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Introduction to statistical fairness



Setting

Observations: ( X︸︷︷︸
feature

, S︸︷︷︸
sensitive attribute

, Y︸︷︷︸
outcome

) ∼ P on X × S × Y .

Setting

Outcome

Predictions

Risk

Fairness
criteria

Regression

Y = R

F ≜ {f : X × S → R}

Rsq = E
[
(Y− f(X, S))2

]
f(X, S) ⊥⊥ S
(Statistical Parity)

Classification

Y = {0, 1}

G ≜ {g : X × S → {0, 1}}

R0−1 = E [Y ̸= g(X, S)]

E[g(X, S)|S] ⊥⊥ S
(Demographic Parity)

Awareness framework : Z = X × S , Z = (X, S)

Unawareness framework : Z = X , Z = X
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Reminders on unconstrained classification

Without fairness constraint, the Bayes classifier solution to

minimize
g∈G

P [Y 6= g(Z)]

is given by
gBayes(z) = 1

{
η(z) ≥ 1

2

}
where η(Z) ≜ E [Y|Z] is the solution to

minimize
f∈F

E
[
(Y− f(Z))2

]
.

This relationship between classification and regression can be used
to design and study classifiers [Yang, 1999], [Massart and Nédélec, 2006],
[Audibert and Tsybakov, 2007], [Biau et al., 2008]
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Reminders on unconstrained classification

Consider the risks

Rτ (g) = τP [Y = 0,g(Z) = 1] + (1− τ)P [Y = 1,g(Z) = 0] .

We have

Rτ (g) = (1− τ)E[Y] + E [g(Z)(τ − η(Z))] .

=⇒ The Bayes classifier gBayesτ is given by

gBayesτ (z) = 1 {η(z) ≥ τ} .

There is an equivalence between solving the regression problem and
solving the classification problem for all τ .
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What about fair classification?

Let f∗ be the solution to

minimize E
[
(Y− f(Z))2

]
such that f(Z) ⊥⊥ S.

We can define g : z 7→ 1 {f∗(z) ≥ τ}.

▶ Is g optimal for some threshold τ?

It depends...

▶ Does g verify Demographic Parity?

Yes... it verifies Strong
Demographic Parity

Strong Demographic parity [JPSJC19]: A classifier g verifies Strong
Demographic parity if g(z) = 1 {f(z) ≥ τ} for some threshold τ , and f
verifies Statistical Parity.
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The awareness framework



Fair regression



Reminders from Nicolas’s talk

Assumption (A1)
µs = Law(η(X, S)|S = s) are continuous and have finite second moments.

Theorem (Chzhen et al., 2020, Le Gouic et al., 2020)

Let f∗ be the solution to

minimize E
[
(Y− f(X, S))2

]
such that f(X, S) ⊥⊥ S.

Under Assumption (A1),

f∗(x, s) = F−1
µ ⊙ Fµs(η(x, s))

where Fµs(t) = P [η(X, S) ≤ t|S = s], and F−1
µ (ϵ) =

∑
s psF

−1
µs (ϵ).
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Fair classification



First results

Assumption (A2)
µs = Law(η(X, S)|S = s) are continuous and supported on an interval.

Theorem (G., Schreuder and Chzhen, 2023)

Let g∗ be the solution to

minimize P [Y 6= g(X, S)]
such that g(X, S) ⊥⊥ S.

Under Assumption (A2), g∗ can be expressed as

g∗(x, s) = 1

{
f∗(x, s) ≥ 1

2

}
.
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We look for classifiers g(x, s) = 1 {η(x, s) ≥ κs} .

f∗(x, 1) f∗(x̄, 2)

Fair optimal prediction f ∗0 with w1 = 2/5 and w2 = 3/5

Law of f∗|S=1

Law of f∗|S=2

f∗(x, 1) f∗0 (x, 1)=f∗0 (x̄, 2) f∗(x̄, 2)

Law of f∗|S=1

Law of f∗|S=2

Law of f∗0
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General performance measures

We consider general performance measures

Un,d(g) ≜
n0 + n1P [g(X, S) = 1, Y = 1] + n2P [g(X, S) = 1]
d0 + d1P [g(X, S) = 1, Y = 1] + d2P [g(X, S) = 1]

where n, d can depend on P [Y = 1] (but not on g).

▶ Accuracy Un,d(g) = −P [g(X, S) ̸= Y] .

▶ Fb-score Un,d(g) = (1+b2)P[g(X,S)=1,Y=1]
b2P[Y=1]+P[g(X,S)=1] .

▶ Jaccard Index Un,d(g) = P[g(X,S)=1,Y=1]
P[g(X,S)=1,Y=0]+P[g(X,S)=1] .

▶ AM Measure Un,d(g) = 1
2 (P [g(X, S) = 1|Y = 1] + P [g(X, S) = 0|Y = 0]) .
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Results

Theorem (G., Schreuder and Chzhen, 2023 - Informal)

Let g∗n,d be the solution to

maximize Un,d(g)
such that g(X, S) ⊥⊥ S.

Under Assumption (A2) and assumptions on n and d, g∗n,d can be
expressed as

g∗n,d(x, s) = 1
{
f∗(x, s) ≥ θ∗n,d

}
.
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Assumption (A3)
1. d0 + (d1 + (d2)+)+ ≥ 0

2.
{
d2n1 > n2d1 and d0n1 − n0d1≥ (n0d2 − d0n2)+
n0d2−d0n2
n2d1−d2n1

≤ P [Y = 1]

3.
{
d2n1 = n2d1 and n1d0 > d1n0
d0n2−n0d2
n0d1−d0n1

∈ [0, 1]

Theorem (G., Schreuder and Chzhen, 2023)
Under (A2) + (A3)(1.) + (A3)(2. or 3.), g∗n,d(x, s) = 1

{
f∗(x, s) ≥ θ∗n,d

}
, where

▶ if (A3)(2.) holds, θ∗n,d solves

E [(f∗(X, S)− θ)+] = θ ·
{
n0d1 − d0n1
n2d1 − d2n1

}
+

{
n0d2 − d0n2
n2d1 − d2n1

}
▶ if (A3)(3.) holds, θ∗(n,d) =

d0n2−n0d2
n0d1−d0n1

.
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Fair learning for classification

Algorithm:

1. Estimate η

2. Estimate f∗

3. Estimate n and d
4. Estimate threshold θ∗n,d (explicit formula or fixed-point equation)
5. Use double-plug-in estimator

ĝn,d(x, s) = 1
{̂
f∗(x, s) ≥ θ̂n̂,d̂

}
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Summary

In the awareness framework, DP-fair optimal classification with
performance measure Un,d

▶ is given by g∗n,d(x, s) = 1
{
f∗(x, s) ≥ θ∗n,d

}
▶ has desirable properties :

• does no harm to the protected group
• preserves rational ordering
• preserves monotonicity

(Informal) A family of classifiers g∗θ preserves monotonicity if
µ-almost-surely,
{P [g∗θ(X, S) = 1] > P [g∗θ′(X, S) = 1]} =⇒ {g∗θ(x, s) ≥ g∗θ′(x, s)}.
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The unawareness framework



Fair regression



Fair regression under unawareness

Problem: We want to solve
minimize E

[
(Y− f(X))2

]
such that f(X) ⊥⊥ S.

In the following, we assume S = {1, 2}.

Notations: X ∼ µ, X|S = 1 ∼ µ1, X|S = 2 ∼ µ2.

13



An equivalent fairness constraint

Jordan decomposition We write µ1 − µ2 =

M

(µ+ − µ−), where

▶ µ+ and µ− are positive measures
▶ X+ ≜ supp(µ+) and X− ≜ supp(µ−) are disjoint.

Lemma (Chzhen and Schreuder, 2020)
A function f : X → R verifies Statistical Parity if and only if

f♯µ+ = f♯µ−.

Consequence We can look for functions

f(x) =


f+(x) if x ∈ X+

f−(x) if x ∈ X−

η(x) if x ∈ X= ≜ {x : µ1(x) = µ2(x)} .

such that f+♯µ+ = f−♯µ−.
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Rsq(f) =
∫
X+

c
((

η(x),∆(x)
)
, f+(x)

)
dµ+(x) +

∫
X−

c
((

η(x),∆(x)
)
, f−(x)

)
dµ−(x) + cste

where c :
(
R× R∗

+

)
× R → R+ is a cost, and ∆(x) =

{
dµ+

dµ (x) if x ∈ X+

dµ−
dµ (x) if x ∈ X−

.

▶ f± should depend only on
(
η(x),∆(x)

)
: f±(x) = f̃±

(
η(x),∆(x)

)

.

▶ Let µ̃± =Law
(
(η(X),∆(X))

∣∣∣ X ∼ µ±

)
. f̃± should solve:

minimize
∫
c
(
(η,∆), f̃+(η,∆)

)
dµ̃+(η,∆) +

∫
c
(
(η,∆), f̃−(η,∆)

)
dµ̃−(η,∆)

such that f̃+♯µ̃+ = f̃−♯µ̃−
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▶ Let µ̃± =Law
(
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min
ν
OTc(µ̃+, ν) + OTc(µ̃−, ν)

where
OTc(µ̃, ν) = inf

γ∈Π(µ̃,ν)

∫
c((η,∆), y)dγ((η,∆), y).
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Result

Assumption (A4)
The measures µ̃+ and µ̃− are continuous, and the interior of their
support has measure 1.

Theorem (Divol and G., 2024)

Under Assumptions (A1) and (A4), the solution νbar of the barycenter
problem

min
ν
OTc(µ̃+, ν) + OTc(µ̃−, ν)

is such that OTc(µ̃+, ν
bar) and OTc(µ̃−, ν

bar) are solved by transport
maps f̃∗+ and f̃∗−. Moreover, the optimal fair prediction is given by

f(x) =


f̃∗+(η(x),∆(x)) if x ∈ X+

f̃∗−(η(x),∆(x)) if x ∈ X−

η(x) else.

17



Remarks:

▶ Under Assumptions (A1) and (A4), the optimal prediction is
deterministic.

▶ The optimal prediction tries to guess the sensitive attribute.
▶ Unless η verifies Statistical Parity, the optimal fair prediction
does not verify rational ordering within group.

18



Fair classification



Fair classification under unawareness

We want to solve

minimize Rτ (g) ≜ τP[Y = 0,g(X) = 1] + (1− τ)P[Y = 1,g(X) = 0]
such that g(X) ⊥⊥ S.

Remark:

Rτ (g) = (1− τ)E[Y] + E [g(X)(τ − η(X))] .

=⇒ The Bayes classifier gBayesτ is given by

gBayesτ (x) = 1 {η(x) ≥ τ} .

▶ Family of risks Rτ with corresponding thresholds τ .
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Lemma (Chzhen and Schreuder, 2020)
A function f : X → R verifies Statistical Parity if and only if

f♯µ+ = f♯µ−.

▶ g verifies Demographic Parity if and only if

Eµ+ [g(X)] = Eµ− [g(X)] .

▶ We can look for g(x) =


g+(x) if x ∈ X+

g−(x) if x ∈ X−

1 {η(x) ≥ τ} else.

Decomposition + change of measure:

Rτ (g) = Eµ+

[(
τ − η(X)
∆(X)

)
g+(X)

]
+ Eµ−

[(
τ − η(X)
∆(X)

)
g−(X)

]
+ cste.

We should choose g±(x) = 1
{

η(X)−τ
∆(X) ≥ κ±

}
.
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▶ g verifies Demographic Parity if and only if

Eµ+ [g(X)] = Eµ− [g(X)] .

▶ We can look for g(x) =


g+(x) if x ∈ X+

g−(x) if x ∈ X−

1 {η(x) ≥ τ} else.

Decomposition + change of measure:

Rτ (g) = Eµ+

[(
τ − η(X)
∆(X)

)
g+(X)

]
+ Eµ−

[(
τ − η(X)
∆(X)

)
g−(X)

]
+ cste.

We should choose g±(x) = 1
{

η(X)−τ
∆(X) ≥ κ±

}
.
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Optimal fair classification under unawareness

Theorem (G., Schreuder and Chzhen, 2023)

Let g∗τ be the classifier minimizing Rτ under the Demographic parity
constraint. Under Assumption (A4), g∗τ can be expressed as

g∗τ (x) =


1
{

η(x)−τ
∆(x) ≥ κ(τ)

}
if x ∈ X+

1
{

η(x)−τ
∆(x) ≥ −κ(τ)

}
if x ∈ X−

1 {η(x) ≥ τ} else

where κ(τ) is such that

Pµ+

[
η(x)− τ

∆(x) ≥ κ(τ)

]
= Eµ−

[
η(x)− τ

∆(x) ≥ −κ(τ)

]
.
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Remarks: In the unawareness framework, DP-fair optimal
classification with risk measure Rτ

▶ tries to guess the sensitive attribute;
▶ harms some individuals from protected group;
▶ does not preserves rational ordering

▶ may not preserves monotonicity

Monotonicity would imply that µ-almost surely,

τ ≥ τ ′ =⇒



{
x ∈ X+ :

η(x)− τ

∆(x) ≥ κ(τ)︸ ︷︷ ︸
g∗τ (x) = 1

}
⊂

{
x ∈ X+ :

η(x)− τ ′

∆(x) ≥ κ(τ ′)︸ ︷︷ ︸
g∗τ ′(x) = 1

}

{
x ∈ X− :

η(x)− τ

∆(x) ≥ −κ(τ)︸ ︷︷ ︸
g∗τ (x) = 1

}
⊂

{
x ∈ X− :

η(x)− τ ′

∆(x) ≥ −κ(τ ′)︸ ︷︷ ︸
g∗τ ′(x) = 1

}
.
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Relationship between classification and regression

Original question: Is 1 {f∗(x) ≥ τ} optimal?

▶ Without monotonicity, no! (The optimal classifier cannot be of
the form 1 {f(x) ≥ τ}.)

▶ (Divol and G., 2024 - Informal) With monotonicity, yes!
▶ Both behaviours can be observed.
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Conclusion

In the awareness framework:

▶ Optimal fair classifier verifies desirable properties : does no
harm to the protected group, preserves rational ordering,
preserves monotonicity.

▶ For general performance measures, g∗(x, s) = 1 {f∗(x, s) ≥ θ}

In the unawareness framework:

▶ Both the optimal fair classifier and the optimal fair regression
function rely on guessing the sensitive attribute;

▶ Neither of them preserve rational ordering, fair classification
harms indivual from the protected group.

▶ If monotonicity is verified, g∗τ (x) = 1 {f∗(x) ≥ τ}
▶ If monotonicity is not verified, g∗τ (x) 6= 1 {f∗(x) ≥ τ}.
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