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Particle systems

Consider the evolution of a vector Xt of N particles/agents indexed by ω = 1, 2, · · · ,N:

Xt = (X1
t,X

2
t, · · · ,XNt ) (Xt(1),Xt(2), · · ·Xt(N)) =

(
Xt(ω)

)
ω=1,2,··· ,N

X solves a system of ODEs

d

dt
Xt(ω) = F(Xt(ω),Xt,Ut(ω)) t ∈ (0, T), Xt=0(ω) = X0(ω), ω ∈ ΩN = {1, 2, · · · ,N},

driven by the vector field

F = F(x, x,u) : Rd × (Rd)N × U→ Rd

depending on

• the position x = Xt(ω) of each particle,
• the vector x = Xt of the distribution of the particles
• the control variable u = Ut(ω) for each particle, varying in the set of controls U.
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Examples

First order drift-interaction systems: F(x, x,u) = f(x,u) +
1

N

N∑
ω=1

g(x− x(ω))

Linear controls: f(x,u) := f(x) + Lu.

Second order systems: x (x, v) ∈ R2d, x (x, v) ∈ (R2d)N

F(x, v, x, v,u) =
(
v, f(x) + 1

N

∑N
ω=1 g(x− x(ω)) + u

)
corresponding to the system for the

particles (Xt(ω),Vt(ω)) in the phase space
d

dt
Xt(ω) = Vt(ω),

d

dt
Vt(ω) = f(Xt(ω)) +

1

N

N∑
θ=1

g(Xt(ω) − Xt(θ)) +Ut(ω)
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Cost

We introduce the running and final cost functions

C = C(x, x,u) : Rd × (Rd)N × U→ R, CT = CT (x, x) : Rd × (Rd)N → R

and we want to minimize the total cost

J(X,U) :=
1

N

N∑
ω=1

∫T
0

C(Xt(ω),Xt,Ut(ω)) dt+
1

N

N∑
ω=1

C(XT (ω),XT ).

among all the admissible pairs (X,U) ∈ AN(X0) solving

d

dt
Xt(ω) = F(Xt(ω),Xt,Ut(ω)), t ∈ (0, T), Xt=0(ω) = X0(ω).

Value function: VN(X0) := inf
{
J(X,U) : (X,U) ∈ AN(X0)

}
Example: U := Rd, C(x, x,u) := V(x) +

1

N

N∑
ω=1

W(x− x(ω)) +ψ(u)
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Invariance and measure interpretation

Every permutation σ ∈ Sym(N) of the set of indices ΩN = {1, 2, · · · ,N} acts on a vector
x ∈ (Rd)N just by

a permutation of its components: σ]x = (x(σ(1)), x(σ(2)), · · · , x(σ(N))

Invariance: F(x,σ]x,u) = F(x, x,u), C(x,σ]x,u) = C(x, x,u), CT (x,σ]x) = CT (x, x).

We may interpret a particle system as a dynamical system in the quotient space (Rd)N/ ∼,

x ∼ y ⇔ y = σ]x for some σ ∈ Sym(N)

Equivalently, we may associate to x the discrete measure

µ[x] :=
1

N

N∑
ω=1

δx(ω) = x]PN PN =
1

N

N∑
ω=1

δω uniform discrete measure in ΩN := {1, · · · ,N}.

F(x, x,u) F(x,µ[x],u), C(x, x,u) C(x,µ[x],u), CT (x, x,u) CT (x,µ[x])
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From discrete to continuous

We suppose that we can extend by continuity the functions F, C, CT to Pp(Rd):

F(x, x,u) = f(x,u) +
1

N

N∑
ω=1

g(x− x(ω)) = f(x,u) +

∫
g(x− y) dµ[x](y)

�

F(x,µ,u) = f(x,u) +

∫
g(x− y) dµ(y)

C(x, x,u) =
1

N

N∑
ω=1

W(x− x(ω)) +ψ(u) =

∫
W(x− y) dµ[x](y) +ψ(u)

�

C(x,µ,u) =

∫
W(x− y) dµ(y) +ψ(u)

µn → µ ⇒ F(x,µn,u)→ F(x,µ,u), C(x,µn,u)→ C(x,µ,u).
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Main problems

• Well posedness of the finite particle control problem.

• How to characterize and solve the limit problem: mean field optimal control and its
Lagrangian, Eulerian, and Kantorovich formulations.

• Can we pass to the limit in the value function as N→∞
• Can we pass to the limit in the minimizers as N→∞
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Setting (1)

S := (U, F,C,CT ).

U is a subset of some Banach space. Natural metric w.r.t. (x,µ) in Rd ×Pp(Rd):

D
(
(x1,µ1), (x2,µ2)

)
:=

(
|x1 − x2|

p +Wp
p(µ1,µ2)

)1/p

, p ∈ [1,+∞) fixed.

• Continuity: F,C,CT are continuous in Rd ×Pp(Rd)× U with p-growth.

• (Uniqueness) For every u ∈ U the map (x,µ) 7→ F(x,µ,u), are D-Lipschitz with uniform
Lipschitz constant (it would be possible to relax this condition assuming dissipativity)

• Coercivity: U is compact (or, in the additive case, C(x,µ,u) = C̃(x,µ) +ψ(u), ψ
superlinear with compact sublevels).
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Setting (2): convexity and convex relaxation

Convexity: U is convex, F is affine w.r.t. u, C is convex w.r.t. u.

Convex relaxation: S := (U, F,C,CT )  SR := (U ,F ,C ,CT ):

U := P(U), F (x,µ,σ) :=

∫
U
F(x,µ,u) dσ(u), C (x,µ,σ) :=

∫
U
C(x,µ,u) dσ(u), CT := CT .

SR := (P(U),F ,C ,CT ) is a convex system extending S:

{δu : u ∈ U} ⊂ U ,

F (x,µ, δu) := F(x,µ,u), C (x,µ, δu) := C(x,µ,u).
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Optimal control for finite particles: convex setting

Recall:

J(X,U) :=
1

N

N∑
ω=1

∫T
0

C(Xt(ω),Xt,Ut(ω)) dt+
1

N

N∑
ω=1

C(XT (ω),XT ).

among all the admissible pairs (X,U) ∈ AN(X0) solving

d

dt
Xt(ω) = F(Xt(ω),Xt,Ut(ω)), t ∈ (0, T), Xt=0(ω) = X0(ω).

Value function:
VN(X0) := inf

{
J(X,U) : (X,U) ∈ AN(X0)

}
Theorem

In the convex setting the infimum is attained: there exists an optimal controlU and a
corresponding optimal trajectory X such that

(X,U) ∈ AN(X0), J(X,U) = VN(X0)
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Chattering and convex relaxation

In the relaxed system SR = (U ,F ,C ,CT ) the controls σt(ω) = σt,ω are probability measures
in U = P(U)

JR(X,σ) :=
1

N

N∑
ω=1

∫T
0

∫
U
C(Xt(ω),Xt,u) dσt,ω(u) dt+

1

N

N∑
ω=1

C(XT (ω),XT ).

The admissible pairs (X,σ) ∈ ANR (X0) solve

d

dt
Xt(ω) =

∫
U
F(Xt(ω),Xt,u) dσt,ω(u) , t ∈ (0, T), Xt=0(ω) = X0(ω).

Value function:
VR(X0) := inf

{
JR(X,σ) : (X,σ) ∈ ANR (X0)

}
Theorem

The minimum of the relaxed problem coincides with the Lagrangian value function:

VN(X0) = VNR (X0) = min
{
JR(X,σ) : (X,σ) ∈ ANR (X0)

}
13
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Mean field control: Lagrangian formulation

Particles are parametrized by an infinite probability parameter space (Ω,B,P) :

{1, 2, · · · ,N} Ω,
1

N

∑
ω

δω  P

(Ω,B) is a standard Borel space (i.e. B is the Borel σ-algebra induced by a Polish topology on
Ω) and P is diffuse (every point has 0 mass). Canonical example: Ω = [0, 1], P = L1
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Recevering the N-particle system

N-particle system:

BN ⊂ B is a finite algebra generated by a finite partition BN = (B1, · · · ,BN) of Ω with
P(Bi) = 1/N.

Xt andUt are BN-measurable, i.e. constant on each set Bi of the partition.

Xt(ω), Ut(ω) as ω ∈ Bi, represents the i-th particle driven by its control.

15



Convex relaxation of Lagrangian problem has the same value function

Starting from S = (U, F,C,CT ) construct SR = (U ,F ,C ,CT ) and the corresponding ARL(X0),
JRL(X,σ) associated to the measure-valued controls σ : (0, T)×Ω→P(U).

SR = (U ,F ,C ,CT ) is a convex mean field optimal control problem.

Theorem (CLOS)

For every X0 ∈ Lp(Ω;Rd)
VL(X0) = VRL(X0)

Remark

There are cases when the infimum is not attained, even if the problem is convex!!
Lack of compactness w.r.t. ω ∈ Ω of trajectories and controls.
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Analogy with Optimal Transport

A very simple setting: X0 ∈ L2(Ω;Rd) with law µ0 = (X0)]P and µ1 in P2(Rd) are given.

T = 1, U = Rd, F(x,µ,u) = u, C(x,µ,u) := |u|2, CT (x,µ) :=

{
0 if µ = µ1,

+∞ otherwise.

ODE System: Ẋt(ω) = Ut(ω), the trajectories minimizing
∫1
0

|Ut(ω)|2 dt =

∫1
0

|Ẋt(ω)|2 dt,

are segments joining X0(ω) to X1(ω).

VL(X0) = inf
{ ∫

|X1(ω) − X0(ω)|2 dP(ω) : (X1)]P = µ1

}
=W2

2(µ0,µ1)

If µ0 is diffuse but concentrated on a set of codimension > 1 in Rd there are examples where
the infimum is not attained. Take Ω := Rd, P = µ0, X0(ω) = ω

VL(X0) = inf
{ ∫

|X(ω) −ω|2 dµ0(ω) : (X)]µ0 = µ1

}
 Monge formulation

More regular CT : Ct(x,µ) :=W2
2(µ,µ1), Monge formulation of the barycenter problem.
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ODE System: Ẋt(ω) = Ut(ω), the trajectories minimizing
∫1
0

|Ut(ω)|2 dt =

∫1
0
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From Monge to Kantorovich and Eulerian formulation of OT

Eulerian (a.k.a. Benamou-Brenier) formulation: look to the evolution of µt = (Xt)]P driven by
a control field u : (0, T)× Rd → Rd. AE(µ0) is the set of pairs (µ,u) solving the continuity
equation

∂tµt +∇ · (utµt) = 0 in (0, T)× Rd

minimizing the cost

JE(µ,u) :=

∫T
0

∫
|ut|

2 dµt dt

Kantorovich formulation: look to the couplings G = (X0,X1)]P of µ0,µ1 in P2(Rd × Rd) and
minimize the cost

JK(G) :=

∫
|x1 − x0|

2 dG(x0, x1)

VE(µ0) = min
AE(µ0)

JE = VK(µ0) = min
AK(µ0)

JK = VL(X0)

18
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Variational Γ convergence

Suppose that XN0 → X∞0 in Lp(Ω;Rd), XN0 are initial parametrizations of a N-particle system.
(XN,UN) ∈ AL(X

N
0 ) are minimizers, BN-measurable. In order to pass to the limit in VL we

need

• Compactness for trajectories-controls w.r.t. some notion of convergence: there exists a
subsequence (XN(k),UN(k)) converging to some limit (X∞,U∞) ∈ AL(X

∞
0 ).

• Γ -lim inf inequality: along every sequence (Xk,Uk) converging to (X∞,U∞)
lim infk→∞ JL(X

N(k),UN(k)) > JL(X
∞,U∞)

• Γ -lim sup estimate: if (X∞,U∞) ∈ AL(X
∞
0 ) then there exists (XN,UN) ∈ AL(X

N
0 ) such

that lim supN→∞ JL(X
N,UN) 6 JL(X

∞,U∞).
LAGRANGIANN

LAGRANGIAN∞
Γ?
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Gain compactness and lower semicontinuity by the Eulerian viewpoint

Look to the evolution of the law of Xt.

µ0 = (X0)]P, µt = (Xt)]P in Pp(Rd)

The control is a Borel map u : (0, T)× Rd → U.

When (Xt,Ut) are piecewise constant on the partition BN the measure µt is discrete:
µt =

1
N

∑N
i=1 δXt(Bi)

LAGRANGIANN EULERIANN

EULERIAN∞

>

Compactness

Γ - lim inf >

>
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Mean field control: Eulerian formulation

Look to the evolution of the law of Xt.

µ0 = (X0)]P, µt = (Xt)]P in Pp(Rd)

The control is u : (0, T)× Rd → U.

µ is a curve in ACp(0, T ;Pp(Rd)) solving the continuity equation

∂tµt +∇ · (vtµt) = 0 in (0, T)× Rd, vt(x) = F(x,µt,ut(x)) µt=0 = µ0.

(µ,u) AE(µ0).

JE(µ,u) :=

∫T
0

∫
Rd

C(x,µt,ut(x)) dµt(x) dt+

∫
Rd

CT (x,µT ) dµT (x)

VE(µ0) := inf
{
JE(µ,u) : (µ,u) ∈ AE(µ0)

}
.
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Compactness in the Eulerian problem

• Given a sequence (µk,uk) ∈ AE(µ
k
0 ) such that µk0 → µ0, we pass to the relaxed

formulation via the Young measure σk := (id× uk)]µk. Continuity equation:∫∫∫ (
∂tζ(t, x) +∇ζ(t, x) · F(x,µt,u)

)
dσk(t, x,u) = 0 for every ζ ∈ C1

c((0, T)× Rd).

JE(µ
k,uk) =

∫∫∫
C(x,µt,u)dσ

k(t, x,u) +

∫
CT (x,µt) dµT (x).

• Young measure solutions (including controls) are tight:
the marginal w.r.t. to t is the Lebesgue measure on (0, T),
the marginal w.r.t. u is supported in the compact set U,
the marginal w.r.t. x are controlled by momentum estimates.
Uniform equicontinuity in time for µkt in Pp(Rd).

• From a limit measure σ∞ w.r.t. the topology of P((0, T)× Rd × U) we recover
µ∞ as the marginal of σ w.r.t. (t, x)
u∞ as the barycenter w.r.t. u, i.e. by disintegrating σ∞ =

∫
σt,x dµ

∞ and

u∞(t, x) :=
∫
U
u dσt,x(u)

22
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Closure and lower semicontinuity

The limit continuity equation:∫∫∫ (
∂tζ(t, x) +∇ζ(t, x) · F(x,µt,u)

)
dσ∞(t, x,u) = 0 for every ζ ∈ C1

c((0, T)× Rd).

yields
∂tµ

∞ +∇ · (u∞ µ∞) = 0, (µ∞,u∞) ∈ AE(µ0)

. Convexity and Jensen inequality yield

lim inf
k→∞ JE(µ

k,uk) > JE(µ,u)
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Well posedness of the Eulerian problem

Theorem

In the convex setting there exists a minimizer of the Eulerian MFOC

VE(µ0) = min
{
JE(µ,u) : (µ,u) ∈ AE(µ0)

}
and

lim inf
N→∞ VE(µN0 ) > VE(µ0).

Moreover, if XN0 → X0 strongly in Lp(Ω;Rd) then µN0 → µ0 in Pp(Rd) and

lim inf
N→∞ VL(XN0 ) > VE(µ0).
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Lagrangian∞ vs Eulerian∞ 1

Theorem

Let X0 ∈ Lp(Ω;Rd) be given with µ0 = (X0)]P and let (X,U) ∈ AL(X0). if
σ := (X,U)](L

1 × P) and µ = X](L
1 × P), the barycenter u of σ w.r.t. its marginal µ satisfies

(µ,u) ∈ AE(µ0), JL(X,U) > JE(µ,u)

In particular
VL(X0) = VE(µ0)

LAGRANGIANN

LAGRANGIAN∞

EULERIANN

EULERIAN∞

>

Γ - lim inf >

>
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Γ -lim sup inequality: the Kantorovich formulation

It is not clear how to prove directly the Γ -lim sup inequality at the Eulerian level. Moreover, it
would be interesting to improve the inqualities between the Lagrangian and the Eulerian
formulations.

As in Optimal Transport, it is useful to introduce a new formulation:

LAGRANGIANN

LAGRANGIAN∞

EULERIANN

EULERIAN∞

KANTOROVICH∞

Γ - lim sup?
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Kantorovich formulation

Path space: Γ := C([0, T ];Rd), curves in Γ are denoted byω.

Xt is the evaluation map at time t : Xt(ω) :=ω(t).

Controls depend on time t and on curvesω: U(t,ω).

Given a probability measure G on Γ, its time marginals µt = (Xt)]G are evolving probability laws.

AK(µ0) is given by pairs (G,U) such that G-almost every curveω solves

d

dt
ω(t) = F(ω(t),µt,Ut(ω)), (X0)]G = µ0

The corresponding cost can be computed as

JK(G,U) =

∫
Γ

∫T
0

C(ω(t),µt,Ut(ω)) dt dG(ω) +

∫
Rd

CT (x,µT ) dµT (x) µt = (Xt)]G

VK(µ0) = inf
{
JK(G,U) : (G,U) ∈ AK(µ0)

}
.
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Kantorovich is a particular Lagrangian

Once G is fixed, the Kantorovich formulation yields a a particular version of a Lagrangian
problem with

Ω := Γ, B =
{

Borel σ-algebra of Γ
}
, P = G

However, in this formulation, we fix the maps Xt (the evaluation maps) and we allow for
modifications of the reference measure P.
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Eulerian vs Kantorovich (1)

Theorem

For every µ0 and (µ,u) ∈ AE(µ0) there exists (G,U) ∈ AK(µ0) such that

µt = (Xt)]G, JK(G,U) = JE(µ,u).

In particular VK(µ0) 6 VE(µ0).

It is a consequence of the superposition theorem: given µ solving

∂tµ+∇ ·
(
vµ) = 0,

∫T
0

∫
|v|p dµt dt < +∞,

there exists a probability measure G on Γ such that

Γ is concentrated on solutions ofω ′(t) = vt(ωt), and (Xt)]G = µt in [0, T ].

Since vt(ω(t)) = F(ω(t),µt,ut(ω(t)) we can define Ut(ω) := ut(ω(t)) and we obtain a
pair (G,U) ∈ AK(µ0) with JK(G,U) = JE(µ,u).
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Eulerian vs Kantorovich (2)

Since every solution (G,U) ∈ AK(µ0) is a Lagrangian solution, we know that VK(µ0) > VE(µ0).

Corollary

VK(µ0) = VE(µ0) and VK is attained.

LAGRANGIANN

LAGRANGIAN∞

EULERIANN

EULERIAN∞

KANTOROVICH∞
=
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Kantorovich vs Lagrangian vs Eulerian

Every Lagrangian pair (X,U) ∈ AL(X0) induces a Kantorovich pair with lower cost. Conversely,
every Kantorovich pair can be approximated by Lagrangian pairs.

Theorem

For every X0 ∈ Lp(Ω;Rd) with µ0 = (X0)]P and every (G,U) ∈ AK(µ0) there exists
(Xn,Un) ∈ AL(X0) such that JL(Xn,Un)→ JK(G,U). In particular
VL(X0) = VK(µ0) = VE(µ0).

LAGRANGIAN∞ EULERIAN∞

KANTOROVICH∞

=

= =
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Finite particle approximations

Theorem

Suppose that XN0 is a family of N particles such that µN0 = (XN0 )]P converges to µ∞0 in Pp(Rd)
and let X∞0 such that (X∞0 )]P = µ0. Then

lim
N→∞VL(X

N
0 ) = lim

N→∞VE(µ
N
0 ) = lim

N→∞VK(µ
N
0 ) = VL(X

∞
0 ) = VE(µ

∞
0 ) = VK(µ

∞
0 )

LAGRANGIANN

LAGRANGIAN∞

EULERIANN

EULERIAN∞

KANTOROVICH∞

Γ - lim sup

=

Compactness

Γ - lim inf >

=

= =
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