M-estimation, noisy optimization and user-level local privacy

Marco Avella Medina

Meeting in Mathematical Statistics, CIRM

December 20, 2023

Motivation

In the recent years certain versions of differential privacy are being deployed by Microsoft, Apple, Mozilla, Google and the US Census Bureau

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation

- In the recent years certain versions of differential privacy are being deployed by Microsoft, Apple, Mozilla, Google and the US Census Bureau
- Lack of general differentially private tools for parametric inference
- Establish connections between privacy-preserving data analysis and robust statistics
- Study private counterparts of most commonly implemented algorithms for M-estimators in statistical software.

Diffferentially private inference via noisy optimization

Based on joint work with Casey Bradshaw and Po-Ling Loh

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our contribution

- Global finite-sample convergence analysis of private gradient descent and Newton method.
- ► The theory relies on local strong convexity and self-concordance.
- Identify loss functions that avoid bounded data, bounded parameter space and truncation arguments.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

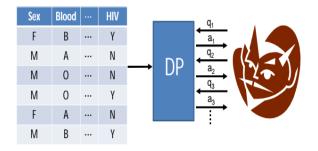
Propose differentially private asymptotic confidence regions.

Related work

- DP and noisy optimization : Song et al. (2013), Bassily et al. (2014), Duchi et al. (2018), Feldman et al. (2020), Cai et al. (2021) among many many others...
- Private confidence intervals : Wang, Kifer and Lee (2019) proposes a similar technique. Other work includes Sheffet (2017), Karwa and Vadhan (2017), Barrientos et al. (2019), Canonne et al. (2019), Avella-Medina (2021)...

Differential privacy framework

- Setting : a trusted curator holds a sensitive database constituted by n individual rows.
- Goal : protect every individual row while allowing statistical analysis of the database as a whole



Interpretation : telling whether someone is in the dataset is harder than telling apart N(0,1) and $N(\mu,1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Interpretation : telling whether someone is in the dataset is harder than telling apart N(0,1) and $N(\mu,1)$

New intuitive definition of differential privacy via hypothesis testing

• Gaussian mechanism : $\tilde{m}(x_1, \ldots, x_n) = m(x_1, \ldots, x_n) + \frac{1}{\mu} GS(m)N(0, 1)$

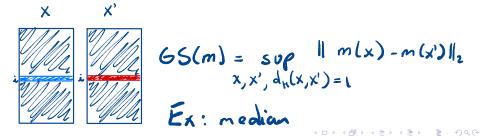
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Gaussian differential privacy : $H_0: P = N(0,1)$ V. $H_1: P = N(\mu,1)$

Interpretation : telling whether someone is in the dataset is harder than telling apart N(0,1) and $N(\mu,1)$

New intuitive definition of differential privacy via hypothesis testing

- Gaussian mechanism : $\tilde{m}(x_1, \ldots, x_n) = m(x_1, \ldots, x_n) + \frac{1}{\mu} GS(m) N(0, 1)$
- $\circ~$ Gaussian differential privacy : $\textit{H}_{0}:\textit{P}=\textit{N}(0,1)$ V. $\textit{H}_{1}:\textit{P}=\textit{N}(\mu,1)$



Interpretation : telling whether someone is in the dataset is harder than telling apart N(0,1) and $N(\mu,1)$

New intuitive definition of differential privacy via hypothesis testing

• Gaussian mechanism : $\tilde{m}(x_1, \ldots, x_n) = m(x_1, \ldots, x_n) + \frac{1}{\mu} GS(m) N(0, 1)$

◦ Gaussian differential privacy : H_0 : P = N(0,1) V. H_1 : $P = N(\mu,1)$

Nice characterization of composition

- Product : $G_{\mu_1} \otimes G_{\mu_2} \cdots \otimes G_{\mu_K} = G_{\sqrt{\sum_{k=1}^{K} \mu_k^2}}$
- CLT : $f_1 \otimes \cdots \otimes f_K \approx G_\mu$

M-estimators

An M-estimator $\hat{\theta} = T(F_n)$ of $\theta_0 \in \mathbb{R}^p$ (Huber, 1964) is defined as

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \rho(z_{i}, \theta) = \operatorname{argmin}_{\theta \in \mathbb{R}^{p}} E_{F_{n}}[\rho(Z, \theta)],$$

or by an implicit equation as

$$\frac{1}{n}\sum_{i=1}^{n}\Psi(z_{i},\hat{\theta})=\boldsymbol{E}_{F_{n}}[\Psi(\boldsymbol{Z},\hat{\theta})]=\boldsymbol{0}.$$

M-estimators : properties

For M-estimators the IF is proportional to Ψ :

$$IF(z; F, T) = M(\Psi, F)^{-1}\Psi(z; F, T)$$

- i.e. bounded if $\Psi(z; F, T)$ is bounded.
- M-estimators are asymptotically normal :

$$\sqrt{n}(\hat{\theta}-\theta_0) \xrightarrow{\mathcal{D}} \mathcal{N}(0, V(\Psi, F)),$$

where

$$V(\Psi, F) = M(\Psi, F)^{-1}Q(\Psi, F)M(\Psi, F)^{-1}$$

$$M(\Psi, F) = -\frac{\partial}{\partial \theta}E_F[\Psi(Z, \theta)]\Big|_{\theta=T(F)}$$

$$Q(\Psi, F) = E_F[\Psi(Z, T(F)) \cdot \Psi(Z, T(F))^{\top}].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Noisy gradient descent :

$$\theta^{(k+1)} = \theta^{(k)} - \eta \left(\frac{1}{n} \sum_{i=1}^{n} \Psi(x_i, \theta^{(k)}) + \frac{2 \sup \|\Psi\|_2 \cdot \sqrt{K}}{n\mu} Z_k \right)$$
$$\{Z_k\} \stackrel{iid}{\sim} \mathcal{N}(0, I_p)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Noisy gradient descent :

$$\theta^{(k+1)} = \theta^{(k)} - \eta \left(\frac{1}{n} \sum_{i=1}^{n} \Psi(x_i, \theta^{(k)}) + \frac{2 \sup \|\Psi\|_2 \cdot \sqrt{K}}{n\mu} Z_k \right)$$

$$\{Z_k\} \stackrel{iid}{\sim} N(0, I_p)$$

$$(S (gradient)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Noisy gradient descent :

$$\theta^{(k+1)} = \theta^{(k)} - \eta \left(\frac{1}{n} \sum_{i=1}^{n} \Psi(x_i, \theta^{(k)}) + \frac{2 \sup \|\Psi\|_2 \cdot \sqrt{K}}{n\mu} Z_k \right)$$
$$\{Z_k\} \stackrel{iid}{\sim} \mathcal{N}(0, I_p)$$

Theorem. Assuming local strong convexity, after $K \ge C \log n$ iterations of NGD we have that

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1.
$$\theta^{(K)}$$
 is μ -GDP
2. $\theta^{(K)} - \theta_0 = \hat{\theta} - \theta_0 + O_p\left(\frac{\sqrt{K}p}{\mu n}\right)$
3. $\sqrt{n}(\theta^{(K)} - \theta_0) \rightarrow_d N(0, V(\Psi, F))$

Noisy gradient descent :

$$\theta^{(k+1)} = \theta^{(k)} - \eta \left(\frac{1}{n} \sum_{i=1}^{n} \Psi(x_i, \theta^{(k)}) + \frac{2 \sup \|\Psi\|_2 \cdot \sqrt{K}}{n\mu} Z_k \right)$$
$$\{Z_k\} \stackrel{iid}{\sim} \mathcal{N}(0, I_p)$$

Theorem. Assuming local strong convexity, after $K \ge C \log n$ iterations of NGD we have that 1. $\theta^{(K)}$ is μ -GDP 2. $\theta^{(K)} - \theta_0 = \hat{\theta} - \theta_0 + O_p\left(\frac{\sqrt{Kp}}{\mu n}\right)$ privacy error 3. $\sqrt{n}(\theta^{(K)} - \theta_0) \rightarrow_d N(0, V(\Psi, F))$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Noisy gradient descent :

$$\theta^{(k+1)} = \theta^{(k)} - \eta \left(\frac{1}{n} \sum_{i=1}^{n} \Psi(x_i, \theta^{(k)}) + \frac{2 \sup \|\Psi\|_2 \cdot \sqrt{K}}{n\mu} Z_k \right)$$
$$\{Z_k\} \stackrel{iid}{\sim} \mathcal{N}(0, I_p)$$

Theorem. Assuming local strong convexity, after $K \ge C \log n$ iterations of NGD we have that

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1.
$$\theta^{(K)}$$
 is μ -GDP
2. $\theta^{(K)} - \theta_0 = \hat{\theta} - \theta_0 + O_p\left(\frac{\sqrt{K}p}{\mu n}\right)$
3. $\sqrt{n}(\theta^{(K)} - \theta_0) \rightarrow_d N(0, V(\Psi, F))$

Remark

Optimal rates of convergence : our estimators attain near minimax rates of covergence under (ε , δ)-DP according to Cai, Wang and Zhang (2021, AoS)

$$\inf_{A \in \mathcal{A}_{\varepsilon,\delta}} \sup_{P \in \mathcal{P}(\sigma,p)} \mathbb{E} \|A(F_n) - \theta_0\| \gtrsim \sigma \left(\sqrt{\frac{p}{n}} + \frac{p\sqrt{\log(1/\delta)}}{n\varepsilon}\right)$$

Remark

Optimal rates of convergence : our estimators attain near minimax rates of covergence under (ε, δ) -DP according to Cai, Wang and Zhang (2021, AoS)

$$\inf_{A \in \underline{\mathcal{A}}_{\varepsilon,\delta}} \sup_{P \in \mathcal{P}(\sigma,p)} \mathbb{E} \|A(F_n) - \theta_0\| \gtrsim \sigma \left(\sqrt{\frac{p}{n}} + \frac{p(\sqrt{\log(1/\delta)})}{n\varepsilon}\right)^{\frac{p}{2}} \mathbf{A}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Example : linear regression

Consider a linear regression model

$$y_i = x_i^T \beta + u_i \text{ for } i = 1, \dots, n$$

$$x_i \in \mathbb{R}^p$$

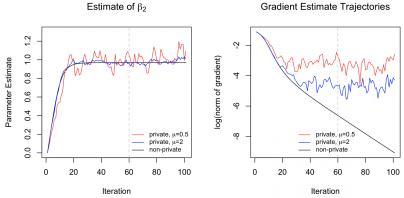
$$u_i \sim N(0, \sigma^2)$$

We want to solve

$$(\hat{\beta}, \hat{\sigma}) = \operatorname{argmin}_{\beta, \sigma} \left[\frac{1}{n} \sum_{i=1}^{n} \sigma \rho_{c} \left(\frac{y_{i} - x_{i}^{T} \beta}{\sigma} \right) w(x_{i}) + \frac{1}{2} \kappa n \sigma \right]$$

where $w(x_i) = \min\left(1, \frac{1}{\|x_i\|_2}\right)$ and κ is a Fisher consistency constant.

Example : linear regression



Gradient Estimate Trajectories

(日) э

Noisy Newton

Noisy Newton :

$$\theta^{(k+1)} = \theta^{(k)} - \left(\frac{1}{n}\sum_{i=1}^{n} \dot{\Psi}(x_i,\theta^{(k)}) + \frac{2\bar{B}\sqrt{2K}}{\mu n}W_k\right)^{-1} \\ \cdot \left(\frac{1}{n}\sum_{i=1}^{n}\Psi(x_i,\theta^{(k)}) + \frac{2B\sqrt{2K}}{\mu n}N_k\right)$$

where $\{N_k\}$ and $\{W_k\}$ are i.i.d. sequences of vectors and symmetric matrices with i.i.d. standard normal components.

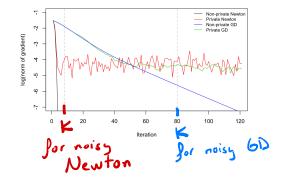
• Condition. Hessian of the form

$$abla^2 \mathcal{L}_n(\theta) = \frac{1}{n} \sum_{i=1}^n a(x_i, \theta) a(x_i, \theta)^\top,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

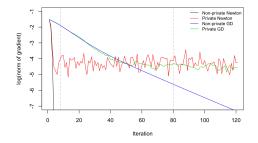
where $\sup_{x,\theta} \|a(x,\theta)\|_2^2 \leq \overline{B} < \infty$.

Noisy Newton theory



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Noisy Newton theory



Theorem. Assuming local strong convexity, a Liptschitz continuous Hessian and $\|\nabla \mathcal{L}_n(\theta^{(0)})\| \leq \frac{\tau_1^2}{L}$, after $K \geq C \log \log n$ iterations of noisy Newton

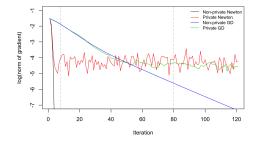
• □ ▶ • □ ▶ • □ ▶ • □ ▶

1. $\theta^{(K)}$ is μ -GDP is differentially private

2.
$$\theta^{(K)} - \theta_0 = \hat{\theta} - \theta_0 + O_p \left(\frac{\sqrt{K}}{\mu} \frac{p}{n}\right)$$

3. $\sqrt{n}(\theta^{(K)} - \theta_0) \rightarrow_d N(0, V(\Psi, F))$

Noisy Newton theory



Theorem. Assuming local strong convexity, a Liptschitz continuous Hessian and $\|\nabla \mathcal{L}_n(\theta^{(0)})\| \leq \frac{72}{L}$, after $K \geq C \log \log n$ iterations of noisy Newton 1. $\theta^{(K)}$ is μ -GDP is differentially private 2. $\theta^{(K)} - \theta_0 = \hat{\theta} - \theta_0 + O_p \left(\frac{\sqrt{K}}{\mu} \frac{p}{n}\right)$ 3. $\sqrt{n}(\theta^{(K)} - \theta_0) \rightarrow_d N(0, V(\Psi, F))$

(人間) くほう くほう

Discussion

Why is our approach interesting?

- 1. Algorithms are easy to implement and computationally efficient !
- 2. Importance of (local) strong convexity for optimal parametric rates of convergence
- 3. General framework for differentially private parametric inference
- 4. Connections between optimization, differential privacy and robust statistics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

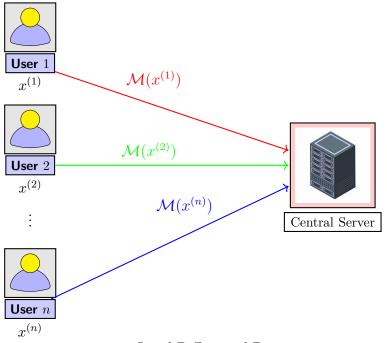
M-estimators with user-level local differential privacy contraints

Based on joint work with Lekshmi Ramesh, Elise Han and Cindy Rush

Two variants of differential privacy

- Local Differential Privacy : Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith (STOC, 2008), Duchi, Jordan, Wainwright (JASA, 2018)
- User-level differential privacy : Liu, Suresh, Yu, Kumar, Riley (NeurIPS 2020), Levy, Sun, Amin, Kale, Kulesza, Mohri, Suresh. (NeurIPS 2021).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



Local Differential Privacy

User-level privacy

There are n users, and each user has m samples. We denote the samples of user i as

$$x^{(i)} = (x_1^{(i)}, \dots, x_m^{(i)})$$

where $x_j^{(i)} \in \mathbb{R}^d$

User-level privacy

There are n users, and each user has m samples. We denote the samples of user i as

$$x^{(i)} = (x_1^{(i)}, \dots, x_m^{(i)})$$

where $x_j^{(i)} \in \mathbb{R}^d$

For a given $i \in [n]$, $x^{(i)} = (x_1^{(i)}, \ldots, x_m^{(i)})$ and $x^{(i)'} = (x_1^{(i)'}, \ldots, x_m^{(i)'})$ are user-level neighbors if there exists $S \subseteq [m]$ such that

$$x_j^{(i)} \neq x_j^{(i)\prime}$$

for all $j \in S$

User-level privacy

A mechanism M : ℝ^{d×m} → Z is said to be user-level (ε, δ)-LDP if, for every x = (x₁,...,x_m) and x' = (x'₁,...,x'_m) that are user-level neighbors and every Z ⊂ Z, there exists ε > 0 and δ ∈ (0, 1) such that

$$\mathbb{P}(\mathcal{M}(x) \in Z) \leq e^{\varepsilon} \mathbb{P}(\mathcal{M}(x') \in Z) + \delta.$$

Empirical Risk Minimization

Samples $\{x_i^{(i)}\}$ drawn i.i.d. from P_{θ_0} for $\theta_0 \in \Theta$

• Loss function
$$\ell : \mathbb{R}^d \times \Theta \to \mathbb{R}$$

Find a minimizer of the empirical risk

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{mn} \sum_{i=1}^{n} \sum_{j=1}^{m} \ell(x_{j}^{(i)}, \theta) = \underset{\theta \in \Theta}{\operatorname{argmin}} \mathcal{L}_{n,m}(\theta).$$

Empirical Risk Minimization

Samples $\{x_i^{(i)}\}$ drawn i.i.d. from P_{θ_0} for $\theta_0 \in \Theta$

• Loss function
$$\ell : \mathbb{R}^d \times \Theta \to \mathbb{R}$$

Find a minimizer of the empirical risk

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{mn} \sum_{i=1}^{n} \sum_{j=1}^{m} \ell(x_{j}^{(i)}, \theta) = \underset{\theta \in \Theta}{\operatorname{argmin}} \mathcal{L}_{n,m}(\theta).$$

- We will assume ℓ is differentiable, smooth and locally strongly convex
- The per-sample gradients are bounded :

$$\|g_{j}^{(i)}(\theta)\|_{2} = \|\nabla \ell(x_{j}^{(i)}, \theta)\|_{2} \le B$$

for all i, j, θ

User-level LDP ERM

• Users and the center communicate over multiple rounds to obtain $\hat{ heta}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Users and the center communicate over multiple rounds to obtain $\hat{ heta}$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

Round t involves the following steps :

- Users and the center communicate over multiple rounds to obtain $\hat{\theta}$
- Round t involves the following steps :
 - Users compute local gradients

$$g^{(i)}(heta_t) = rac{1}{m}\sum_{j=1}^m g^{(i)}_j(heta_t)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- \blacktriangleright Users and the center communicate over multiple rounds to obtain $\hat{ heta}$
- Round t involves the following steps :
 - Users compute local gradients

$$g^{(i)}(heta_t) = rac{1}{m}\sum_{j=1}^m g^{(i)}_j(heta_t)$$

• Users and center run the user-level LDP mean estimation algorithm with $\{g^{(i)}(\theta_t)\}_{i \in [n]}$ as inputs to obtain $\hat{g}(\theta_t)$

- Users and the center communicate over multiple rounds to obtain $\hat{\theta}$
- Round t involves the following steps :
 - Users compute local gradients

$$g^{(i)}(heta_t) = rac{1}{m}\sum_{j=1}^m g^{(i)}_j(heta_t)$$

- Users and center run the user-level LDP mean estimation algorithm with $\{g^{(i)}(\theta_t)\}_{i \in [n]}$ as inputs to obtain $\hat{g}(\theta_t)$
- Center updates parameter

$$\theta_{t+1} = \theta_t - \eta \hat{g}(\theta_t)$$

and sends it to all users

The update rule can be rewritten as

$$\theta_{t+1} = \theta_t - \frac{\eta}{mn} \sum_{i,j} g_j^{(i)}(\theta_t) - \eta Z_{1,t} + \eta Z_{2,t}$$

where

$$Z_{1,t} = \hat{g}(\theta_t) - \mathbb{E}[g_j^{(i)}(\theta_t)]$$
$$Z_{2,t} = \frac{1}{mn} \sum_{i,j} g_j^{(i)}(\theta_t) - \mathbb{E}[g_j^{(i)}(\theta_t)]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Mean estimation under user-level local privacy constraints

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

▶ Samples $\{x_j^{(i)}\}_{i \in [n], j \in [m]}$ drawn i.i.d. from a distribution with mean μ

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

- Samples $\{x_j^{(i)}\}_{i \in [n], j \in [m]}$ drawn i.i.d. from a distribution with mean μ
- ► User *i* communicates its sample through mechanism *M* : ℝ^{dm} → *Z* to a center

Samples $\{x_j^{(i)}\}_{i \in [n], j \in [m]}$ drawn i.i.d. from a distribution with mean μ

► User *i* communicates its sample through mechanism *M* : ℝ^{dm} → *Z* to a center

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► The center uses an estimator $f : \mathbb{Z}^n \to \mathbb{R}^d$ to output an estimate $\hat{\mu} = f(\mathcal{M}(x^{(1)}), \dots, \mathcal{M}(x^{(n)}))$

Samples $\{x_j^{(i)}\}_{i \in [n], j \in [m]}$ drawn i.i.d. from a distribution with mean μ

- ► User *i* communicates its sample through mechanism *M* : ℝ^{dm} → *Z* to a center
- The center uses an estimator $f : \mathbb{Z}^n \to \mathbb{R}^d$ to output an estimate $\hat{\mu} = f(\mathcal{M}(x^{(1)}), \dots, \mathcal{M}(x^{(n)}))$
- Design mechanism \mathcal{M} and an estimation procedure f such that

Samples $\{x_j^{(i)}\}_{i \in [n], j \in [m]}$ drawn i.i.d. from a distribution with mean μ

- ► User *i* communicates its sample through mechanism *M* : ℝ^{dm} → *Z* to a center
- The center uses an estimator $f : \mathbb{Z}^n \to \mathbb{R}^d$ to output an estimate $\hat{\mu} = f(\mathcal{M}(x^{(1)}), \dots, \mathcal{M}(x^{(n)}))$
- Design mechanism *M* and an estimation procedure *f* such that
 1. The mechanism *M* is user-level (ε, δ)-LDP

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Samples $\{x_j^{(i)}\}_{i \in [n], j \in [m]}$ drawn i.i.d. from a distribution with mean μ

- ► User *i* communicates its sample through mechanism *M* : ℝ^{dm} → *Z* to a center
- The center uses an estimator $f : \mathbb{Z}^n \to \mathbb{R}^d$ to output an estimate $\hat{\mu} = f(\mathcal{M}(x^{(1)}), \dots, \mathcal{M}(x^{(n)}))$

Design mechanism \mathcal{M} and an estimation procedure f such that

- 1. The mechanism \mathcal{M} is user-level (ε, δ)-LDP
- 2. The estimation error $\|\hat{\mu} \mu\|_2$ is small with high probability

(日)((1))

A naive estimator

- Each user sends a noisy version of its local mean estimate
- Assume d = 1 and $|x_i^{(i)}| \le B$. Local mean

$$y_i = \frac{1}{m} \sum_{j=1}^m x_j^{(i)}$$

has sensitivity 2B

User i sends

$$\mathcal{M}(x^{(i)}) = y_i + w_i$$

where $w_i \stackrel{iid}{\sim} \mathcal{N}\left(\frac{2B^2}{\varepsilon^2} \ln \frac{2}{\delta}\right)$

Center computes final estimate

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{M}(\mathbf{x}^{(i)})$$

A naive estimator

- \mathcal{M} is user-level (ε, δ)-LDP
- The estimator has error

$$\mathbb{E}[\|\hat{\mu} - \mu\|_2] = \tilde{O}\left(\frac{B}{\sqrt{mn}} + \frac{B}{\sqrt{n\varepsilon}}\right)$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

Error term due to privacy constraint does not improve with m

An improved estimator

- ▶ We will use the fact that the local averages y_i concentrate in an interval of size O(B/√m) around the mean with high probability
- Projecting y_i onto this interval reduces sensitivity (and therefore noise) by a factor of 1/\sqrt{m}

An improved estimator

- ► We will use the fact that the local averages y_i concentrate in an interval of size O(B/√m) around the mean with high probability
- Projecting y_i onto this interval reduces sensitivity (and therefore noise) by a factor of 1/\sqrt{m}
- Two-round estimator :
 - Round 1 : Center computes private estimate for an $O(B/\sqrt{m})$ sized interval containing the mean with high probability and sends it to users
 - Round 2 : Users send projected private local means to center which then computes the final average

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Algorithm

► Round 1

• At each user *i* : Divide the interval [-B, B] into disjoint intervals of width $2B\sqrt{2\ln(2n/\xi)}/\sqrt{m}$. Find interval where y_i lies and send randomized bin index.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• At center : find most popular interval \tilde{I} and send to all users

Algorithm

Round 1

- At each user *i* : Divide the interval [-B, B] into disjoint intervals of width $2B\sqrt{2\ln(2n/\xi)}/\sqrt{m}$. Find interval where y_i lies and send randomized bin index.
- $\,\circ\,$ At center : find most popular interval $\widetilde{\it I}$ and send to all users

Round 2

At each user i : compute the noisy truncated mean

$$\tilde{\mu}_i = \operatorname{Proj}_{\tilde{I}}(y_i) + w_i,$$

where $w_i \sim \mathcal{N}(0, 8\sigma^2 \ln(6/\delta)/\varepsilon'^2)$ where $\varepsilon' = \varepsilon/4\sqrt{\ln(3/\delta)}$.

At center : Aggregate local estimates :

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\mu}_i$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

The two-round mean estimation algorithm is user-level (ε , δ)-LDP. Moreover, the output $\hat{\mu}$ of the algorithm satisfies

$$\mathbb{P}\bigg(|\hat{\mu}-\mu| \ge C\bigg(\frac{B}{\sqrt{mn}}\sqrt{\ln\frac{1}{\xi} + \frac{B}{\sqrt{mn\varepsilon}}\ln\frac{n}{\xi}\ln\frac{1}{\delta}}\bigg)\bigg) \le \xi,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

provided $n = \tilde{\Omega}(1/\epsilon)$.

Results for the multivariate case

- Running the univariate algorithm coordinate-wise leads to an error of $\tilde{O}(d/\sqrt{mn}\varepsilon)$
- This can be improved to $\tilde{O}(\sqrt{d}/\sqrt{mn}\varepsilon)$ by using a preprocessing step

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Results for the multivariate case

- Running the univariate algorithm coordinate-wise leads to an error of $\tilde{O}(d/\sqrt{mn}\varepsilon)$
- ▶ This can be improved to $\tilde{O}(\sqrt{d}/\sqrt{mn}\varepsilon)$ by using a preprocessing step
- Random rotation trick : Rotate local averages using matrix HD where H is a d×d Hadamard matrix and D is diagonal with i.i.d. Rademacher entries
- ▶ The rotation ensures that $||HDy_i||_{\infty} = \tilde{O}(B/\sqrt{d})$ for all $i \in [n]$ with high probability

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Results for the multivariate case

Theorem

The algorithm described before is user-level (ε , δ)-LDP. Further, provided $n = \tilde{\Omega}(\sqrt{d}/\varepsilon)$, the output $\hat{\mu}$ of the algorithm satisfies

$$\|\hat{\mu} - \mu\|_2 = O\left(\frac{B}{\sqrt{mn}}\ln\frac{nd}{\xi} + \frac{B\sqrt{d}}{\sqrt{mn}\varepsilon}\left(\ln\frac{nd}{\xi}\ln\frac{d}{\delta}\right)^{1.5}\right)$$

(日) (四) (日) (日) (日)

with probability at least $1 - \xi$.

Back to ERM under user-level local privacy constraints

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The update rule can be rewritten as

$$\theta_{t+1} = \theta_t - \frac{\eta_t}{mn} \sum_{i,j} g_j^{(i)}(\theta_t) - \eta_t Z_{1,t} + \eta_t Z_{2,t}$$

where

$$Z_{1,t} = \hat{g}(\theta_t) - \mathbb{E}[g_j^{(i)}(\theta_t)]$$
$$Z_{2,t} = \frac{1}{mn} \sum_{i,j} g_j^{(i)}(\theta_t) - \mathbb{E}[g_j^{(i)}(\theta_t)]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Bounding the noise terms

We want an upper bound on

$$|Z_{1,t}||_2 = \|\hat{g}(\theta_t) - \mathbb{E}[g_j^{(i)}(\theta_t)]\|_2$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

that holds for all $t \in [T]$

Bounding the noise terms

We want an upper bound on

$$|Z_{1,t}||_2 = \|\hat{g}(\theta_t) - \mathbb{E}[g_j^{(i)}(\theta_t)]\|_2$$

that holds for all $t \in [T]$

For a fixed $\theta \in \Theta$,

$$\|\hat{g}(heta) - \mathbb{E}[g_j^{(i)}(heta)]\|_2 = ilde{O}\left(rac{\sqrt{d}}{\sqrt{mn}arepsilon}
ight)$$

with high probability (guarantee of the mean estimation algorithm)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bounding the noise terms

We want an upper bound on

$$\|Z_{1,t}\|_2 = \|\hat{g}(\theta_t) - \mathbb{E}[g_i^{(i)}(\theta_t)]\|_2$$

that holds for all $t \in [T]$

For a fixed $\theta \in \Theta$,

$$\|\hat{g}(heta) - \mathbb{E}[g_j^{(i)}(heta)]\|_2 = ilde{O}\left(rac{\sqrt{d}}{\sqrt{mn}arepsilon}
ight)$$

with high probability (guarantee of the mean estimation algorithm)

But cannot use this guarantee for θ_t since the inputs {g⁽ⁱ⁾(θ_t)} to the mean estimation algorithm are not independent anymore

Bounding the noise term : key steps

Let Γ be a Δ -net for Θ . Using union bound

$$\mathbb{P}\left(\sup_{\theta} \|\hat{g}(\theta) - \mathbb{E}[g_j^{(i)}(\theta)]\|_2 \geq C \frac{B\sqrt{d}}{\sqrt{mn}\varepsilon} \left(\ln \frac{nd|\Gamma|}{\xi}\right)^{1.5} \ln \frac{d}{\delta}\right) \leq \xi$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

Bounding the noise term : key steps

Let Γ be a Δ-net for Θ. Using union bound

$$\mathbb{P}\left(\sup_{\theta}\|\hat{g}(\theta) - \mathbb{E}[g_{j}^{(i)}(\theta)]\|_{2} \geq C\frac{B\sqrt{d}}{\sqrt{mn}\varepsilon}\left(\ln\frac{nd|\Gamma|}{\xi}\right)^{1.5}\ln\frac{d}{\delta}\right) \leq \xi$$

• With probability at least $1 - \xi$,

$$\|Z_{1,t}\|_2 = O\left(\frac{B\sqrt{d}}{\sqrt{mn\varepsilon}}\left(\ln\frac{nd}{\xi} + d\ln\left(1 + \frac{\tau\sqrt{mn\varepsilon}}{d^2}\right)\right)^{1.5}\ln\frac{d}{\delta}\right) = r_{n,m}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

provided $n = \tilde{\Omega}(\sqrt{d}/\varepsilon)$

Bounding the noise term : key steps

Let Γ be a Δ-net for Θ. Using union bound

$$\mathbb{P}\left(\sup_{\theta} \|\hat{g}(\theta) - \mathbb{E}[g_j^{(i)}(\theta)]\|_2 \geq C \frac{B\sqrt{d}}{\sqrt{mn}\varepsilon} \left(\ln \frac{nd|\Gamma|}{\xi}\right)^{1.5} \ln \frac{d}{\delta}\right) \leq \xi$$

• With probability at least $1 - \xi$,

$$\|Z_{1,t}\|_2 = O\left(\frac{B\sqrt{d}}{\sqrt{mn\varepsilon}}\left(\ln\frac{nd}{\xi} + d\ln\left(1 + \frac{\tau\sqrt{mn\varepsilon}}{d^2}\right)\right)^{1.5}\ln\frac{d}{\delta}\right) = r_{n,m}$$

provided $n = \tilde{\Omega}(\sqrt{d}/\varepsilon)$

Convergence of θ_t follows analysis of noisy gradient descent similar to the one seen in the central model.

Guarantees for user-level LDP ERM

Noisy gradient descent :

$$\theta_{t+1} = \theta_t - \eta \hat{g}(\theta_t)$$

Theorem

Suppose $\mathcal{L}_{n,m}$ is locally τ_1 -strongly convex and τ_2 -smooth. Further let $\eta \leq \frac{1}{2} \min \left\{ \frac{1}{\tau_2}, 1 \right\}$, $\sqrt{mn} = \tilde{\Omega}(Bd^2/\varepsilon)$ and $T = \Omega(\log n)$. Then, with probability at least $1 - \xi$,

$$\|\theta_T - \hat{\theta}\|_2 \leq C\sqrt{T}r_{n,m},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where C is a constant depending on B, τ_1 , τ_2 , and η .

References

- M. Avella-Medina, C. Bradshaw & P.L. Loh (2023) "Differentially private inference via noisy optimization." Annals of Statistics
- L. Ramesh, E. Han, M. Avella-Medina, & C. Rush (2023) "M-estimators under user-level local differential privacy constraints." ArXiv (soon !)

Thank you !

Questions???

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙