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Fairness in Machine Learning: a major societal concern

Machine Learning is ubiquitous in daily life, and it is used for sensitive
decisions such as

admission in university,

bank loan,

job recruitment,

justice decision,

...
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Promises of ML in decision-making

Promises of ML in decision-making

ML can be more objective and more fair than humans, as algorithms can

incorporate more data, and more factors in a complex analysis,

and are not subject to personal biases, tiredness, emotional factors,
etc
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Actuality of ML decision-making

Discriminations also happen in ML prediction

Many ML systems have been shown to produce unfair outcomes.

Some famous past examples:

Hiring AI from Amazon was discriminating against female candidate
on some jobs

Google Ad was proposing higher-paying executive jobs more likely to
men than women

COMPAS was falsely predicting recidivism twice more likely for
African-American than for Caucasian-American.
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Where does the unfairness come from?

Main potential causes of unfairness in data science

[intentional discrimination]

historical biases in learning datasets

inadvertent bias in evaluations (biased proxy)

inadvertent bias from data sampling: learning dataset not
representative of the target population

inadvertent bias from algorithm objectives: focus on the
benefit for majority group
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How can we mitigate these issues?

This talk: some possible directions for improving fairness in online
learning

1 Causal Fairness

2 Statistical Fairness
I Adversarial setting
I Stochastic setting
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Contextual online setting

Covariate and sensitive attribute

Each request is characterized by a covariate x ∈ X (observed) and a
sensitive attribute s ∈ {−1,+1} (observed or not).

Informal description of a typical setting

A each epoch t = 1, 2, . . .

The Learner observes a context (xt , st) or xt only

The Learner performs an action (or prediction) at

The Learner observes a feedback yt and suffers a regret rt (stochastic
or adversarial)

Goal of the learner

To minimize the cumulative regret
∑

t rt , while complying to some fairness
criteria (and possibly some other constraints).
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1- A causal point of view
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Causal fairness: identifying causes of unfairness

Causal fairness: general principle

The relations between attributes (X , S) and their influence on
feedback Y is modeled by structural equations

The objective is to remove all discriminatory influences of sensitive
attribute on the action/prediction

Example: No unresolved discrimination

Design an action/prediction such that no path from the sensitive attribute
to the action exists, except via non-discriminatory variables (resolving
variables).

Caveat: the notions of causal fairness heavily rely on the causal model.
The accuracy of this model is critical, and learning it can be problematic.
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A very (not so) simple case
The price of unfairness in linear bandits with biased feedback

S. Gaucher, A. Carpentier, C. Giraud; NeurIPS 2022.

Biased linear feedbacks

biased feedback
yt = x>t β

∗ + stb
∗ + ξt

unobserved regret
rt = maxx∈X x>β∗ − x>t β

∗,

with β∗ and b∗ unknown.

Resolving variables: all xt

Price for learning the bias

Worst case: the minimax regret scales as T 2/3 instead of
√
T for

the unbiased case

Asymptotic regret: scales as ∆−2 log(T ) instead of ∆−1 log(T ) in
some cases.
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2- Statistical fairness
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Statistical fairness

General principle

To comply to some fairness criteria at the sub-population level (statistical
notions)

Example 1: equalized Odds

A ⊥⊥ S | Y

Equalized Odds encodes a notion of meritocracy

There are many variants

Caveat: strongly subject to biases in learning datasets
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Statistical fairness: Demographic parity

Example 2: Demographic parity

A ⊥⊥ S

Demographic parity promotes diversity and can be related to affirmative
action policies.

Caveat: the feedback Y is not taken into account
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And many other fairness criteria...

A large zoology

Demographic parity F ⊥⊥ S

Equalized odds F ⊥⊥ S |Y
Equal opportunity F ⊥⊥ S |Y ∈ Y+

Predictive parity Y ∈ Y+ ⊥⊥ S | F ∈ Y+

Group-wise calibration E [Y |S ,F ] ∼= F

Equal group-wise risk E [`(Y ,F )|S ] ∼= E [`(Y ,F )]

. . . . . .
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Finding a balance between different notions

Relaxing fairness criteria

Fairness criteria are imperfect mathematical transposition of
qualitative ideas;

Evaluations of fairness criteria are subjected to uncertainties;

Some fairness criteria are incompatible;

so, it is wise to

introduce some quantitive measures of violation of the fairness
criteria;

seek for a good trade-off between different fairness criteria and regret
(Pareto frontier).
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An instantiation in online learning

Fairness cost

Fairness criteria can be encoded as vector valued cost constraints.

Example: demographic parity

The empirical demographic parity criteria (for at ∈ {0, 1})∣∣∣∣∣∣ 1

p1T

∑
t≤T ;st=1

at −
1

p−1T

∑
t≤T ;st=−1

at

∣∣∣∣∣∣ = Õ(T−1/2)

can be encoded as∑
t≤T

ct = Õ(
√
T ) with ct :=

[
atst/pst
−atst/pst

]
.
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Our contributions

Informal objective

min∑
t≤T ct≤Õ(

√
T )

∑
t≤T

rt .

Two points of view

1 In adversarial setting:
I the fair learning problem can be formulated as a contextual

approachability problem,
I Blackwell theory can be adapted to handle this setting.

2 In stochastic bandit setting:
I the fairness objective falls into the Contextual Bandit with Knapsack

(CBwK) framework,
I the theory for CBwK must be improved to handle Õ(

√
T ) constraints

(and signed cost).
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Adversarial Setting :

a Contextual Blackwell Approachability Perspective

A unified approach to fair online learning via Blackwell approachability.

E. Chzhen, C. Giraud, G. Stoltz; NeurIPS 2021 (spotlight).
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Online learning setting: formal description
We model our fair online learning problem as a contextual learning game
between the Learner and Nature.

Stochastic attributes (context)

At each time t, the attributes (xt , st) are sampled according to Q,
independently from the past.

Nature (un)awareness

Let G denotes Nature (un)awareness mapping

Nature awareness G (x , s) = (x , s),

Nature unawareness: G (x , s) = x .

Nature is an adverse player

At each time t, Nature observes G (xt , st) and outputs an adversarial
feedback yt .
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Fair online learning as a contextual approachability problem

Encoding the objectives of the learner

We can encode the learning objectives (vanishing-regret, demographic
parity, etc) via

a vector-valued payoff function m(at , yt , xt , st)

and a target set C.

The learning objective is to comply to
1

T

T∑
t=1

m(at , yt , xt , st) −→ C.

Examples of targets (to be combined)

Criterion Vector payoff function m Closed convex target set C

Demographic parity mDP(a, s) =
( a
p−1

1s=−1,
a
p1

1s=1
)

CDP =
{

(u, v) ∈ R2 : |u − v| ≤ δ
}

No-regret mreg(a, y, x, s) =
(
f (a, y, x, s)−f (a′, y, x, s)

)
a′∈A Creg = [0,+∞)N

Group-calibration mgr-cal(a, y, s) =
(

(a′ − y) 1s=s′/γs′
)
a′∈A, s′∈S Cgr-cal =

{
v ∈ RN|S| : ‖v‖1 ≤ ε

}
Equalized payoffs meq-pay(a, y, x, s) =

(
f (a,y,x,s′)
γs′

1s=s′
)
s′∈S

Ceq-pay =
{

(u, v) ∈ R2 : |u−v|≤ε
}
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Online learning setting

Learning setting

For t = 1, 2, . . .
1 Simultaneously,

I the Learner chooses (px
t )x∈X based on (mτ , xτ , sτ )τ≤t−1

I Nature chooses
(

q
G(x,s)
t

)
(x,s)∈X×S

based on (aτ , yτ , xτ , sτ )τ≤t−1

2 (xt , st) are sampled according to Q, independently from the past
3 Simultaneously

I the Learner observes xt , and picks an action at ∈ A according to pxt
t

I Nature observes G (xt , st), and picks yt ∈ Y according to q
G(xt ,st)
t

4 The Learner observes the payoff mt = m(at , yt , xt , st) and (xt , st),
while Nature observes (at , yt , xt , st).

Aim: The Learner wants to ensure that m̄T :=
1

T

T∑
t=1

mt → C a.s. for

some target set C.
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Assumption: fast enough sequential estimation of Q

The Player can build estimators (Q̂t)t≥1 of the unknown distribution Q such that

E
[
TV2(Q̂t ,Q)

]
≤ c

(
log(t)

)−3 ∀t ≥ 2 (1)

Theorem : Contextual Blackwell approachability

If C ⊂ Rd is closed convex, m is bounded, and (1) is satisfied, then

∃(px
t )x∈X ,t≥1 such that ∀(q

G(x,s)
t )(x,s)∈X×{0,1},t≥1 we have m̄T

a.s.→ C
if and only if ∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X such that

m(p,q,Q) :=

∫
X×S

m
(
px ,qG(x,s), x , s

)
dQ(x , s) ∈ C

Contextual Blackwell strategy

Set m(p,q, Q̂t) :=
∫

m
(
px ,qG(x,s), x , s

)
dQ̂t(x , s). At stage t + 1, choose

(px
t+1)x∈X ∈ argmin

(px )x

max
(qG(x,s))x,s

〈m̄t − ΠCm̄t ,m(p,q, Q̂t)〉
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Caveats

Caveat 1: the target set C has to be known

The results can be extended (at the price of some technicalities) to the
case where we only have a consistent super-estimate Ĉt of C.

Caveat 2: computational cost of projection

Computing the projection ΠC can be computationally expensive.

Caveat 3: pessimistic Pareto frontier and slow rates

The adversarial setting leads to pessimistic Pareto frontier (trade-off)
between the different criteria;

The rates are governed by the estimation rate TV(Q̂t ,Q), which is
typically slow outside the finite case.
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Stochastic setting:

A Contextual Bandit with Knapsack perspective

Small Total-Cost Constraints in CBwK, with Application to Fairness

E. Chzhen, C. Giraud, Z. Li, G. Stoltz; NeurIPS 2023
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Stochastic setting

Learning problem

The learner observes x̃t = (xt , st)
i.i.d.∼ Q

The learner chooses a policy πt : X̃ → P(A), and picks an action
at ∼ πt(x̃t),

The learner receives a feedback yt and a fairness cost ct such that

E[yt |Ft ] = f (x̃t , at) and E[ct |Ft ] = c(x̃t , at).

The learner suffers a regret rt = OPT− yt (described below).

Example: Demographic Parity

c(x̃t , at) =

[
atst/pst
−atst/pst

]
.
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Optimal policy and regret

Optimal static policy and regret

The optimal static feedback is

OPT(Q, f , c) := max
π : EQ[

∑
a∈A c(X̃ ,a)πa(X̃ )]≤δT

EQ

[∑
a∈A

f (X̃ , a)πa(X̃ )

]

and the regret is
rt = OPT(Q, f , c)− yt .

Learning Objective

Minimize the cumulative regret
∑
t≤T

rt while complying to the fairness

constraint
∑
t≤T

ct ≤ T δT (w.h.p.).
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Fairness as CBwK

CBwK problem

1 we recognize a Contextual Bandit with Knapsack (CBwK) problem

2 but state of the art theory can only handle δT = T−1/4 (or X finite),
which is too large for fairness constraints, where we typically wish to
have δT = Õ(T−1/2)
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Learning assumption

Assumption: UCB and LCB

We can built UCB and LCB such that with probability ≥ 1− δ

f̂ UCB
t (., .) ≈ f (., .) + Õδ(1/

√
t)

ĉLCB
t (., .) ≈ c(., .) + Õδ(1/

√
t)

Examples

Linear or logistic model : when

f (x , a) = η(ϕ(x , a)T θa) and c(x , a) = η(ψ(x , a)Tβa),

with η(u) = u or η(u) = eu/(1 + eu), we can use variant of LinUCB or
LogisticUCB1.
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A first idea

Idea1: playing empirical optimal static policy

Choose at according to a policy π̂t maximizing OPT(Q̂t , f̂
UCB
t , ĉLCB

t ).

Issues
1 The analysis of

OPT(Q, f , c)− OPT(Q̂t , f̂
UCB
t , ĉLCB

t )

produces some TV(Q̂t ,Q) terms, leading to slow rates / large fairness
violation.

2 Solving OPT(Q̂t , f̂
UCB
t , ĉLCB

t ) is computationally expensive
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Lagrangian version

Lagrangian formulation

OPT(Q, f , c) = max
π : EQ[

∑
a∈A c(X̃ ,a)πa(X̃ ))]≤δT

EQ

[∑
a∈A

f (X̃ , a)πa(X̃ )

]

= max
π

min
λ≥0

EQ

[∑
a∈A

πa(X̃ )
(
f (X̃ , a)− 〈λ, c(X̃ , a)− δT 〉

)]

strong duality → = min
λ≥0

max
π

EQ

[∑
a∈A

πa(X̃ )
(
f (X̃ , a)− 〈λ, c(X̃ , a)− δT 〉

)]

= min
λ≥0

EQ

[
max
a∈A

{
f (X̃ , a)− 〈λ, c(X̃ , a)− δT 〉

}]
Two immediate benefits

1 for a fixed λ the problem is separable, and Q can be forgotten;

2 we only need to learn the optimal λ∗ ∈ Rd =⇒ parametric rates. ,
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High-level algorithm: Primal-dual descent-ascent

Iterate

full optimisation on primal variable: pick

at ∈ argmax
a∈A

{
f̂t(x̃t , a)− 〈λt−1, ĉt(x̃t , a)− δT 〉

}
projected subgradient step on dual variable: update

λt = (λt−1 + γ (ĉt(x̃t , at)− δT ))+

Issues

1 Benign issue: we must replace δT by δ′T = δT − Õ(1/
√
T ) to

prevent from violation of the fairness criteria due to random
fluctuations

2 Major issue: to satisfy the constraints, we need to set γ ≈ ‖λ∗‖/
√
T

/
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Choice of step size γ

Bounds (informal)

For a fixed step size γ > 0, we have w.h.p.

‖constraint violation‖ = Õ
(√

T + 1∨‖λ∗‖
γ

)
Regret = Õ

(
γT + ‖λ∗‖

√
T
)

.

So best γ is γ∗ = (1 ∨ ‖λ∗‖)/
√
T :

‖constraint violation‖ = Õ
(√

T
)

Regret = Õ
(

(1 ∨ ‖λ∗‖)
√
T
)

.

Mispecified γ

If we simply set γ = 1/
√
T , then we have

‖constraint violation‖ = Õ
(

(1 ∨ ‖λ∗‖)
√
T
)

/
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Tuning γ

Good old doubling trick

Start from γ = 1/
√
T

Tracking the constraint violation at each epoch t, we can detect from
the bound

‖constraint violation‖ = Õ

(√
t +

1 ∨ ‖λ∗‖
γ

)
if our current choice of γ is too small

If so, double γ.
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Adaptive algorithm

Adaptive version

Iterate: for t ≥ 1

Pick at ∈ argmaxa∈A

{
f̂t(x̃t , a)− 〈λt−1, ĉt(x̃t , a)− δ′T 〉

}
Update λt =

(
λt−1 + 2k√

T
(ĉt(x̃t , at)− δ′T )

)
+

Until

∥∥∥∥∥∥
 t∑
τ=Tk

cτ − (t − Tk + 1)δ′T


+

∥∥∥∥∥∥ > Õ(
√
T )

Then: increase k by one, set Tk = t + 1, and iterate again.
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Theory

Regret bound

For δT ≥ Õ(T−1/2), the above algorithm fulfills with probability at least
1− δ ∑

t≤T
rt ≤ Õδ

(
(1 ∨ ‖λ∗‖)

√
T
) ∑

t≤T
ct ≤ δTT .

Suitable for fairness constraints ,

Optimality?

A proof scheme suggests that this regret is optimal.
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Concluding remarks

Fairness in decision-making is an important topic;

The statistical community has an important role to play for providing
I conceptual ideas
I competitive algorithms with provable performances
I theoretical insights
I education of the next generation of data scientists
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