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Abstract

This course deals with Kingman’s house-of-cards model, introduced in 1978, and
representing the dynamics of fitness distribution in a population with clonal repro-
duction. This dynamics is characterized by the recursive equation

pn+1(dx) = βq(dx) + (1− β)
xpn(dx)∫
xpn(dx)

,

where β and q are respectively the mutation probability and mutation law. Kingman
([9]) studies the convergence of this sequence of fitness distribution and gives conditions
on the mutation law q under which a condensation phenomenon arises. Recent works
by Yuan ([12, 13, 14]) and Coron & Hénard ([2], forthcoming) recently studied this
deterministic discrete time model in a more general framework, including random
mutation probabilities and periodic environment. These results will be presented
as well as different mathematical approaches to handle the convergence of fitness
distribution in this framework.

Keywords and phrases. Mutation-selection equilibrium; Kingman’s House-of-cards model;

quantitative genetics; fitness distribution dynamics; condensation phenomenon; determin-

istic dynamics of probability measures.

1



Contents

1 Model 3

2 First properties of the model 4
2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Fitness distribution convergence 9
3.1 When sq = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Invariant measures and intuitions . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 When sq < 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Intuitions grabbed from invariant measures . . . . . . . . . . . . . . 16
3.2.2 Main result when sq < 1 . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Some elements of the complex analysis approach . . . . . . . . . . . . . . . 18

4 Related works 20

2



1 Model

The motivation of Kingman’s house-of-cards model ([9]) is to study the balance between
mutation and selection. This balance is a long-standing question of interest ([3]), motivated
by the fact that selection tends to decrease genetic variability while mutations tend to
increase this variability.

Selection is often quantified through the notion of fitness (see [3] or [5] for example). The
fitness of an individual is a measure of its reproductive success. More precisely, in a non-
overlapping generations model, fitness is assumed to be a number that is proportional to
the mean number of child of this individual, at next generation. This number is typically
a function of this individual’s genotype and of the environment (possibly including other
individuals), and the scaling of fitness can be such that the maximal fitness in a population
is equal to 1.

In this course we will focus only on clonal reproduction, for which each individual has only
one parent, and the genome of an individual can, in first approximation, be assumed to
be a copy of the genome of its only parent, except for mutations. In particular, the fitness
of an individual can be assumed to be equal to the fitness of its parent, in the absence of
mutations.

In Kingman’s house-of-cards model, mutation is assumed to be such that each new-born
individual has probability 1 − β to have same fitness as its parent, and probability β to
have a new fitness, that has law q, where β ∈ (0, 1) and q is a probability measure on [0, 1]
(q ∈M([0, 1])). Note in particular that when a new-born individual is a mutant, its type
is independent from the type of its parent. The article [8] suggests that this assumption
which can seem quite surprising is in fact quite relevant, from a biological point of view.

These modeling assumptions lead to the following dynamics for the distribution of fitnesses.
Let us denote by pn ∈ M1([0, 1]) the fitness distribution in the population at generation
n. The sequence (pn)n∈Z+ is such that

pn+1(dx) = βq(dx) + (1− β)
xpn(dx)∫
xpn(dx)

. (1)

As mentionned previously, this model is suitable for populations with non-overlapping
generations. Nevertheless, fitness distribution dynamics influenced both by selection and
mutation can also be studied using more probabilistic models including birth-and-death
processes for example, which will be presented in Section ??.
This course is based on the seminal article [9], as well as the more recent articles [14],
[4], and the lecture notes [11]. The review article [7] provides a thorough presentation of
Kingman’s recursion.
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2 First properties of the model

Our main interest in this model will be the convergence of fitness distribution and a
condensation phenomenon that will arise at a maximum fitness, under some conditions.

Let us denote
sq = sup{x ∈ [0, 1]|q([x, 1]) > 0}

and
sp0 = sup{x ∈ [0, 1]|p0([x, 1]) > 0}

Note that without any loss of generality, one can assume that sp0 > sq. Indeed, if it is not
the case, then sup{x ∈ [0, 1]|p1([x, 1]) > 0} = sq and one can consider the recursion (1)
starting from p1.

2.1 Simulations

Figure 1 shows that for some forms of mutation distribution q a condensation at fitness
1 (optimal fitness) occurs. One can also observe that for two mutation fitness distribu-
tions that seem quite close the model results in very different fitness distributions. This
phenomenon will be our main object of interest.

Figure 1: Each line corresponds to a different mutation law, represented in green. In both
cases q(dx) = C×(1+x)(1−x)αdx. Top: α = −1+

√
5−0.1, bottom : α = −1+

√
5+0.1. In

blue is the initial fitness distribution (uniform distribution on [0, 1]). In red is the fitness
distribution after 100 iterations of Kingman’s house-of-cards model. In both cases the
mutation parameter β is equal to 1/2.

On Figure 2 one can also see that in this previously observed configuration, the limiting
fitness distribution does not seem to depend on the initial fitness distribution.
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Figure 2: Initial fitness distribution and fitness distribution after a large number of time
steps. Left Vs right : different fitness distributions. Up Vs down: different mutation
fitness distributions.

Figure 3 shows on the contrary a situation in which p0 has a great influence on the
condensation phenomenon. We will show in the following sections that the maximum
of the support of p0 is the only element that will determine the presence or absence of
condensation. We observe that in the represented case, condensation occurs only when
this maximum is large enough.

Figure 3: Left : mutation distribution q. Right: fitness distribution after 200 itera-
tions of Kingman’s House-of-cards model, starting from 4 different uniform initial fitness
distributions.
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2.2 Properties

This section provides several first properties of the model that give insights on its dynamics
and asymptotics.

Decomposition of fitness distributions We start with a decomposition of the fitness
distribution at each generation, in two parts : one that includes the initial fitness distri-
bution p0, and one that includes the mutation law q. A key quantity in this model will be
the sequence of mean fitnesses. We denote for all n > 0

wn =

∫
xpn(dx).

Proposition 1 (Decomposition of fitness distributions). For each n ∈ N, the fitness
distribution pn can be decomposed between mutations and initial fitness distribution :

pn(dx) =

(
1 +

(1− β)x

wn−1
+

(1− β)2x2

wn−1wn−2
+ ...+

(1− β)n−1xn−1

wn−1wn−2...w1

)
βq(dx)

+
(1− β)n

wn−1 . . . w0
xnp0(dx)

=

n−1∑
k=0

(1− β)k

wn−1 . . . wn−k
xkβq(dx) +

(1− β)n

wn−1 . . . w0
xnp0(dx) (2)

= an(dx) + bn(dx) (3)

where an and bn are two subprobability measures on [0, 1].

Proof. By induction (exercise).

This decomposition can be useful to analyze the asymptotic contributions of p0 and q in
the fitness distribution and therefore to study the balance between selection and mutation.
Note however that the mean fitnesses wk depend both on the initial condition p0 and on the
mutation law q, therefore both parts in this decomposition depend on p0 and q. Another
interpretation of this decomposition is that the term we decompose the fitness distribution

pn according to the biased fitness distributions xkq(dx)∫
xkq(dx)

and xnp0(dx)∫
xnp0(dx)

. The coefficients

before each of these distributions will then give the probability that the last mutation in
the genealogy of a sampled individual of the population at time n occurred k time steps
earlier.

Preservation of the order The second result is a preservation of a particular order
between probability measures, through Kingman’s recursion. This result can be stated
using [14]. Let us define the following order between probability measures. For two
probability measures p and q on [0, 1], let us denote

p 61− q if p(A) 6 q(A) for any Borel set A ⊂ [0, 1).
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Proposition 2 (Preservation of the order). Let p0 and p′0 be two probability measures on
[0, 1] and let

p1(dx) = βq(dx) + (1− β)
xp0(dx)∫
xp0(dx)

and p′1(dx) = βq(dx) + (1− β)
xp′0(dx)∫
xp′0(dx)

be their respective images after one step of Kingman’s recursion, using the same mutation
probability β and same mutation law q. Then p0 >1− p

′
0 implies p1 >1− p

′
1.

Proof. First note that if p0 >1− p′0 then
∫
[0,1] xp0(dx) 6

∫
[0,1] xp

′
0(dx). Indeed

∫
[0,1](1 −

x)p0(dx) >
∫
[0,1](1− x)p′0(dx) since 1− x = 0 when x = 1 and p0(dx) > p′0(dx) elsewhere

(the more general standard measure-theoretic argument is that, for any measurable h :
[0, 1]→ R+ satisfying h(1) = 0,

∫
[0,1] h(x)p0(dx) >

∫
[0,1] h(x)p′0(dx)). Now

p1(A)− p′1(A) = (1− β)

( ∫
A xp0(dx)∫

[0,1] xp0(dx)
−
∫
A xp

′
0(dx)∫

[0,1] xp
′
0(dx)

)
> 0

since
∫
[0,1] xp0(dx) 6

∫
[0,1] xp

′
0(dx) and

∫
A xp0(dx) >

∫
A xp

′
0(dx)

Note that p0 >1− p′0 implies that p0 is stochastically bounded by p′0, i.e. p0([0;x]) >
p′0([0;x]) for any x ∈ [0; 1]. This order is in fact much stronger.

A corollary of this Proposition 2 is the following

Corollary 1. When p0 = δ1 then the sequence of mean fitnesses (wn)n∈N is decreasing.

Proof. p0 = δ1. Therefore p1(dx) = βq(dx) + (1− β)xp0(dx)1 >1− p0(dx). Therefore for all
n pn+1 >1− pn, therefore for all n wn+1 6 wn.

This result as well as the specific measure order introduced earlier is illustrated in Figure
4. One can indeed see that for each n > 0, pn 61− pn+1, and the sequence of mean
fitnesses (wn)n>0 is decreasing.
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Figure 4: Starting with p0 = δ1. Top : fitness distribution at different times. Bottom
: Mean fitness as a function of time. Here we took q(dx) = C × (1 + x)(1 − x)αdx and
α = −1 +

√
5− 1.

The following result concerns the fitness distribution dynamics when the initial fitness
distribution is δ0. Note that in this case w0 = 0, which is a problem to start Kingman’s
House-of-cards recursion (1). However we can set in this case p1(dx) = βq(dx) + (1−β)δ0
which will start the recursion properly.

Proposition 3 (Behaviour when p0 = δ0). If p0 = δ0 then the sequence of mean fitnesses
wn =

∫ 1
0 xpn(dx) is increasing.

Proof. By (strong) induction. Let us denote by w
(δ0)
n the mean fitness at generation n when

starting with fitness distribution δ0. Now let us define the k-biased mutation distribution

q(k)(dx) =
xkq(dx)∫
xkq(dx)

.

From Equations (1) and (4) we can write recursively that if p0 = δ0 then for all n > 1,

pn(dx) = βq(dx) + (1− β)
n−1∑
i=1

ai,nq
(i)(dx) (4)

where
∑n−1

i=1 ai,n = 1 for all n > 1, and ai,n+1 = (w1/wn)ai,n for all i ∈ {1, ...n− 1}.
Note that w1 = β

∫
xq(dx) > 0 = w0 which initiates the recursion. Now let us assume

that for all 1 6 k 6 n− 1, wk > wk−1 (strong recursion assumption). Then ai,n+1 < ai,n
for all i ∈ {1, ..., n− 1}. The fact that

∫
xq(i)(dx) <

∫
xq(i+1)(dx) for all i > 1 (Exercise)

then gives that wn > wn−1 which is the needed recursion property.
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The interpretation of this proof is that when p0 = δ0, the fitness distribution pn is a
combination of the biased fitness distributions q(k)(dx) with 0 6 k 6 n − 1, and as n
increases, the mass in each biased distribution q(k) decreases, and the missing mass is
reported to the fitness distribution q(n)(dx) that has higher mean fitness. Note that this
decomposition also gives information on the time of the last mutation for an individual
randomly sampled in the population at time n : β is the probability that the individual is
a mutant, and next (1− β)ai,n is the probability that the last mutant in this individual’s
genealogy can be found i time steps before.

3 Fitness distribution convergence

We will see that some behaviours differ depending on whether sq = 1 and sq < 1. We
start by studying the particular case where sq = 1.

3.1 When sq = 1

3.1.1 Invariant measures and intuitions

Let us recall Kingman’s house-of-cards recursion :

pn+1(dx) = βq(dx) + (1− β)
xpn(dx)∫
xpn(dx)

and assume that this recursion admits an invariant measure π ∈M1([0, 1]). Then

π(dx) = βq(dx) + (1− β)
xπ(dx)∫
xπ(dx)

.

Therefore

π(dx)

(
1− (1− β)x∫

xπ(dx)

)
= βq(dx) for all x ∈ [0, 1]. (5)

Remark 1. The condition sq = 1 implies that

w :=

∫
xπ(dx) > 1− β.

Indeed otherwise Equation (5) cannot be satisfied on the set {x ∈ (
∫
xπ(dx)
1−β , 1], q(dx) > 0}

which is non empty if sq = 1. (Indeed on this set the left-hand side of (5) is non positive
while the right-hand side is positive).

Here two cases can be distinguished : either w = 1− β or w > 1− β.
• If w =

∫
xπ(dx) > 1− β then

π(dx) =
βq(dx)(

1− (1−β)x∫
xπ(dx)

)
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for all x ∈ [0, 1], which gives also that
∫
xπ(dx) is necessarily the only solution z to the

equation ∫ 1

0

βq(dx)(
1− (1−β)x

z

) = 1. (6)

Note that the function z 7→
∫ 1
0

βq(dx)(
1− (1−β)x

z

) is strictly decreasing, which ensures that Equa-

tion (6) admits at most one solution.
• If w = 1− β then

π(dx) =
βq(dx)

1− x
for all x ∈ [0, 1)

and therefore π({1}) = 1 −
∫ βq(dx)

1−x that must belong to [0, 1] for π to be a probability
measure.

3.1.2 Convergence

Theorem 1 (Kingman, 1978). Let β ∈ (0, 1), q, p0 ∈ M1([0, 1]), and define the sequence
of fitness distributions using Kingman’s house-of-cards recursion, for all n ∈ Z+ :

pn+1(dx) = βq(dx) + (1− β)
xpn(dx)∫
xpn(dx)

.

(i) If
∫ β

1−xq(dx) > 1, then there exists a unique z1 ∈ [0, 1] such that
∫ β

1−z1xq(dx) = 1
and pn(dx) converges in total variation to

π(dx) :=
β

1− z1x
q(dx), (7)

and wn converges to 1−β
z1

.

(ii) If
∫ β

1−xq(dx) < 1, pn(dx) converges to

π(dx) :=
β

1− x
q(dx) +

(
1−

∫
β

1− x
q(dx)

)
δ1, (8)

and wn to 1− β.

Interpreting this theorem is particularly natural when the mutation fitness distribution q
has no atom in 1 (i.e. when q(1) = 0). Indeed in that case, an atom is present in the
limiting fitness distribution (in particular it will be created if p(1) = 0, we can say that
a condensation phenomenon occurs) if and only if

∫ β
1−xq(dx) < 1. In particular, again
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when q({1}) = 0, the limiting fitness distribution is absolutely continuous with respect to
the mutation fitness distribution if and only if

∫ β
1−xq(dx) > 1.

Note also that the criterion
∫ βq(dx)

1−x < 1 can be interpreted by the fact that for condensa-
tion to occur we need that the mutant fitnesses are not too close to the optimum fitness
1. This can be explained by the fact that when the fitness of mutant can be too close to
1 then the mutant can create a competition that unfavors the optimal trait.
As mentioned previously this condensation phenomenon is quite universal and can also be
found in different models, and some works have been done by [11, 1, 6].
The proof of Theorem 1 is given in [9] and also as a particular case of [14]. We give a
proof close to that presented in [14]. Some elements of the proof given in [9] will be given
in Subsection 3.3.
Proof of Theorem 1 following a direct approach inspired by [14] can be divided into two
steps. First we prove that the sequence of mean fitnesses wn converges towards a value
that does not depend on the initial fitness distribution (Proposition 4), and then we prove
that the convergence of mean fitnesses implies the convergence of fitnesses distributions
(Proposition 5), towards a limit that is identified (Section 3.1.1). We now prove the
convergence of the sequence of mean fitnesses.

Proposition 4. The sequence (wn)n∈N converges to a value w∞ that does not depend on
the initial condition p0.

Proof ([14]). This proof relies on a direct analysis of Kingman’s recursion (1).

• We already know that the sequence of mean fitnesses converges when p0 = δ1 from

Corollary 1. Let us denote by w
(δ1)
∞ = limn→∞w

(δ1)
n this limit. We must now prove

that the sequence (wn)n∈N converges to w
(δ1)
n . Note that the sequence (1−β)n

w
(δ1)
n−1...w

(δ1)
0

is de-

creasing, therefore it converges. We distinguish two cases : either lim (1−β)n

w
(δ1)
n−1...w

(δ1)
0

= 0 or

lim (1−β)n

w
(δ1)
n−1...w

(δ1)
0

> 0.

• Case (1): Let us assume that lim (1−β)n

w
(δ1)
n−1...w

(δ1)
0

= 0. Let us now recall the decomposition

given in Proposition 1:

pn(dx) =
n−1∑
k=0

(1− β)k

wn−1 . . . wn−k
xkβq(dx) +

(1− β)n

wn−1 . . . w0
xnp0(dx)

= an(dx) + bn(dx).

From Proposition 2 we know that wn < w
(δ1)
n for all n, therefore an >1− a

(δ1)
n for all

n. Therefore
∫
an >

∫
a
(δ1)
n for all n. Therefore

∫
bn 6

∫
b
(δ1)
n for all n since an + bn

and a
(δ1)
n + b

(δ1)
n are probability measures. Finally since w(δ1) > 1 − β,

∫
b
(δ1)
n → 0 when

11



n goes to infinity. Therefore
∫
an → 1 = lim

∫
a
(δ1)
n and since an >1− a

(δ1)
n one has∫

xan → lim
∫
xa

(δ1)
n and therefore wn → w

(δ1)
∞ .

• Case (2): Let us now assume that lim (1−β)n

w
(δ1)
n−1...w

(δ1)
0

> 0 (therefore limw
(δ)
n = 1 − β. Our

aim is to prove that in this case wn converges to 1−β, whatever p0. We already know from

Proposition 2 that wn < w
(δ1)
n for all n. The intuition behind this convergence result is

then that the fitness cannot stay too much lower than 1−β due to the recursion equation
(2) describing probability measures. We first prove the result when p0({1}) > 0. In that
case,

pn({1}) > (1− β)n

w
(δ1)
n−1 . . . w

(δ1)
0

(
1

1− γ

)Kn
p0({1}).

where Kn = Card({k 6 n−1 : wk 6 (1−γ)w
(δ1)
k }. Since lim (1−β)n

wn−1...w0
> 0, Kn is bounded.

Therefore wn → 1− β.

• Case (3): Let us finally consider the case where w
(δ1)
∞ = 1 − β and p0({1}) = 0. For

any probability measure µ on [0, 1], and any number x ∈ [0, 1], let us denote by Rx(µ) the
probability measure defined by

Rx(µ) = µ|[0,x) + µ([x, 1])δx.

Let us define the solution p′ of Kingman’s house-of-cards recursion, starting from R1−ε(p0)
and using the mutation measure R1−ε(q). One has

pn 61−ε− p
′
n, for all n ∈ N

i.e.
pn(A) 61−ε− p

′
n(A) for all A ⊂ [0, 1− ε), for all n ∈ N,

as illustrated in Figure 5. Therefore since p′((1− ε, 1]) = 0, wn > w′n =
∫ 1
0 xp

′
n(dx) for all

n.
Since R1−ε(p0) has an atom at the maximum of its support, the sequence (p′n)n∈N falls in
one of the previous cases, (1) or (2). Therefore the sequence of means w′n converges to
w′ > (1− β)(1− ε). Therefore

(1− β)(1− ε) 6 lim inf wn 6 lim supwn 6 1− β

for all ε > 0 which gives the result.

Finally, the proof of Theorem 1 relies on the following essential Proposition, that states
that when the sequence of mean fitnesses (wn)n∈N converges then the sequence of fitness
distribution also converges in total variation.
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Figure 5: How the rabot works

Proposition 5 (Convergence of fitness distributions from convergence of their means).
Let (pn)n>0 be a sequence of probability measures satisfying Kingman’s recursion with
mutation probability β and mutation law q, and let wn =

∫
xpn(dx) for each n > 0. If

the sequence (wn)n>0 converges towards w then the sequence (pn)n>0 converges in total
variation on every interval [0, ξ] with ξ < 1 towards

π(dx) =
1

1− (1−β)x
w

βq(dx) + cδ1

where c = 1−
∫ 1
0

1

1− (1−β)x
w

βq(dx) ∈ [0, 1].

Proof. Let ξ < 1. We want to compare:

pn(dx) =
n−1∑
k=0

(1− β)k

wn−1 . . . wn−k
xkβq(dx) +

(1− β)n

wn−1 . . . w0
xnp0(dx) =:

∑
qn,k(dx) + p0,n(dx)

π(dx) :=
∑
k>0

(
1− β
w

)kxkβq(dx) =:
∑
k>0

q∞,k(dx)

Precisely, we prove convergence in total variation of pn(dx) towards π(dx) on [0, ξ].
First,

‖qn,k(dx)−q∞,k(dx)‖TV,[0,ξ] =

∣∣∣∣∣ (1− β)k

wn−1 . . . wn−k
−
(

1− β
w

)k∣∣∣∣∣
∫ ξ

0
xkβq(dx) =

∣∣∣∣ wk

wn−1 . . . wn−k
− 1

∣∣∣∣ q∞,k([0, ξ])
More generally,

k0−1∑
k=0

‖qn,k(dx)−q∞,k(dx)‖TV,[0,ξ] 6
k0−1∑
k=0

q∞,k([0, ξ])

∣∣∣∣ wk

wn−1 . . . wn−k
− 1

∣∣∣∣ 6 max
06k6k0

∣∣∣∣ wk

wn−1 . . . wn−k
− 1

∣∣∣∣
(9)
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since
∑∞

k=0 q∞,k([0, ξ]) 6 1, and k0 being fixed, the last term goes to 0 as n → ∞, using
ou assumption that wn → w. Second,

‖
∑
k>k0

q∞,k(dx)‖TV,[0,ξ] =

∫ ξ

0

∑
k>k0

(
1− β
w

)k
xkβq(dx) 6 C

(
(1− β)ξ

w

)k0
(10)

for a constant C =
∫ ξ
0

1

1− 1−β
w
x
βq(dx) 6 β

1− (1−β)ξ
w

finite, independent of n and k0, while (1−β)ξ
w <

(1−β)
w 6 1. Third, it is possible to choose δ > 0 small enough such that (1−β)ξ

(1−δ)w < 1, and

then choose n0 large enough such that for n > n0, wn > (1 − δ)w for n > n0. Now, we
split according to n0 :∥∥∥∥∥∥

n−1∑
k=k0

qn,k(dx)

∥∥∥∥∥∥
TV,[0,ξ]

=

∫ ξ

0

n−n0∑
k=k0

qn,k(dx) +

∫ ξ

0

n−1∑
k=n−n0+1

qn,k(dx)

and the first term may be dealt with as before:∫ ξ

0

n−n0∑
k=k0

(1− β)k

wn−1 . . . wn−k
xkβq(dx) 6

∫ ξ

0

n−n0∑
k=k0

(
1− β

(1− δ)w

)k
xkβq(dx) 6 C ′

(
(1− β)ξ

(1− δ)w

)k0
(11)

for C ′ = β

1− (1−β)ξ
(1−δ)w

this time. For the second term, since (wn)n is a convergent and positive

sequence, there exists α > 0 we have wn > αw for every n, we use this to bound the
quantities w0, . . . , wn0∫ ξ

0

n−1∑
k=n−n0+1

(1− β)k

wn−1 . . . wn−k
xkβq(dx) 6 C ′′

(
(1− β)ξ

(1− δ)w

)n−n0

(12)

choosing for instance C ′′ =
∑n0−1

k=1 α−k. Fourth, the term implying p0 is dealt with as the
second term above (bounding separately the wn, for n > n0 and for n < n0), this gives:∥∥∥∥ (1− β)n

wn−1 . . . w0
xnp0(dx)

∥∥∥∥
TV,[0,ξ]

6 α−n0

(
(1− β)ξ

(1− δ)w

)n−n0

(13)

Now, we choose the parameters as follows : we choose k0 large enough such that (10) and
(11) are small (ie, 6 ε) and then n large enough so as to make (9), (12) and (13) small.

The proof of Theorem 1 is then complete by combining Proposition 4, Proposition 5, and
the study of invariant measures of Secion 3.1.1.

Remark 2. Note that the convergence in total variation is not possible in general on [0, 1]
due to the emergence of an atom, but in the case where c = 0, the convergence in total
variation is also true on [0, 1].
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Remark 3. Combining Propositions 3 and 5 gives the convergence of the sequence of
fitness distributions starting from δ0. However note that this result is not useful to prove
the convergence of fitness distributions starting from another initial fitness distribution.
What is more, as it will be shown in Section 4, this property is not very robust to some
changes.

Remark 4. Recalling the decomposition (2), in the case where condensation occurs, the
weight of the atom 1 −

∫ β
1−xq(dx) can be present only in the limiting term of an (if

q(1) > 0 notably), or in both terms.

Remark 5. Figure 1 shows the fitness distribution evolution for a mutation probability
equal to β, and two different mutation laws, of the form q(dx) = C × (1 + x)(1− x)α. For
this class of mutation laws, and for β = 1/2, one can check that the condensation criteria
states that condensation occurs (i.e. an atom is present in the limiting fitness distribution)
if and only if α > −1 +

√
5, which is coherent with what is presented in the two parts of

Figure 1. Indeed, if q(dx) = C × (1 + x)(1− x)α then

β

∫
1

1− x
q(dx) = β

∫
(1 + x)(1− x)α−1dx∫
(1 + x)(1− x)αdx

,

and ∫
(1 + x)(1− x)α−1dx =

∫
(2− (1− x))(1− x)αdx

= 2

[
−−(1− x)α+1

α+ 1

]1
0

−
[
−−(1− x)α+2

α+ 2

]1
0

=
2

α+ 1
− 1

α+ 2

=
α+ 3

(α+ 1)(α+ 2)
.

Therefore if β = 1/2,
∫ βq(dx)

1−x = 1 if and only if (α+2)2

α(α+3) = 2, which gives that α2+2α−4 = 0

therefore α = −1 +
√

5.

Remark 6. Note that if we come back to the decomposition

pn(dx) =
n−1∑
k=0

(1− β)k

wn−1 . . . wn−k
xkβq(dx) +

(1− β)n

wn−1 . . . w0
xnp0(dx)

then we now know that for each k > 0, the term
∫ (1−β)k
wn−1...wn−k

xkβq(dx) converges to the

quantity β
(
(1−β)
w

)k ∫
xkβq(dx) that can be seen that the age of the last mutation is equal

to k. Therefore condensation occurs if and only the sum of these probabilities does not
converges to 1 which means that P(T = ∞) > 0 where T is the age of the last mutation
in the history of an individual.
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3.2 When sq < 1

3.2.1 Intuitions grabbed from invariant measures

Proposition 6. Set

x0 = inf

{
x′ ∈ [sq,∞) :

∫ sq

0

βq(dx)

1− x
x′

6 1

}
, (14)

Then,

(i) If x0 6 1, the set of invariant probability measures is(
βq(dx)

1− x
x1

+ π1δx1

)
x1∈[x0,1]

,

with π1 = 1−
∫ sq
0

βq(dx)
1− x

x1

.

(ii) If x0 > 1, the measure βq(dx)
1− x

x0

is the unique invariant probability measure.

Remark 7. The set of possible positions for the atom is therefore {s0} ∪ [x0, 1], which
means that there is a gap [s0, x0] on which no atom is possible.

Remark 8. If x1 = x0 then
∫ sq
0

βq(dx)
1− x

x1

=
∫ sq
0

βq(dx)
1− x

x0

= 1 by definition of x0, since the

function x′ 7→
∫ sq
0

βq(dx)
1− x

x′
is decreasing and continuous. Therefore the minimum probability

of the atom is 0.

Lemma 1. Let π be an invariant measure and let w =
∫
xπ(dx). Then w > (1− β)sq.

Proof. Recall that

π(dx)

(
1− (1− β)x

w

)
= βq(dx).

Assume by contradiction that w
1−β 6 sq − ε. Therefore for x ∈ [sq − ε, sq], 1− (1−β)x

w 6 0.
Therefore ∫ sq

sq−ε
π(dx)

(
1− (1− β)x

w

)
6 0

while ∫ sq

sq−ε
q(dx) > 0

by definition, which is absurd.
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Proof of Proposition 6. First, on [0, sq), using that w > (1− β)sq from Lemma 1, we can
divide and write :

π|[0,sq)(dx) =
βq(dx)

1− 1−β
w x

.

If w > (1− β)sq we even have the reinforcement π|[0,sq ](dx) = βq(dx)

1− 1−β
w
x
·

Second, on (sq, 1], the equation for the invariant measure π simplifies :

π|(sq ,1](dx) =

(
1− β
w

)
xπ|(sq ,1](dx),

which gives that x = w
1−β if π(dx) > 0. Therefore

π|(sq ,1] = λδw/(1−β)

for some λ ∈ [0, 1].
As for the case sq = 1, two situations can then be distinguished : either w > (1− β)sq or
w = (1− β)sq.

1. if (1− β)sq < w, the invariant measure has to be of the form:

βq(dx)

1− 1−β
w x

+ Cδ w
1−β

=
βq(dx)

1− x
x1

+ Cδx1

if x1 = w
1−β > sq. which is indeed an invariant measure for every x1 ∈ (sq, 1] such

that
∫ βq(dx)

1−x/x1 6 1, setting then C = 1−
∫ βq(dx)

1−x/x1 .

2. if (1− β)sq = w, the only possibility is then

βq(dx)

1− x
sq

+ Cδsq ,

which is indeed an invariant measure iff
∫ βq(dx)

1−x/sq 6 1, setting then C = 1−
∫ βq(dx)

1−x/sq .

3.2.2 Main result when sq < 1

We know that max(Supp(pn)) = s0 for all n. This gives the intuition for the following
Theorem that can be proved using the same proof as for Theorem 1.

Theorem 2. Set

y0 = inf

{
x′ ∈ [s0,∞) :

∫ sq

0

βq(dx)

1− x
x′

6 1

}
, (15)
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The sequence of probability measures (pn)n defined by Kingman’s recursion (1) converges
in total variation on [0, ξ] for each ξ < s0 to :

π(dx) :=
βq(dx)

1− x
y0

+ π0δs0 , (16)

where π0 := 1−
∫ sq
0

βq(dx)
1− x

y0

.

The result of this theorem is illustrated in Figures 3 and 6, in which we observe that
in the case where sq < 1, the limiting fitness distribution depends in the initial fitness
distribution, through the maximum of its support. Note also that there is a range [s0, y0]
(that can be empty) for the maximum of the support of the initial fitness distribution for
which no condensation is possible, i.e. π is absolutely continuous with respect to q.

Figure 6: Impact of the support when condensation occurs

3.3 Some elements of the complex analysis approach

The convergence of the sequence of mean fitnesses given in Proposition 4 and proved using
a direct analysis of solutions of the recurrence equation (1) can also be proved using a quite
general complex analysis approach, which is what can be found in [9].
We give some insights of this approach here. Our aim is to prove the convergence of the
sequence of mean fitnesses (wn). We focus only on the case where

∫ βq(dx)
1−x > 1, otherwise

the approach must be modified.
Let us introduce the quantities Wn = w0...wn−1 for all n > 1 and W0 = 1.
The recursive equation (1) gives that

Wnpn(dx) =

n−1∑
k=0

Wn−k(1− β)kxkβq(dx) + (1− β)nxnp0(dx).
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Integrating then gives that

Wn =
n−1∑
k=0

Wn−k(1− β)k
∫
xkβq(dx) + (1− β)n

∫
xnp0(dx)

or that

Wn =
n−1∑
k=1

Wn−k(1− β)k−1
∫
xkβq(dx) + (1− β)n−1

∫
xnp0(dx)

and the Wn are defined recursively using this equation, starting from W0 = 1.
Now let us introduce the function φ defined on {z ∈ C : |z| < 1} by

φ(z) = z 7→
∞∑
k=1

Wnz
n.

Then

φ(z) =
∞∑
n=1

Wnz
n

=
∞∑
n=1

n−1∑
k=1

Wn−kz
n−k(1− β)k−1

∫
zkxkβq(dx) + (1− β)n−1

∫
znxnp0(dx)

=
∞∑
n=1

n−1∑
k′=1

Wk′z
k′(1− β)n−k

′−1
∫
zn−k

′
xn−k

′
βq(dx) + (1− β)n−1

∫
znxnp0(dx)

=
∞∑
k′=1

Wk′z
k′
∑
n′>1

(1− β)n
′−1
∫
zn
′
xn
′
βq(dx) +

1

1− β
∑
n>1

∫
(1− β)nznxnp0(dx)

which gives that

φ(z) =

∫
zx

1−(1−β)zxp0(dx)

1−
∫ zxβq(dx)

1−(1−β)zx

.

Note that this function is analytic at least on {z ∈ C : (1 − β)|z| < 1}, except for
singularities z ∈ C such that ∫

zxβq(dx)

1− (1− β)zx
= 1. (17)

Taking the imaginary part in Equation (17) gives that singularities are attained only on

real numbers. What is more the function
∫ zxβq(dx)

1−(1−β)zx is strictly increasing in z on R so

Equation (17) can have at most one solution on {z ∈ C : (1− β)|z| < 1}, and it has one if

and only if
∫ xβq(dx)

1−x > 1, or if
∫ xq(dx)

1−x > 1/β. What is more this zero is simple.
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Therefore in the end φ is analytic on {z ∈ C : (1 − β)|z| < 1} except for one simple pole
on z0. Standard results of complex analysis (using the developpement in power series of
φ× (z − z0) then give that

Wn+1

Wn
→ 1

z0
,

and even that

wn =
Wn+1

Wn
=

1

z0
+ o(Θn)

for some Θ < 1, which gives that wn converges.
Note that this approach also gives the speed of convergence of the sequence of mean
fitnesses.
This approach is quite general in the sense that it aims at proving the convergence of
a sequence of numbers through the study of the generating function associated to this
sequence. Nevertheless it requires to be able to study this generating function which
might not be possible. What is more the approach relies on the existence of a simple
pole of the generating function, which is not the case anymore when

∫ xβq(dx)
1−x = 1, which

therefore requires more work.
In the case where the function φ has no pole this approach does not work. The approach
proposed by [9] then uses the theory of renewal sequences which are sequences of the form

un =
n−1∑
k=0

ukfn−k

(particular case of strong recurrence relation), and even the more particular case where f
are moments of a probability distribution. For more results on the subject see [10].

4 Related works

Branching process Similar results can be obtained using more probabilistic models,
as presented in [11]. The population starts with a single individual with a genetic fitness
chosen according to q. Individuals never die, and each individual gives bith to a new
individual at a rate equal to its fitness. Then a new born individual shares the fitness of
its parent with probability (1−β), otherwise its fitness is drawn according to the mutation
law q. Then a condensation criterion exists, that is similar to the one for Kingman’s house-
of-cards model : condensation occurs if and only if∫

βq(dx)

1− x
< 1.

More general models and more precisions can be found in [11].
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Formation of condensation In the article [4], the authors consider the case in which
condensation occurs, and focus on the form of the condensation.
More precisely they assume that

Theorem 3 ([4]). Suppose that the fitness distribution q satisfies

lim
h→0

q([1− h, 1])

hα
= 1,

where α > 1 and that γ(β) = 1−
∫ 1
0
βq(dx)
1−x > 0. Then for x > 0,

lim
pn→∞

pn

(
1− x

n
, 1
)

=
γ(β)

Γ(α)

∫ x

0
yα−1e−ydy

This result is illustrated in Figure 7.

Figure 7: Zoom on the atom formation

The main element in the proof consists in proving that

Wn ∼ cn−α(1− β)n−1

using renewal sequences.

Random environments Some generalizations of Kingman’s recursive model defined in
[9] are considered in [13, 14] notably, where the case of random mutation probabilities
β is considered, but no simple criterion for condensation in terms of the parameters of
the model (or their law) is available. In the particular case where the mutation fitness
distribution is a Dirac measure in some fitness c then there will be condensation if and
only if E(ln(h(1− β)/c) > 0.
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Alternating environments In [2] we consider the situation in which two environments
(β1, q1) and (β2, q2) alternate deterministically. We consider the following recursion :{

p2n+1(dx) = β1q1(x) + (1− β1)xp2n(dx)w2n

p2n+2(dx) = β0q0(x) + (1− β0)xp2n+1(dx)
w2n+1

.
(18)

and consider the convergence of this sequence of fitness distributions, in the particular
case where s0 = sq1 = sq2 = 1.

Remark 9. Mean fitnesses are not (even alternatively) increasing starting from δ0.

Let us now turn to the fundamental quantity of our study:

Γ2 :=

∫ β0q0(dx)
1+x∫ β0q0(dx)

1+x +
∫ β1q1(dx)

1+x

∫
β0q0(dx)

1− x
+

∫ β1q1(dx)
1+x∫ β0q0(dx)

1+x +
∫ β1q1(dx)

1+x

∫
β1q1(dx)

1− x
∈ [−∞,+∞[.

To state our main result, we shall need to define the even and odd moment generating
functions of the sub-probability measures β0q0(dx) and β1q1(dx) by:

µ(0)ε (z) =

∫
βεqε(dx)

1− (zx)2
and µ(1)ε (z) =

∫
zx βεqε(dx)

1− (zx)2
, ε ∈ {0, 1}

The quantity Γ2 rules the existence of solutions to of a key question on the generating
functions of the mutation laws:

Proposition 7. Consider the equation:(
1− µ(p)0 (z)

)(
1− µ(p)1 (z)

)
− µ(i)0 (z)µ

(i)
1 (z) = 0, z ∈ [0, 1] (?)

We have the following dichotomy:

� If Γ2 > 1, the equation (?) has a unique solution zc on [0, 1], and zc = 1 iff Γ2 = 1.

� If Γ2 < 1, the equation (?) has no solution on [0, 1].

Second, the quantity Γ2 delimitates the condensation phase as shown in the following
theorem that is our main result.

Theorem 4. Under the assumptions just recalled,

� If Γ2 > 1, the quantities z0 and z1 defined by z0 =
zcµ

(i)
1 (zc)

1−µ(p)0 (zc)
and z1 =

zcµ
(i)
0 (zc)

1−µ(p)1 (zc)

satisfy ∫
β0q0(dx) + z1xβ1q1(dx)

1− z0z1x2
= 1,

∫
β1q1(dx) + z0xβ0q0(dx)

1− z0z1x2
= 1

22



and (p2n(dx), p2n+1(dx)) converges in total variation to the pair of probability mea-
sures:(

π0(dx) :=
β0q0(x) + z1xβ1q1(dx)

1− z0z1x2
, π1(dx) :=

β1q1(x) + z0xβ0q0(dx)

1− z0z1x2

)
.

In particular the limiting distribution of both fitnesses is absolutely continuous with
respect to (q0 + q1)(dx).

� If Γ2 < 1, set

z1 =
1

z0
=

1−
∫ β0q0(dx)

1+x

1−
∫ β1q1(dx)

1+x

,

then (p2n(dx), p2n+1(dx)) weakly converges to the pair of measures (π0, π1) such that

π0(dx) :=
β0q0(x) + z1xβ1q1(dx)

1− x2
+ γ0δ1(dx)

and

π1(dx) :=
β1q1(x) + z0xβ0q0(dx)

1− x2
+ γ1δ1(dx)

where γ0 and γ1 are such that π0(dx) and π1(dx) are probability measures on [0, 1];
in particular, both limiting distributions π0(dx) and π1(dx) are singular with respect
to (q0 + q1)(dx), with an atom at the maximum fitness 1 of p0(dx).

When considering k environments no nice formula like Γ2 can be obtained. Nevertheless
note that Equation (?) can be seen as the determinant of the matrix

I2 −

(
1− µ(0)0 (z) −µ(1)1 (z)

−µ(1)0 (z) 1− µ(0)1 (z)

)
The generalization of this matrix to k environments is Ik −A(z) where

A(z) =
(
µ
([i−j])
j (z)

)
16i,j6n

.

Equation (?) can be interpreted by the stronger condition that there exists z such that 1
is the Perron eigenvalue of the matrix A(z).
Our Theorem then states that no condensation occurs if and only if there exists z ∈ [0, 1]
such that the Perron eigenvalue of the matrix A(z) is equal to 1. Note that the matrix A
is increasing in z, so this is equivalent to the fact that the Perron eigenvalue of the matrix
A(1) is larger than 1.
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