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driven by the vector field

F=Fx,x,u): R x (RHYN x U - R¢
depending on

- the position x = X (w) of each particle,
- the vector x = X; of the distribution of the particles
- the control variable uw = Uy (w) for each particle, varying in the set of controls U.



Particle systems

Consider the evolution of a vector X of N particles/agents indexed by w =1,2,---, N:

Xi = (XLX%' T ,XP) ~ (Xe (1), Xe(2), - Xe(N)) = (Xt(w))wzl,z,...,N

X solves a system of ODEs

%Xt( ) =F(X¢(w), X¢, Ug(w)) | te (0,T), Xi—o(w) = Xo(w), we QN ={1,2,--,N}
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First order drift-interaction systems: | F(x,x,u) = f(x,u) + Z glx —x(w))

Linear controls: f(x, u) := f(x) + Lu.

Second order systems: x ~ (x,v) € R?4, x ~ (x,v) € (R?)N

F(x,v,x,v,u) = ( f(x) + ﬁ Zzzl glx —x(w)) + u) corresponding to the system for the
particles (X{(w), Vi(w)) in the phase space
d

axt( w) = Vi(w),

N
SV @) = 106 (@) 5 D X)X, (6)) + Uy (w)
0=1



We introduce the running and final cost functions
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We introduce the running and final cost functions

C=Cx,xu):Rx (RYHYN x U= R, Cr=Cr(x,x):RYx (RHN 5 R

and we want to minimize the total cost

NZJ ), X¢, Uy (w wi

z \

among all the admissible pairs (X, U) € AN(X,) solving

Example:

%Xt( ) =FX¢(w), X¢, Ug(w)), t€(0,T), Xe—olw) =Xo(w).

Value function: VN (X,) = inf {H(X,U) (X, U) € AN(XOJ}

N
U:=R% C(xxu): NZ (x —x(w)) +WP(u)



Invariance and measure interpretation

Every permutation o € Sym(N) of the set of indices QN ={1,2,--- , N} acts on a vector
x € (RHN just by

a permutation of its components: oyx = (x(0(1)),x(0(2)),- - ,x(c(N))
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Invariance and measure interpretation

Every permutation o € Sym(N) of the set of indices QN ={1,2,--- , N} acts on a vector
x € (RHN just by

a permutation of its components: oyx = (x(0(1)),x(0(2)),- - ,x(c(N))

Invariance: ’F(x, ox,u) =F(x,x,u), C(x,o3x,u) = C(x,x,u), Cr(x,opx)=Cr(x,x).

We may interpret a particle system as a dynamical system in the quotient space (R4)N/ ~,

’x~y & y =opx forsome o € Sym(N)

Equivalently, we may associate to x the discrete measure

ulx] = -

Z|

N N
1
> By(w) =xgPN | PN = N Y 8. uniform discrete measure in QN :={1, -+, N}.
w=1 w=1

F(x,x,u) ~ F(x, ulx],u), Clx,x,u) ~ C(x, pux], u), Cr(x,x,u) ~ Cr(x, ulx])



From discrete to continuous

We suppose that we can extend by continuity the functions F, C, Ct to 22, (R%):
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From discrete to continuous

We suppose that we can extend by continuity the functions F, C, Ct to 22, (R%):

N
Flxoxw) = fxw) + = Y glx—x(w)) = flx,w) +Jg(x—y)du[x}(y)
w=1

N
I
Fix ) = 10w + [ glx =) duly
N
Clx,x, ) Z (= x(@))+ 9(uw) = | Wix — ) dulxliy) + p(w)
I

Clx. ) = JW(X—y)du(y) L pw)

U — 1 = F(x, pn,w) = Flx, 1), Clx, pn, u) = C(x, 1, u).
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Main problems

- Well posedness of the finite particle control problem.

- How to characterize and solve the limit problem: mean field optimal control and its
Lagrangian, Eulerian, and Kantorovich formulations.

- Can we pass to the limit in the value function as N — co

« Can we pass to the limit in the minimizers as N — oo
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Setting (1)

S:=(U,F, C,Cr).

U is a subset of some Banach space. Natural metric w.r.t. (x, u) in R9 x Py (RY):

1/p
D((x1, 1), (x2, 12)) == (|X1 —x2/? + W] (1, u2)> . P € [1,+o00) fixed.

- Continuity: F, C, Ct are continuous in R% x 22, (R%) x U with p-growth.

+ (Uniqueness) For every u € U the map (x, ) — F(x, 1, u), are D-Lipschitz with uniform
Lipschitz constant (it would be possible to relax this condition assuming dissipativity)

- Coercivity: U is compact (or, in the additive case, C(x, u, u) = C(x, u) +(u), P
superlinear with compact sublevels).
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Setting (2): convexity and convex relaxation

Convexity: U is convex, Fis affine w.r.t. u, C is convex w.r.t. u.

Convex relaxation: S:= (U, F,C,Ct) ~ Sg:= (%, F,€,%7):
w = 2U), F(x,uo0):= J[U F(x, w,u)do(u), €(x,u,0):= JU C(x,u,w)do(u), %r:=Cr.

Sk = (£(U), #,€,€r) is a convex system extending S:
{du:uelUcu,

F(x, 1w, 00) :=F(x,u,u), F(x,udy) :=Cx, uu).



Optimal control for finite particles: convex setting

Recall:
N

1 N
ZJ ), X, Ug(w NZ (X7(w), X1).

w:l
among all the admissible pairs (X, U) € AN (X,) solving

d
dt

Value function:

Xe(w) =F(Xe(w), Xe, Ug(w)),  t€(0,T), Ximo(w) = Xo(w).

YN(X,) = inf{g(x,m (X, U) e AN(XOJ}

Theorem

In the convex setting the infimum is attained: there exists an optimal control U and a
corresponding optimal trajectory X such that

(X, W) € AN(Xo), (X, U) =VN(Xo)



Chattering and convex relaxation

In the relaxed system Sg = (%, %, €, ¢r) the controls o+ (w) = o+, are probability measures

in% = 2(U)

Jr(X,0) =

1N
N2

1

[

J C(Xe (@), Xe, ) dot o (u)
U

N
1
dt + = wZ:1C(XT(w),XT).



Chattering and convex relaxation

In the relaxed system Sg =
in7z =2(U)

The admissible pairs (X, )

—X¢(w) =

(%, %,%¢,%T) the controls o (w

) = 0%, are probability measures

N
JUC( w), X, u) dog o (1) dt+TinZ_1CXTw

€ .AR (Xo) solve
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Chattering and convex relaxation

In the relaxed system Sg = (%, %, €, ¢r) the controls o+ (w) = o+, are probability measures
inz =2(0)

N ;N
C(X¢(w), X, u)dog, o (u) |[dt + — C(Xt(w), XT1).
S Pl N X Cotenxs

The admissible pairs (X, o) € .AR (Xo) solve

%xt(w):j )Xo W dowew) |, te (0,T), Xeolw) = Xo(w).

Value function:
Vi (Xo) := inf {3R(x, o): (X, 0) e .ARN(XO)}

Theorem
The minimum of the relaxed problem coincides with the Lagrangian value function:

VN (Xo) = VR (Xo) = min {dr(X, 0) : (X, 0) € AR (Xo) }



Mean field control: Lagrangian formulation

Particles are parametrized by an infinite ’ probability parameter space (Q, 8B, P) ‘:
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Q) and PP is diffuse (every point has 0 mass). Canonical example: Q = [0,1], P = £!
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Mean field control: Lagrangian formulation

Particles are parametrized by an infinite ’ probability parameter space (Q, 8B, P) ‘:

1
{1,2,--- N}~ Q, N%swwp

(Q),*B) is a standard Borel space (i.e. ‘5 is the Borel o-algebra induced by a Polish topology on
Q) and PP is diffuse (every point has 0 mass). Canonical example: Q = [0,1], P = £!

Trajectories: X € LP(Q; WP (0, T; R%)), X; € LP(Q; RY), ue = (X¢ )P is the law of X.

CXul@) = Xy (@), e, Uel@)) | o= (X, Xeco=Xo in LP(Q;RY)

U:(0,T)xQ — UisaL! x P-measurable map, (X, U) € Ay (Xp).

;
JO C(X(w), e, Ug(w)) dt dB(w) +L Cr (Xt (@), pr) dP(w)

AN :=J

Q

Vi (Xo) = inf {g(x, w: (X, U) e AL(XO)}.



Recevering the N-particle system

N-particle system:

BN C B is a finite algebra generated by a finite partition BN = (B!, ... BN) of Q with
P(B') = 1/N.

X, and U, are BN-measurable, i.e. constant on each set B! of the partition.

X¢(w), Uy (w) as w € B, represents the i-th particle driven by its control.



Convex relaxation of Lagrangian problem has the same value function

Starting from S = (U, F, C, Cy) construct Sg = (%, .%, ¢, ¢r) and the corresponding Arr (Xo),
Jre (X, o) associated to the measure-valued controls o : (0, T) x Q — Z2(U).

Sk = (% ,.%,€,67) is a convex mean field optimal control problem.

Theorem (CLOS)
For every Xo € LP?(Q;RY)

| VL(Xo) = Vit (Xo) |




Convex relaxation of Lagrangian problem has the same value function

Starting from S = (U, F, C, Ct) construct Sg = (%, %, ¢, ¢7) and the corresponding Agr (Xo),
Jre (X, o) associated to the measure-valued controls o : (0, T) x Q — Z2(U).

Sk = (% ,.%,€,67) is a convex mean field optimal control problem.

Theorem (CLOS)
For every Xo € LP(Q;RY)

| VL (Xo) = Ve (Xo) |

There are cases when the infimum is not attained, even if the problem is convex!!
Lack of compactness w.r.t. w € Q of trajectories and controls.




Analogy with Optimal Transport

A very simple setting: Xo € L2(Q; RY) with law po = (Xo);P and py in 2,(R?) are given.

0 ifp=m,

T=1 U=RY Fxpu)=u Cxpwpu):=[uP Crix,u = .
400 otherwise.
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Analogy with Optimal Transport

A very simple setting: Xo € L2(Q; RY) with law po = (Xo);P and py in 2,(R?) are given.

0 ifp=m,

T=1 U=RY Fxpu)=u Cxpwpu):=[uP Crix,u = .
400 otherwise.

1

1
ODE System: X;(w) = Uy (w), the trajectories minimizing J U (w)?dt = J X (w)?dt,
0 0

are segments joining Xo(w) to X1 (w).
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If wo is diffuse but concentrated on a set of codimension > 1 in R9 there are examples where
the infimum is not attained. Take Q := R, P = g, Xo(w) = w

Vi (Xg) =|inf {JIX(w) — w2 dpg(w) : (X)gpo = Hl} ~~ Monge formulation




Analogy with Optimal Transport

A very simple setting: Xo € L2(Q; RY) with law po = (Xo);P and py in 2,(R?) are given.

0 if uw=pq,
T=1 U=RY Fxpu)=u Cxpwpu):=[uP Crix,u = " El
400 otherwise.

1 1
ODE System: X;(w) = Uy (w), the trajectories minimizing J U (w)?dt = J X (w)?dt,
0 0

are segments joining Xo(w) to X1 (w).

VL(Xo) = inf { | DXal) = Xo(w)? dP(w) s (X0 ) = s} = Wl )

If wo is diffuse but concentrated on a set of codimension > 1 in R9 there are examples where
the infimum is not attained. Take Q := R, P = g, Xo(w) = w

Vi (Xg) =|inf {JIX(w) — w2 dpg(w) : (X)gpo = Hl} ~~ Monge formulation

More regular Ct: C¢(x, u) := W3(u, wy), Monge formulation of the barycenter problem.



From Monge to Kantorovich and Eulerian formulation of OT

Eulerian (a.k.a. Benamou-Brenier) formulation: look to the evolution of py = (X¢)yP driven by
a control field uw: (0, T) x RY — R, Ag(up) is the set of pairs (i1, 1) solving the continuity
equation

dup + V- (e =0| in (0,T) x RY

minimizing the cost

.
Je (i) ::J j\utﬁdutdt
0




From Monge to Kantorovich and Eulerian formulation of OT

Eulerian (a.k.a. Benamou-Brenier) formulation: look to the evolution of py = (X¢)yP driven by
a control field uw: (0, T) x RY — R, Ag(up) is the set of pairs (i1, 1) solving the continuity
equation

dup + V- (e =0| in (0,T) x RY

minimizing the cost

.
Je (i) ::J j\utﬁdutdt

0

Kantorovich formulation: look to the couplings G = (Xo, X1)4P of o, py in Z(R¢ x R4) and
minimize the cost

Ik (G) = J Ix1 — xoP dG(xo, 1)

Ve(no) = min Jg =Vk(po) = Amm Jx =Vi(Xo)

Ak (o) K (Ho)




Variational I convergence

Suppose that xg)“ — X3 in LP(Q; RY), XON are initial parametrizations of a N-particle system.
(XN, UN) € AL (X}') are minimizers, BN -measurable. In order to pass to the limit in Vi we
need

- Compactness for trajectories-controls w.r.t. some notion of convergence: there exists a
subsequence (X&), UN)) converging to some limit (X, U*®) € Ag (Xg).
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Variational I convergence

Suppose that xg)“ — X3 in LP(Q; RY), XON are initial parametrizations of a N-particle system.
(XN, UN) € AL (X}') are minimizers, BN -measurable. In order to pass to the limit in Vi we
need

- Compactness for trajectories-controls w.r.t. some notion of convergence: there exists a
subsequence (X&), UN)) converging to some limit (X, U*®) € Ag (Xg).

- T-liminf inequality: along every sequence (X*, U*) converging to (X*°, U>)
liminfico Jr (XN, UNI) > gg (X, U)

- T-lim sup estimate: if (X*°, U®) € AL (XS) then there exists (XN, UN) € A (X)) such
that lim supy o dr (XN, UN) < g (X, U™).

| LAGRANGIANN |

I?
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LAGRANGIAN®




Gain compactness and lower semicontinuity by the Eulerian viewpoint

Look to the evolution of the law of Xj.
Ho = (Xo)sP, e = (X )P in 2, (RY)

The control is a Borelmap u: (0, T) x RY — U.

When (Xt, U, ) are piecewise constant on the partition BN the measure 1, is discrete:
= & L Ox, (B
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Gain compactness and lower semicontinuity by the Eulerian viewpoint

Look to the evolution of the law of Xj.

Ho = (Xo)sP, ue =

The control is a Borelmap u: (0, T) x RY — U.

(Xt)ﬁ]P in ‘@P

(RY)

When (Xt, U, ) are piecewise constant on the partition BN the measure 1, is discrete:

=&Y 5y
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Mean field control: Eulerian formulation

Look to the evolution of the law of X.
Ho = (Xo):P, e = (X)4P in Z,(RY)

The controlisu: (0, T) x R4 — U.

wis acurve in ACP (0, T; 2, (R?)) solving the continuity equation

Otpe + V- (vie) =0 in (0, T) x RY, ve(x) = F(x, pe, ue(x))

(,u) ~ Ag (o).

Ht=0 = Ho-
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Mean field control: Eulerian formulation

Look to the evolution of the law of X.

Ho = (Xo):P, e = (X)4P in Z,(RY)

The controlisu: (0, T) x R4 — U.

wis acurve in ACP (0, T; 2, (R?)) solving the continuity equation

atut“‘V'(Vtut):O in (O,T) XRd,

vi(x) = F(x, we, ue(x))

(,u) ~ Ag (o).

Ht=0 = Ho-

0

.
Je () :=j L@ Clx, e e (x)) de () dt + L@ Cor (x, pr) dysr ()

Ve (o) = inf {Je (1w : (1) € Ae(uo) |-

21



Compactness in the Eulerian problem

- Given a sequence (p*, u®) € Ag(uf) such that u§ — o, we pass to the relaxed
formulation via the Young measure ¢* := (id x u*);pu*. Continuity equation:

m (atc(t, x) + V(t,x) - F(x, ut,u)) do®(t,x,u) = 0 forevery { € CL((0,T) x RY).

Je (5, uF) = J”C(x, e W™ [, x, ) + j Cr(x, o) der(x).
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Compactness in the Eulerian problem

- Given a sequence (p*, u®) € Ag(uf) such that u§ — o, we pass to the relaxed
formulation via the Young measure ¢* := (id x u*);pu*. Continuity equation:

m (atc(t, x) + V(t,x) - F(x, ut,u)) do®(t,x,u) = 0 forevery { € CL((0,T) x RY).

Je (5, uF) = J”C(x, e W™ [, x, ) + j Cr(x, o) der(x).

- Young measure solutions (including controls) are tight:
the marginal w.r.t. to t is the Lebesgue measure on (0, T),
the marginal w.r.t. u is supported in the compact set U,
the marginal w.r.t. x are controlled by momentum estimates.
Uniform equicontinuity in time for u¥ in 22, (R4).
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Compactness in the Eulerian problem

- Given a sequence (p*, u®) € Ag(uf) such that u§ — o, we pass to the relaxed
formulation via the Young measure ¢* := (id x u*);pu*. Continuity equation:

m (atc(t, X) + VIt x) - Flx, ut,u)) do®(t,x,u) = 0 forevery { € CL((0,T) x RY).

Je (5, uF) = J”C(x, e W™ [, x, ) + j Cr(x, o) der(x).

- Young measure solutions (including controls) are tight:
the marginal w.r.t. to t is the Lebesgue measure on (0, T),
the marginal w.r.t. u is supported in the compact set U,
the marginal w.r.t. x are controlled by momentum estimates.
Uniform equicontinuity in time for pf in 2, (R¢).
- From a limit measure o™ w.r.t. the topology of Z2((0, T) x R4 x U) we recover
> as the marginal of o w.r.t. (t, x)
u as the barycenter w.r.t. u, i.e. by disintegrating o> = fct,X du* and

u®(t,x) = JU udoy x(u)
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Closure and lower semicontinuity

The limit continuity equation:
”J (atc(t, X) + Vit x) - Flx, ut,u)) do®(t,x,u) =0 forevery ¢ € CL((0,T) x RY).

yields

0u® + V- (u®p®) =0, (u* u*) e Ae(uo)

Pk



Closure and lower semicontinuity

The limit continuity equation:
”J (atc(t, X) + Vit x) - Flx, ut,u)) do®(t,x,u) =0 forevery ¢ € CL((0,T) x RY).

yields

0u® + V- (u®p®) =0, (u* u*) e Ae(uo)

. Convexity and Jensen inequality yield

lim inf Jg (1, u®) > Je (n, 1)

bk



Well posedness of the Eulerian problem

In the convex setting there exists a minimizer of the Eulerian MFOC

Ve (o) = min {Je (1) : (1) € Ae (o) |

and
lim inf Ve (ud') > Ve (po).

N—o0



Well posedness of the Eulerian problem

Theorem
In the convex setting there exists a minimizer of the Eulerian MFOC

Ve (o) = min {Je (1) : (1) € Ae (o) |

and
lim inf Ve (ud') > Ve (po).

N—o0
Moreover, if X — X strongly in LP (Q; R) then u)' — o in 22, (R) and

liminf Vi (X3') > Ve (ko).
N—o00



Lagrangian®> vs Eulerian 1

Let Xo € LP(Q;R%) be given with po = (Xo)4P and let (X, U) € Ar (Xo). if
o= (X, W) (LY x P) and p = X;(L! x P), the barycenteru of o w.r.t. its marginal w satisfies

(mu) € Ae(mo),  Ju(X, W) = Je(p u)

In particular

VL (Xo) = Ve (1o) ‘

>
| LAGRANGIANN | » EULERIANM
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I'-lim sup inequality: the Kantorovich formulation

It is not clear how to prove directly the I'-lim sup inequality at the Eulerian level. Moreover, it
would be interesting to improve the inqualities between the Lagrangian and the Eulerian

formulations.

As in Optimal Transport, it is useful to introduce a new formulation:

| LAGRANGIANN | EULERIANM

- lim sup?

LAGRANGIAN™ EULERIAN®>

KANTOROVICH®
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Kantorovich formulation

Path space: T" := C([0, T]; R%), curves in T are denoted by w.
X is the evaluation map at time t : X (w) := w(t).
Controls depend on time t and on curves w: U(t, w).

Given a probability measure G on T, its time marginals 1 = (X)3G are evolving probability laws.
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Kantorovich formulation

Path space: T" := C([0, T]; R%), curves in T are denoted by w.

X is the evaluation map at time t : X (w) := w(t).

Controls depend on time t and on curves w: U(t, w).

Given a probability measure G on T, its time marginals 1 = (X)3G are evolving probability laws.

Ax (uo) is given by pairs (G, U) such that G-almost every curve w solves

d

et =Flw(t), pe, U(w)),  (Xo)sG = mo

The corresponding cost can be computed as

-
J C(w(t),ut,ut(w))dtd((}(w)—|—J
0 R

(G, W) =J Crlo ) dur ()| = (X6

r

Vic(ito) = inf {J(G, W) : (G, U) € Ax(ho) }.

27



Kantorovich is a particular Lagrangian

Once G is fixed, the Kantorovich formulation yields a a particular version of a Lagrangian

problem with

Q:=T, B= {Borel o-algebra of F}, P=G

28



Kantorovich is a particular Lagrangian

Once G is fixed, the Kantorovich formulation yields a a particular version of a Lagrangian
problem with

Q:=T, B= {Borel o-algebra of F}, P=G

However, in this formulation, we fix the maps X; (the evaluation maps) and we allow for
modifications of the reference measure P.

28



Eulerian vs Kantorovich (1)

For every 1 and (i1, u) € Ag (o) there exists (G, U) € Ax(uo) such that

e = (Xe)1G, Ik (G, U) = Fe(p, u).

In particular Vx (1) < Ve (uo)-



Eulerian vs Kantorovich (1)

For every 1 and (i1, u) € Ag (o) there exists (G, U) € Ax(uo) such that

e = (Xe)1G, Ik (G, U) = Fe(p, u).

In particular Vx (1) < Ve (uo)-
It is a consequence of the superposition theorem: given p solving
T
o+ V- (vu) =0, J lelp dug dt < 400,
0

there exists a probability measure G on T such that

I"is concentrated on solutions of w'(t) = v¢(w¢), and (X¢);G =pe in [0, T].




Eulerian vs Kantorovich (1)

For every 1 and (i1, u) € Ag (o) there exists (G, U) € Ax(uo) such that

e = (Xe)1G, Ik (G, U) = Fe(p, u).

In particular Vx (1) < Ve (uo)-
It is a consequence of the superposition theorem: given p solving
T
o+ V- (vu) =0, J lelp dug dt < 400,
0

there exists a probability measure G on T such that

I"is concentrated on solutions of w'(t) = v¢(w¢), and (X¢);G =pe in [0, T].

Since v (w(t)) = F(w(t), ue, ug(w(t)) we can define Uy (w) := u(w(t)) and we obtain a
pair (Gr u) S ‘AK(HO) with 3K(Gv u) - HE(H! u)



Eulerian vs Kantorovich (2)

Since every solution (G, U) € Ax (1) is a Lagrangian solution, we know that Vi (o) > Ve (o).

Corollary

V(o) = Ve (uo) and Vi is attained.

|LAGRANGIAN | EULERIANM
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Kantorovich vs Lagrangian vs Eulerian

Every Lagrangian pair (X, W) € Ay (Xo) induces a Kantorovich pair with lower cost. Conversely,
every Kantorovich pair can be approximated by Lagrangian pairs.

Theorem
For every Xo € LP(Q; RY) with g = (Xo)4IP and every (G, U) € Ax(uo) there exists

(X™, U"™) € Ar(Xo) such that Jp (X™, U™) — Jx (G, U). In particular
VL (Xo) = Vk (o) = Ve (uo).

| LAGRANGIAN> |< > EULERIAN™
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Finite particle approximations

Theorem

Suppose that X\ is a family of N particles such that p)' = (X}')4P converges to u$ in Z,(R9)
and let Xg° such that (X3 )4P = po. Then

lim Ve(X)') = lim Ve(pd') = lim V(') = VLX) = Ve (ug) = Vi (1)
N—o0 N—oc0 N—o0
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