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The Keller-Segel equation

The Keller-Segel equation models the collective motion of cells attracted by
a self-emitted chemical substance. The parabolic-elliptic Keller-Segel
equation in R2 is (

⇢t = �⇢�r · (⇢rc),

�c + ⇢ = 0.

(Patlak ’53, Keller-Segel ’71)

In R2, there is a “critical mass” Mc = 8⇡ such that:

I If the mass satisfies M > Mc , all solutions blow-up in finite time.

I If M < Mc , all solutions remains globally bounded, and dissipate according to
heat equation scaling as t ! 1.

I If M = Mc , no blow-up, but solutions may aggregate as t ! 1.

(Jäger-Luckhaus ’92, Dolbeault-Perthame ’04, Blanchet-Dolbeault-Perthame ’06,
Blanchet-Carrillo-Masmoudi ’08, Blanchet-Carlen-Carrillo ’12, Carlen-Figalli ’13)

For ⌦ ⇢ R2 with smooth boundary, let ��c = ⇢� ⇢M with @c
@n = 0 on @⌦.

The critical mass becomes Mc = 4⇡.
(Biler ’98, Nagai ’01)



Adding advection into the picture

Chemotactic processes often take place in ambient fluid.

Question: Can blow-up be suppressed if the density is advected by a
divergence-free velocity field u?

⇢t + u ·r⇢ = �⇢�r · (⇢rc)



Keller-Segel equation with passive advection

Consider the equation

⇢t + Au ·r⇢ = �⇢�r · (⇢r(��)�1⇢),

where u is a given divergence-free vector field, with amplitude A 2 R.
Given ⇢0, there exist flows can prevent blow-up for su�ciently large
amplitude (depending on ⇢0):

I Kiselev-Xu ’16 showed that flows that are mixing or di↵usion-enhancing with
su�ciently large amplitudes can suppress blowup.

I Bedrossian-He ’17, He ’18: su�ciently strong monotone shear flow also
prevents blow-up in 2D.

However, any passive flow would not change the critical mass:
I Winkler ’21: For any given flow, for any M > Mc , there exist initial data with

mass M leading to blow-up.
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Keller-Segel equation with active advection

Since the past decade, there has been a growing interest in chemotaxis equations
coupled with fluid equations (usually via gravity force):

Di Francesco–Lorz–Markowich ’10: global existence for chemotaxis-Stokes system
with nonlinear di↵usion

Duan–Lorz–Markowich ’10: global existence for chemotaxis-Navier-Stokes near
constant steady state

Liu–Lorz ’11, Winkler ’12: global existence of chemotaxis-Navier-Stokes when
chemical consumed by bacteria

Lorz ’12: global existence for Keller-Segel-Stokes model with small data

Chae–Kang–Lee ’14: Global existence for Keller-Segel–Navier–Stokes with small
data

Tao–Winkler ’16: Global existence of Keller-Segel–Navier–Stokes with a reaction
term �µ⇢2

Winkler ’21 Suppressing blow-up in Keller-Segel–Navier–Stokes by flux limitation

Zeng–Zhang–Zi ’21: Suppression of blow-up by a su�ciently strong Couette flow

In all the above results, the global existence results either requires smallness of
initial data / strength of flow, or still hold with u ⌘ 0.



Coupling with Darcy’s law for incompressible porous media

We study the following equation in ⌦ := T⇥ [0,⇡]:

⇢t + u ·r⇢��⇢+r · (⇢r(��N)
�1(⇢� ⇢M)) = 0.

Here u obeys Darcy’s law for incompressible porous media via gravity:
(
u = �rp � g⇢e2 in ⌦,

r · u = 0 in ⌦, u · n = 0 on @⌦,

where g 2 R is the gravitational constant.

When such u is coupled with ⇢t + u ·r⇢ = 0:
I Córdoba–Gancedo–Orive ’07: Local well-posedness and blow-up criteria.
I Whether smooth initial data leads to a blow-up is still open.

Heuristically: the flow tend to make the solution stratified (heavier density
falls down and lighter density goes up). Since 1D Keller-Segel doesn’t
blow-up, maybe a su�ciently large g should prevent blow-up?



Any g 6= 0 prevents blow-up!

Surprisingly, it turns out that blow-up is prevented for any non-zero g 2 R!

Theorem (Hu–Kiselev–Y., preprint, 2023)

Consider the coupled system8
><

>:

⇢t + u ·r⇢��⇢+r · (⇢r(��N)�1(⇢� ⇢M)) = 0,

u = �rp � g⇢e2 in ⌦,

r · u = 0 in ⌦, u · n = 0 on @⌦,

with smooth initial condition ⇢0 � 0 in ⌦ = T⇥ [0,⇡]. Then for any g 6= 0, the
solution is regular globally in time.

Main ideas:

Tracking the evolution of k⇢(t)� ⇢Mk2
L2 and the potential

energy E (t) :=
´
⌦ ⇢(x , t)x2dx simultaneously.

Goal: if lim
t!T

k⇢(t)� ⇢MkL2 = 1, we have lim
t!T

E (t) = �1.

But this causes a “unbearable heaviness of being” since
E (t) � 0 for all times!



Act I: the L2 norm enters

Towards a contradiction, assume limt!T k⇢(t)� ⇢MkL2 = 1.

A naive energy estimate:

d

dt
k⇢� ⇢Mk2

L2 = �kr⇢k2
L2 + Ck⇢� ⇢Mk4

L2 + ⇢2
M
.

So it takes at least ⇠ 2�N time for k⇢� ⇢Mk2
L2 to grow from 2N to 2N+1.

Let’s decompose ⇢(x1, x2) := ⇢̄(x2) + ⇢̃(x1, x2), where ⇢̄(x2) is the average of
⇢ on each horizontal slice.

Gagliardo-Nirenberg inequalities:

kr⇢̄k2
L2 � c(⌦)k⇢̃k�4

L1 k⇢̄� ⇢Mk6
L2 � c(⌦)⇢�4

M
k⇢̄� ⇢Mk6

L2 ,

kr⇢̃k2
L2 � c(⌦)k⇢̃k�2

L1 k⇢̃k4L2 � c(⌦)⇢�2
M

k⇢̃k4
L2 ,

So the culprit of blow-up must be ⇢̃ and the energy estimate becomes

d

dt
k⇢� ⇢Mk2

L2 = �kr⇢̃k2
L2 + Ck⇢̃k4

L2 + C (⇢M).



Act II. The potential energy enters

Recall the potential energy is E (t) :=
´
⌦ ⇢(x , t)x2dx .

A simple computation gives

E
0(t) = �gk@x1⇢k2Ḣ�1

0| {z }
Advection

+

ˆ
⌦
@x2⇢dx

| {z }
Di↵usion

�
ˆ
⌦
⇢@x2(��N)

�1(⇢� ⇢M)
| {z }

Keller-Segel nonlinearity

.

Expanding ⇢ into basis {k1 2 Z, k2 2 N : e ik1x1 cos(k2x2)}, we have

k@x1⇢k2Ḣ�1
0

=
X

k2Z⇥N

����
k1

|k | ⇢̂(k)
����
2

.

This is clearly bounded above by k⇢̃k2
L2 .

Question: Is it comparable to k⇢̃k2
L2 , or much smaller?



Act III. Their first meeting

The two main characters are linked by the following key lemma:

Lemma (an “anisotropic” Nash’s inequality)

Assume that ⇢ 2 Ḣ
1(⌦). If

k@x1⇢k2Ḣ�1
0

 ✏k⇢̃k2
L2

for some 0 < ✏ < 1, then

k⇢̃k2
L2  C✏1/4k⇢̃kL1kr⇢̃kL2

for some universal constant C .

If k⇢� ⇢Mk2
L2 monotone increases to +1:

In order for the L
2 norm to increase, one needs k⇢̃k2

L2 � c(⌦)k⇢̃kL1kr⇢̃kL2 .

So the lemma gives k@x1⇢k2Ḣ�1
0

� c(⌦)k⇢̃k2
L2

As k⇢� ⇢Mk2
L2 increases from 2N to 2N+1, it takes time at least ⇠ 2�N , and

in this time interval we have k@x1⇢k2Ḣ�1
0

⇠ k⇢̃k2
L2 ⇠ 2N .

So E (t) has to drop by order 1 in this time interval!



Act IV. Dancing together

The above sketch captures the main idea, but it’s sloppy in the following ways:

What if the L
2 norm goes up-and-down before it blows up?

What about the rest of the terms in the time derivative of E (t)?

In order to fix them, we introduce “good” and “bad” time intervals:

t

k⇢(·, t)� ⇢Mk2L2

2N�1

2N

2N+1

level N

level N�1

...

...

bad good badgood good
N�1

good
N�1 N N NN�1

2N0

On a good interval of level N:
E (t) decreases at least cgN�1.

On a bad interval of level N:
E (t) increases at most 2�N/3.

Note that for every level N, the
number of good interval exceeds
the bad intervals by 1.

Since
P

N
N

�1 diverges, for any g > 0, the potential energy still becomes �1, a
contradiction!



Open questions

What about the full-domain case R2?

(We know it’s impossible to blow-up with a finite potential energy. But is it
possible that the potential energy also goes to �1 as t ! T?)

What about the parabolic-parabolic Keller-Segel equation?

What about Keller-Segel coupled with Stokes, or Navier-Stokes?

What about the long-time behavior?

(We are not able to find a monotone-in-time Lyapunov functional.)



Thank you!


