p)

EkA(Fn)� ✓0k & �

✓r
p

n
+

p
p

log(1/�)

n"

◆

-

☐ =L

Example : linear regression

I Consider a linear regression model

yi = xTi � + ui for i = 1, . . . , n

xi 2 Rp

ui ⇠ N(0,�2)

I We want to solve

(�̂, �̂) = argmin�,�

h1
n

nX

i=1

�⇢c
⇣yi � xTi �

�

⌘
w(xi) +

1

2
n�

i

where w(xi) = min
⇣
1, 1

kxik2

⌘
and is a Fisher consistency constant.

Example : linear regression

Noisy Newton

I Noisy Newton :

✓(k+1) = ✓(k) �
✓
1

n

nX

i=1

 ̇(xi ,✓
(k)) +

2B̄
p
2K

µn
Wk

◆�1

·
✓
1

n

nX

i=1

 (xi , ✓
(k)) +

2B
p
2K

µn
Nk

◆

where {Nk} and {Wk} are i.i.d. sequences of vectors and symmetric
matrices with i.i.d. standard normal components.

I Condition. Hessian of the form

r2Ln(✓) =
1

n

nX

i=1

a(xi , ✓)a(xi , ✓)
>,

where supx ,✓ ka(x , ✓)k22 B̄ < 1.

Noisy Newton theory

Theorem. Assuming local strong convexity, a Liptschitz continuous Hessian

and krLn(✓(0))k ⌧21
L
, after K � C log log n iterations of noisy Newton

1. ✓(K) is µ-GDP is di↵erentially private

2. ✓(K) � ✓0 = ✓̂ � ✓0 + Op

⇣p
K

µ
p

n

⌘

3.
p
n(✓(K) � ✓0) !d N(0,V (,F))

M A

k

for noisy for noisy GD
Newton

Noisy Newton theory

Theorem. Assuming local strong convexity, a Liptschitz continuous Hessian

and krLn(✓(0))k ⌧21
L , after K � C log log n iterations of noisy Newton

1. ✓(K) is µ-GDP is di↵erentially private

2. ✓(K) � ✓0 = ✓̂ � ✓0 + Op

⇣p
K
µ

p
n

⌘

3.
p
n(✓(K) � ✓0) !d N(0,V (,F))

Noisy Newton theory

Theorem. Assuming local strong convexity, a Liptschitz continuous Hessian

and krLn(✓(0))k ⌧2
1

L , after K � C log log n iterations of noisy Newton

1. ✓(K) is µ-GDP is di↵erentially private

2. ✓(K) � ✓0 = ✓̂ � ✓0 + Op

⇣p
K
µ

p
n

⌘

3.
p
n(✓(K) � ✓0) !d N(0,V (,F))

Discussion

Why is our approach interesting ?

1. Algorithms are easy to implement and computationally e�cient !

2. Importance of (local) strong convexity for optimal parametric rates of
convergence

3. General framework for di↵erentially private parametric inference

4. Connections between optimization, di↵erential privacy and robust sta-
tistics.

M-estimators with user-level local
di↵erential privacy contraints

Based on joint work with Lekshmi Ramesh, Elise Han and Cindy Rush

Two variants of di↵erential privacy

I Local Di↵erential Privacy : Kasiviswanathan, Lee, Nissim, Raskhodni-
kova, Smith (STOC, 2008), Duchi, Jordan, Wainwright (JASA, 2018)

I User-level di↵erential privacy : Liu, Suresh, Yu, Kumar, Riley (NeurIPS
2020), Levy, Sun, Amin, Kale, Kulesza, Mohri, Suresh. (NeurIPS 2021).

User 1
x(1)

User 2
x(2)

...

User n

x(n)

Central Server

M(x(1)
)

M(x(2)
)

M(x(n)
)

Local Di�erential Privacy 1

User-level privacy

I There are n users, and each user has m samples. We denote the samples
of user i as

x (i) = (x (i)1 , . . . , x (i)m)

where x (i)j 2 Rd

I For a given i 2 [n], x (i) = (x (i)1 , . . . , x (i)m) and x (i)0 = (x (i)01 , . . . , x (i)0m)
are user-level neighbors if there exists S ✓ [m] such that

x (i)j 6= x (i)0j

for all j 2 S

User-level privacy

I There are n users, and each user has m samples. We denote the samples
of user i as

x (i) = (x (i)1 , . . . , x (i)m)

where x (i)j 2 Rd

I For a given i 2 [n], x (i) = (x (i)1 , . . . , x (i)m) and x (i)0 = (x (i)01 , . . . , x (i)0m)
are user-level neighbors if there exists S ✓ [m] such that

x (i)j 6= x (i)0j

for all j 2 S

User-level privacy

I A mechanism M : Rd⇥m ! Z is said to be user-level (", �)-LDP if,
for every x = (x1, . . . , xm) and x 0 = (x 01, . . . , x

0
m) that are user-level

neighbors and every Z ⇢ Z, there exists " > 0 and � 2 (0, 1) such that

P(M(x) 2 Z) e" P(M(x 0) 2 Z) + �.

Empirical Risk Minimization

I Samples {x (i)j } drawn i.i.d. from P✓0 for ✓0 2 ⇥

I Loss function ` : Rd ⇥⇥! R

I Find a minimizer of the empirical risk

✓̂ = argmin
✓2⇥

1

mn

nX

i=1

mX

j=1

`(x (i)j , ✓) = argmin
✓2⇥

Ln,m(✓).

I We will assume ` is di↵erentiable, smooth and locally strongly convex

I The per-sample gradients are bounded :

kg (i)
j (✓)k2 = kr`(x (i)j , ✓)k2 B

for all i , j , ✓

Empirical Risk Minimization

I Samples {x (i)j } drawn i.i.d. from P✓0 for ✓0 2 ⇥

I Loss function ` : Rd ⇥⇥! R

I Find a minimizer of the empirical risk

✓̂ = argmin
✓2⇥

1

mn

nX

i=1

mX

j=1

`(x (i)j , ✓) = argmin
✓2⇥

Ln,m(✓).

I We will assume ` is di↵erentiable, smooth and locally strongly convex

I The per-sample gradients are bounded :

kg (i)
j (✓)k2 = kr`(x (i)j , ✓)k2 B

for all i , j , ✓

User-level LDP ERM

I Users and the center communicate over multiple rounds to obtain ✓̂

I Round t involves the following steps :

⇧ Users compute local gradients

g (i)(✓t) =
1

m

mX

j=1

g (i)
j (✓t)

⇧ Users and center run the user-level LDP mean estimation algorithm with
{g (i)(✓t)}i2[n] as inputs to obtain ĝ(✓t)

⇧ Center updates parameter

✓t+1 = ✓t � ⌘ĝ(✓t)

and sends it to all users

User-level LDP ERM

I Users and the center communicate over multiple rounds to obtain ✓̂

I Round t involves the following steps :

⇧ Users compute local gradients

g (i)(✓t) =
1

m

mX

j=1

g (i)
j (✓t)

⇧ Users and center run the user-level LDP mean estimation algorithm with
{g (i)(✓t)}i2[n] as inputs to obtain ĝ(✓t)

⇧ Center updates parameter

✓t+1 = ✓t � ⌘ĝ(✓t)

and sends it to all users

User-level LDP ERM

I Users and the center communicate over multiple rounds to obtain ✓̂

I Round t involves the following steps :
⇧ Users compute local gradients

g (i)(✓t) =
1

m

mX

j=1

g (i)
j (✓t)

⇧ Users and center run the user-level LDP mean estimation algorithm with
{g (i)(✓t)}i2[n] as inputs to obtain ĝ(✓t)

⇧ Center updates parameter

✓t+1 = ✓t � ⌘ĝ(✓t)

and sends it to all users

User-level LDP ERM

I Users and the center communicate over multiple rounds to obtain ✓̂

I Round t involves the following steps :
⇧ Users compute local gradients

g (i)(✓t) =
1

m

mX

j=1

g (i)
j (✓t)

⇧ Users and center run the user-level LDP mean estimation algorithm with
{g (i)(✓t)}i2[n] as inputs to obtain ĝ(✓t)

⇧ Center updates parameter

✓t+1 = ✓t � ⌘ĝ(✓t)

and sends it to all users

User-level LDP ERM

I Users and the center communicate over multiple rounds to obtain ✓̂

I Round t involves the following steps :
⇧ Users compute local gradients

g (i)(✓t) =
1

m

mX

j=1

g (i)
j (✓t)

⇧ Users and center run the user-level LDP mean estimation algorithm with
{g (i)(✓t)}i2[n] as inputs to obtain ĝ(✓t)

⇧ Center updates parameter

✓t+1 = ✓t � ⌘ĝ(✓t)

and sends it to all users

User-level LDP ERM

I The update rule can be rewritten as

✓t+1 = ✓t �
⌘

mn

X

i ,j

g (i)
j (✓t)� ⌘Z1,t + ⌘Z2,t

where

Z1,t = ĝ(✓t)� E[g (i)
j (✓t)]

Z2,t =
1

mn

X

i ,j

g (i)
j (✓t)� E[g (i)

j (✓t)]

Mean estimation under user-level local privacy constraints

Problem setting

I Samples {x (i)j }i2[n],j2[m] drawn i.i.d. from a distribution with mean µ

I User i communicates its sample through mechanism M : Rdm ! Z to
a center

I The center uses an estimator f : Zn ! Rd to output an estimate

µ̂ = f (M(x (1)), . . . ,M(x (n)))

I Design mechanism M and an estimation procedure f such that

1. The mechanism M is user-level (", �)-LDP

2. The estimation error kµ̂� µk2 is small with high probability

Problem setting

I Samples {x (i)j }i2[n],j2[m] drawn i.i.d. from a distribution with mean µ

I User i communicates its sample through mechanism M : Rdm ! Z to
a center

I The center uses an estimator f : Zn ! Rd to output an estimate

µ̂ = f (M(x (1)), . . . ,M(x (n)))

I Design mechanism M and an estimation procedure f such that

1. The mechanism M is user-level (", �)-LDP

2. The estimation error kµ̂� µk2 is small with high probability

Problem setting

I Samples {x (i)j }i2[n],j2[m] drawn i.i.d. from a distribution with mean µ

I User i communicates its sample through mechanism M : Rdm ! Z to
a center

I The center uses an estimator f : Zn ! Rd to output an estimate

µ̂ = f (M(x (1)), . . . ,M(x (n)))

I Design mechanism M and an estimation procedure f such that

1. The mechanism M is user-level (", �)-LDP

2. The estimation error kµ̂� µk2 is small with high probability

Problem setting

I Samples {x (i)j }i2[n],j2[m] drawn i.i.d. from a distribution with mean µ

I User i communicates its sample through mechanism M : Rdm ! Z to
a center

I The center uses an estimator f : Zn ! Rd to output an estimate

µ̂ = f (M(x (1)), . . . ,M(x (n)))

I Design mechanism M and an estimation procedure f such that

1. The mechanism M is user-level (", �)-LDP

2. The estimation error kµ̂� µk2 is small with high probability

Problem setting

I Samples {x (i)j }i2[n],j2[m] drawn i.i.d. from a distribution with mean µ

I User i communicates its sample through mechanism M : Rdm ! Z to
a center

I The center uses an estimator f : Zn ! Rd to output an estimate

µ̂ = f (M(x (1)), . . . ,M(x (n)))

I Design mechanism M and an estimation procedure f such that

1. The mechanism M is user-level (", �)-LDP

2. The estimation error kµ̂� µk2 is small with high probability

Problem setting

I Samples {x (i)j }i2[n],j2[m] drawn i.i.d. from a distribution with mean µ

I User i communicates its sample through mechanism M : Rdm ! Z to
a center

I The center uses an estimator f : Zn ! Rd to output an estimate

µ̂ = f (M(x (1)), . . . ,M(x (n)))

I Design mechanism M and an estimation procedure f such that

1. The mechanism M is user-level (", �)-LDP

2. The estimation error kµ̂� µk2 is small with high probability

A naive estimator

I Each user sends a noisy version of its local mean estimate

I Assume d = 1 and |x (i)j | B . Local mean

yi =
1

m

mX

j=1

x (i)j

has sensitivity 2B

I User i sends

M(x (i)) = yi + wi

where wi
iid⇠ N

⇣
2B2

"2 ln 2
�

⌘

I Center computes final estimate

µ̂ =
1

n

nX

i=1

M(x (i))

A naive estimator

I M is user-level (", �)-LDP

I The estimator has error

E[kµ̂� µk2] = Õ

✓
Bp
mn

+
Bp
n"

◆

I Error term due to privacy constraint does not improve with m

An improved estimator

I We will use the fact that the local averages yi concentrate in an interval
of size O(B/

p
m) around the mean with high probability

I Projecting yi onto this interval reduces sensitivity (and therefore noise)
by a factor of 1/

p
m

I Two-round estimator :
⇧ Round 1 : Center computes private estimate for an O(B/

p
m) sized

interval containing the mean with high probability and sends it to users

⇧ Round 2 : Users send projected private local means to center which then
computes the final average

An improved estimator

I We will use the fact that the local averages yi concentrate in an interval
of size O(B/

p
m) around the mean with high probability

I Projecting yi onto this interval reduces sensitivity (and therefore noise)
by a factor of 1/

p
m

I Two-round estimator :
⇧ Round 1 : Center computes private estimate for an O(B/

p
m) sized

interval containing the mean with high probability and sends it to users

⇧ Round 2 : Users send projected private local means to center which then
computes the final average

Algorithm

I Round 1
⇧ At each user i : Divide the interval [�B ,B] into disjoint intervals of width
2B

p
2 ln(2n/⇠)/

p
m. Find interval where yi lies and send randomized bin

index.

⇧ At center : find most popular interval Ĩ and send to all users

I Round 2
⇧ At each user i : compute the noisy truncated mean

µ̃i = ProjĨ (yi) + wi ,

where wi ⇠ N (0, 8�2 ln(6/�)/"02) where "0 = "/4
p
ln(3/�).

⇧ At center : Aggregate local estimates :

µ̂ =
1

n

nX

i=1

µ̃i

Algorithm

I Round 1
⇧ At each user i : Divide the interval [�B ,B] into disjoint intervals of width
2B

p
2 ln(2n/⇠)/

p
m. Find interval where yi lies and send randomized bin

index.

⇧ At center : find most popular interval Ĩ and send to all users

I Round 2
⇧ At each user i : compute the noisy truncated mean

µ̃i = ProjĨ (yi) + wi ,

where wi ⇠ N (0, 8�2 ln(6/�)/"02) where "0 = "/4
p
ln(3/�).

⇧ At center : Aggregate local estimates :

µ̂ =
1

n

nX

i=1

µ̃i

Theorem

The two-round mean estimation algorithm is user-level (", �)-LDP.
Moreover, the output µ̂ of the algorithm satisfies

P
✓
|µ̂� µ| � C

⇣ Bp
mn

s

ln
1

⇠
+

Bp
mn"

ln
n

⇠
ln

1

�

⌘◆
 ⇠,

provided n = ⌦̃(1/✏).

Results for the multivariate case

I Running the univariate algorithm coordinate-wise leads to an error of
Õ(d/

p
mn")

I This can be improved to Õ(
p
d/

p
mn") by using a preprocessing step

I Random rotation trick : Rotate local averages using matrix HD where
H is a d⇥d Hadamard matrix and D is diagonal with i.i.d. Rademacher
entries

I The rotation ensures that kHDyik1 = Õ(B/
p
d) for all i 2 [n] with

high probability

Results for the multivariate case

I Running the univariate algorithm coordinate-wise leads to an error of
Õ(d/

p
mn")

I This can be improved to Õ(
p
d/

p
mn") by using a preprocessing step

I Random rotation trick : Rotate local averages using matrix HD where
H is a d⇥d Hadamard matrix and D is diagonal with i.i.d. Rademacher
entries

I The rotation ensures that kHDyik1 = Õ(B/
p
d) for all i 2 [n] with

high probability

Results for the multivariate case

Theorem

The algorithm described before is user-level (", �)-LDP. Further, provided
n = ⌦̃(

p
d/"), the output µ̂ of the algorithm satisfies

kµ̂� µk2 = O

Bp
mn

ln
nd

⇠
+

B
p
dp

mn"

✓
ln

nd

⇠
ln

d

�

◆1.5
!
,

with probability at least 1� ⇠.

Back to ERM under user-level local privacy constraints

User-level LDP ERM

I The update rule can be rewritten as

✓t+1 = ✓t �
⌘t
mn

X

i ,j

g (i)
j (✓t)� ⌘tZ1,t + ⌘tZ2,t

where

Z1,t = ĝ(✓t)� E[g (i)
j (✓t)]

Z2,t =
1

mn

X

i ,j

g (i)
j (✓t)� E[g (i)

j (✓t)]

Bounding the noise terms

I We want an upper bound on

kZ1,tk2 = kĝ(✓t)� E[g (i)
j (✓t)]k2

that holds for all t 2 [T]

I For a fixed ✓ 2 ⇥,

kĝ(✓)� E[g (i)
j (✓)]k2 = Õ

 p
dp

mn"

!

with high probability (guarantee of the mean estimation algorithm)

I But cannot use this guarantee for ✓t since the inputs {g (i)(✓t)} to the
mean estimation algorithm are not independent anymore

Bounding the noise terms

I We want an upper bound on

kZ1,tk2 = kĝ(✓t)� E[g (i)
j (✓t)]k2

that holds for all t 2 [T]

I For a fixed ✓ 2 ⇥,

kĝ(✓)� E[g (i)
j (✓)]k2 = Õ

 p
dp

mn"

!

with high probability (guarantee of the mean estimation algorithm)

I But cannot use this guarantee for ✓t since the inputs {g (i)(✓t)} to the
mean estimation algorithm are not independent anymore

Bounding the noise terms

I We want an upper bound on

kZ1,tk2 = kĝ(✓t)� E[g (i)
j (✓t)]k2

that holds for all t 2 [T]

I For a fixed ✓ 2 ⇥,

kĝ(✓)� E[g (i)
j (✓)]k2 = Õ

 p
dp

mn"

!

with high probability (guarantee of the mean estimation algorithm)

I But cannot use this guarantee for ✓t since the inputs {g (i)(✓t)} to the
mean estimation algorithm are not independent anymore

Bounding the noise term : key steps

I Let � be a �-net for ⇥. Using union bound

P

sup
✓

kĝ(✓)� E[g (i)
j (✓)]k2 � C

B
p
dp

mn"

✓
ln

nd |�|
⇠

◆1.5

ln
d

�

!
 ⇠

I With probability at least 1� ⇠,

kZ1,tk2 = O

B
p
dp

mn"

✓
ln

nd

⇠
+ d ln

✓
1 +

⌧
p
mn"

d2

◆◆1.5

ln
d

�

!
= rn,m

provided n = ⌦̃(
p
d/")

I Convergence of ✓t follows analysis of noisy gradient descent similar to
the one seen in the central model.

Bounding the noise term : key steps

I Let � be a �-net for ⇥. Using union bound

P

sup
✓

kĝ(✓)� E[g (i)
j (✓)]k2 � C

B
p
dp

mn"

✓
ln

nd |�|
⇠

◆1.5

ln
d

�

!
 ⇠

I With probability at least 1� ⇠,

kZ1,tk2 = O

B
p
dp

mn"

✓
ln

nd

⇠
+ d ln

✓
1 +

⌧
p
mn"

d2

◆◆1.5

ln
d

�

!
= rn,m

provided n = ⌦̃(
p
d/")

I Convergence of ✓t follows analysis of noisy gradient descent similar to
the one seen in the central model.

Bounding the noise term : key steps

I Let � be a �-net for ⇥. Using union bound

P

sup
✓

kĝ(✓)� E[g (i)
j (✓)]k2 � C

B
p
dp

mn"

✓
ln

nd |�|
⇠

◆1.5

ln
d

�

!
 ⇠

I With probability at least 1� ⇠,

kZ1,tk2 = O

B
p
dp

mn"

✓
ln

nd

⇠
+ d ln

✓
1 +

⌧
p
mn"

d2

◆◆1.5

ln
d

�

!
= rn,m

provided n = ⌦̃(
p
d/")

I Convergence of ✓t follows analysis of noisy gradient descent similar to
the one seen in the central model.

Guarantees for user-level LDP ERM

I Noisy gradient descent :

✓t+1 = ✓t � ⌘ĝ(✓t)

Theorem

Suppose Ln,m is locally ⌧1-strongly convex and ⌧2-smooth. Further let

⌘ 1
2 min

n
1
⌧2
, 1
o
,
p
mn = ⌦̃(Bd2/") and T = ⌦(log n). Then, with

probability at least 1� ⇠,

k✓T � ✓̂k2 C
p
Trn,m,

where C is a constant depending on B , ⌧1, ⌧2, and ⌘.

References

I M. Avella-Medina, C. Bradshaw & P.L. Loh (2023) “Di↵erentially pri-
vate inference via noisy optimization.” Annals of Statistics

I L. Ramesh, E. Han, M. Avella-Medina, & C. Rush (2023) “M-estimators
under user-level local di↵erential privacy constraints.” ArXiv (soon !)

Thank you !

Questions ? ? ?

