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Reminders on unconstrained classification

Without fairness constraint, the Bayes classifier solution to

migeig]ize P[Y # g(2)]

|

mi}geijrrnize E[(Y-f(2))].

is given by

N —

gPues(2) = 1 {n(z) >

where 1(Z) = E[Y|Z] is the solution to

This relationship between classification and regression can be used
to design and study classifiers [Yang, 1999], [Massart and Nédélec, 2006],
[Audibert and Tsybakov, 2007], [Biau et al., 2008]



Reminders on unconstrained classification

Consider the risks

Rr(9) =7P[Y=0,9(2) =1] + Ply=1,9(2) =0].
We have
R:(9) = (1—7)E[V] + E[9(2)(r — n(2))].
— The Bayes classifier g8 is given by
give(2) =1 {n(z) > 7} .

There is an equivalence between solving the regression problem and
solving the classification problem for all 7.



What about fair classification?

Let f* be the solution to
minimize  E[(Y - f(2))’]
such that  f(Z) AL S.

We can defineg:z— 1{f*(z) > 7}.

Is g optimal for some threshold 77
Does g verify Demographic Parity?



What about fair classification?

Let f* be the solution to
minimize  E[(Y - f(2))’]
such that  f(Z) AL S.

We can defineg:z— 1{f*(z) > 7}.

Is g optimal for some threshold 77
Does g verify Demographic Parity?



What about fair classification?

Let f* be the solution to
minimize  E[(Y - f(2))’]
such that  f(Z) AL S.

We can defineg:z— 1{f*(z) > 7}.

Is g optimal for some threshold 77
Does g verify Demographic Parity?

Strong Demographic parity [JPSJC19]: A classifier g verifies
ifg(z) = 1{f(z) > 7} for some threshold r, and f
verifies Statistical Parity.



What about fair classification?

Let f* be the solution to
minimize  E[(Y - f(2))’]
such that  f(Z) AL S.

We can defineg:z— 1{f*(z) > 7}.

Is g optimal for some threshold 77
Does g verify Demographic Parity?

Strong Demographic parity [JPSJC19]: A classifier g verifies
ifg(z) = 1{f(z) > 7} for some threshold r, and f
verifies Statistical Parity.



The awareness framework



Fair regression



Reminders from Nicolas's talk

Assumption (A1)

us = Law(n(X, S)|S = s) are continuous and have finite second moments.
Theorem (Chzhen et al., 2020, Le Gouic et al., 2020)

Let f* be the solution to
minimize  E [(vf £, 5))2]
such that  f(X,S) 1L S.
Under Assumption (A1),
f*(X7 S) = F%1 © Fus(U(X, S))

where F,. (t) = P[n(X,S) < t|S =], and F'(e) = >, psFu. (€)-
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First results

Assumption (A2)
us = Law(n(X,S)|S = s) are continuous and supported on an interval.

Theorem (G., Schreuder and Chzhen, 2023)

Let g* be the solution to
minimize PY # g(X,S)]
such that g(X,S) 1L S.

Under Assumption (A2), g* can be expressed as

g*(x,s) =1 {f*(x,s) > ;} .



We look for classifiers g(x,s) = 1 {n(x,s) > ks} .
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We look for classifiers g(x,s) = 1 {n(x,s) > ks} .

Fair optimal prediction f; with w; = 2/5 and wy = 3/5
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General performance measures

We consider general performance measures

a Mo+ MP[g(X,5) =1,Y =1+ mP[g(X,5) = 1]

un,d(g) = do + dﬂP’[g(X7 S) =1,V= 1] alx dz]P’[Q(X» 5) = 1]

where n, d can depend on P[Y = 1] (but not on g).

» Accuracy Una(g) = —-P[g(X,S) #VY].

» Fy-score Und(g) = EELESI=L= "Efﬂf‘fX'[zi;_!)vj]].
Plg(X,5)=1,v=1]

» Jaccard Index Un,a(9) = spcs)=1 V=0 P 0c=T

» AM Measure U, q4(9) = 5 (P[g(X,S) =1|Y =1+ P[g(X,S) =0]Y =10]).

1
2



Theorem (G., Schreuder and Chzhen, 2023 - Informal)

Let g 4 be the solution to

maximize U, 4(9)
such that  g(X,S) AL S.

Under Assumption (A2) , gn 4 Can be
expressed as

na(x8) =1{f"(x,5) > 674} .



Assumption (A3)
1. do + (d1 + (d2)+)+ >0

dyni > npdy and dony — nodqz (nodz — dol’]z)Jr
nod, —don, <P[Y=1]

n,d,—d,nq

dony —ngd, c [07 1]

npd—dgnq

5 {dzl’h = n,d; and nido > ding

Theorem (G., Schreuder and Chzhen, 2023)
Under (A2) + (A3)(1.) + (A3)(2. or 3., g 4(X,5) = L {f*(x,5) > 65 4} , where

» if (A3)(2.) holds, 6; 4 solves

E[(f(X,S) — 6)+] = 6- { nodr — dony } N { nod; — donz}

nod; — dany nod; — dany

> if (A3)(3.) holds, 6, 4 = Sz="0%

nod;—dgny *




Fair learning for classification

Algorithm:

Estimate n

Estimate f*

Estimate n and d

Estimate threshold 07 4 (explicit formula or fixed-point equation)

> W =

Use double-plug-in estimator

Brate) =1 792 )

1



In the awareness framework, DP-fair optimal classification with
performance measure U, 4

is given by gp 4(x,s) =1 {f*(x,s) > Hﬁvd}
has desirable properties :

- does no harm to the protected group
- preserves rational ordering
- preserves monotonicity



In the awareness framework, DP-fair optimal classification with
performance measure U, 4

is given by gp 4(x,s) =1 {f*(x,s) > Hﬁvd}
has desirable properties :

- does no harm to the protected group
- preserves rational ordering
- preserves monotonicity

(Informal) A family of classifiers g preserves monotonicity if
p-almost-surely,
{Plgs(X,5) =11 >Plgs (X, 5) =1} = {g5(x;5) = g5 (x,5)}.
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Fair regression under unawareness

Problem: We want to solve
minimize  E [(Y — f(X))’]
such that  f(X) LS.

Notations: X ~ p, X|[S=1~ 1, X|S=2~ py.



An equivalent fairness constraint

Jordan decomposition We write j1 — i = (s — ), where

4y and p_ are positive measures
X, 2 supp(uy) and X_ = supp(p_) are disjoint.

14
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An equivalent fairness constraint

Jordan decomposition We write 1 — pip = M(py — pu—), where

py and p_ are measures
X, 2 supp(uy) and X_ = supp(p_) are disjoint.

Lemma (Chzhen and Schreuder, 2020)

A function f : X — R verifies Statistical Parity if and only if
fops = fip—.

Consequence We can look for functions

fr(x) if xe X,
f) =<1 (x) if xeax_

n(x) if xeX- 2 im0 =m0}
such that fifluy = f_fu_.

14



R = [ c((n(x).A(x)),f+(x)>du+<x)+ / C<(n(X)«A(X)),f(X)> A () + cste

X4 X_

. Yix)ifxe X
where ¢ : (R X Ri) xR — Ry isacost, and A(x) = § () : N
—(x)ifxe x_

du
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X4 X_

_ Yix)ifxe X
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= (x)ifxe x_

du
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R = [ c((nmA(x)),f+(x)>du+<x)+ / C((n(X)«A(X)),f(X)> A () + cste

X4 X_

. de(x)ifxe X
where c: (R X Ri) xR — Ry isacost, and A(x) = q £/ ) _ N
= (x)ifxe x_

ap

> f+ should depend only on (n(x),A(x)); fa() =f (n(x),A(x))

> Let jis :Lavv((n(XLA(X)) ‘ X ~ ui) f+ should solve:

minimize [ c((1. 8).F(n, 8)) oo (0, 8) + [ c((0.2),F- (0, 4))di- (3, 2)

suchthat fiffiy =f_f#ji_

15



> Let it :Law((n(X), A(X)) ’ X~ /H:)- f+ should solve:

minimize [ c((1. ). Fu (. 8))dfis(0.8) + [ ¢((0.2),F- (0, 8)) (1, )

such that  fi#ji, = f_tji_

16



> Let it :Law((n(X), A(X)) ’ X~ ui). f+ should solve:
minimize [ c((1. ). Fu (. 8))dfis(0.8) + [ ¢((0.2),F- (0, 8)) (1, )
suchthat  Fififis =F—tfi—
» ftii. = f_tfi_ should solve the barycenter problem:
muin OT¢(fiy,v) + OTc(fi—,v)
where

OTe(B,v) = inf / (0. 8).9)dA (. B). ).

yEN(@,v)

16



Assumption (A4)

The measures jiy and ji_ are continuous, and the interior of their
support has measure 1.

Theorem (Divol and G., 2024)

Under Assumptions (A1) and (A4), the solution v°%" of the barycenter
problem
myin OTc(fiy,v)+ OTc(fi—,v)

is such that OT¢(fiy, ") and OT(fi_, vP?") are solved by transport
maps f* and f*. Moreover, the optimal fair prediction is given by

Fi(),AX) if xe Xy
fx) = 4 F- (0, AK) if xe X

n(x) else.



Remarks:

» Under Assumptions (A1) and (A4), the optimal prediction is
deterministic.

» The optimal prediction tries to guess the sensitive attribute.

» Unless n verifies Statistical Parity, the optimal fair prediction
does not verify rational ordering within group.



Fair classification




Fair classification under unawareness

We want to solve
minimize R.(g) £ 7P[Y = 0,9(X) = 1] + PlY =1,9(X) = 0]
suchthat  g(X) LL S.

Remark:
R-(9) = (1 = DE[ + E[g()(7 — n(X))]-
= The Bayes classifier g8%¢ is given by
g7V (x) = L{n(x) > 7} .
Family of risks R, with corresponding thresholds 7.

19



Lemma (Chzhen and Schreuder, 2020)

A function f: X — R verifies Statistical Parity if and only if
fops = fip—.

» g verifies Demographic Parity if and only if

B, [9(0] = E,._ [9(X)] -

20
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Lemma (Chzhen and Schreuder, 2020)

A function f: X — R verifies Statistical Parity if and only if
fops = fip—.

» g verifies Demographic Parity if and only if
Eu, [9X)] =E._ [g(X)]-

g+(x) if xe X,

» We can look for g(x) = ¢ g_(x) if xe &_
1{n(x) >7} else.

Decomposition + change of measure:

R.(9) =E,, KT - "(X)) g+(X)} +E,_ [(T - ”(X)> g,(X)} + cste.

A(X) A(X)

We should choose g+ (x) =1 {"(AXEX‘)T > mi} .

20



Optimal fair classification under unawareness

Theorem (G., Schreuder and Chzhen, 2023)

Let g% be the classifier minimizing R, under the Demographic parity
constraint. Under Assumption (A4), g* can be expressed as

1 {ngg;; > K(T)} if xeX,
gi(x) =<1 {”(AXEX_)T > —m(r)} if xe&_
1{n(x) >7} else

where k(7) is such that

21



Remarks: In the unawareness framework, DP-fair optimal
classification with risk measure R,

» tries to guess the sensitive attribute;
» harms some individuals from protected group;
» does not preserves rational ordering
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Remarks: In the unawareness framework, DP-fair optimal
classification with risk measure R,

» tries to guess the sensitive attribute;

» harms some individuals from protected group;
» does not preserves rational ordering

» Mmay not preserves monotonicity

Monotonicity would imply that pg-almost surely,

{X€X+ : 77(2)(;)7' 2/{(7)} C {X€X+ : ne) =’ 21@(7”)}

[ N S —

22



Relationship between classification and regression

Original question: Is 1 {f*(x) > 7} optimal?

(The optimal classifier cannot be of
the form 1 {f(x) > 7}.)
(Divol and G., 2024 - Informal)
Both behaviours can be observed.

23



Conclusion

In the awareness framework:

» Optimal fair classifier verifies desirable properties : does no
harm to the protected group, preserves rational ordering,
preserves monotonicity.

» For general performance measures, g*(x,s) = 1 {f*(x,s) > 0}
In the unawareness framework:

» Both the optimal fair classifier and the optimal fair regression
function rely on guessing the sensitive attribute;

» Neither of them preserve rational ordering, fair classification
harms indivual from the protected group.

» If monotonicity is verified, gi(x) = 1 {f*(x) > 7}
» If monotonicity is not verified, g (x) # 1 {f*(x) > 7}.

24
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