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Distribution Shift

Strategic agents interact with an algorithm:

maximizing utility, minimizing loss (depends on learning algorithm).

Agents adjust their attributes

according to their objectives;

random disturbances;

due to interactions and pressures to become more or less similar;

due to exogenous forces.

Consequence: distribution shifts.

Idea: formulate the game theoretic set-up in the language of PDE analysis.

4 / 29



Distribution Shift

Strategic agents interact with an algorithm:

maximizing utility, minimizing loss (depends on learning algorithm).

Agents adjust their attributes

according to their objectives;

random disturbances;

due to interactions and pressures to become more or less similar;

due to exogenous forces.

Consequence: distribution shifts.

Idea: formulate the game theoretic set-up in the language of PDE analysis.

4 / 29



Modeling distribution shifts

Simpler models miss out on important features such as polarization.

Figure: mean shift[1] (left) vs PDE model (right)

[1] John P. Miller, Juan C. Perdomo, and Tijana Zrnic. Outside the Echo Chamber: Optimizing
the Performative Risk. en. In Proceedings of the 38th International Conference on Machine Learning.
PMLR, 2021.
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PDE model for distribution shift

SDE for individual agents

dZ
(i)
t = −∇V (Z

(i)
t , x)dt− 1

N

N∑
j=1

∇W (Z
(i)
t , Z

(j)
t )dt+

√
2αdB

(i)
t

PDE for distribution of agents

∂ρ = ∇ · (ρ∇ (V (z, x) +W ∗ ρ+ α log ρ)) = −∇W2F (ρ, x)

W2 gradient flow for F (ρ, x) :=
∫
V (z, x) dρ(z) + 1

2

∫
ρW ∗ ρ+ α

∫
ρ log ρ,

V (z, x) = −U(z, x)− α log ρ̃(z),

U(z, x) utility maximized by agents,

penalization to deviate from reference measure ρ̃(z).
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Does the model describe real-world data?

Study of Census Data in Colombia from 1995 to 2003[2]

Local officials misreported data in order to obtain lower poverty index scores for their constituents.

Households with a poverty index score below a given threshold receive government aid.

Release of algorithm for the poverty index score and threshold (1997) shifts distribution of scores.

[2] Adriana Camacho and Emily Conover. Manipulation of Social Program Eligibility. American
Economic Journal: Economic Policy, 2011.
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Does the model describe real-world data?

Study of Census Data in Colombia from 1995 to 2003[3]

Classification problem: an algorithm aims to separate poverty index scores into ones which qualify for aid
and ones that do not. The algorithm cannot observe the true labels for each data point.

Each family aims to be classified as qualifying for aid, regardless of their true label.

[3] Adriana Camacho and Emily Conover. Manipulation of Social Program Eligibility. American
Economic Journal: Economic Policy, 2011.
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Does the model describe real-world data?

∂tρ = ∇ ·
(
ρ∇

(
V (z, x) +

1

10
log ρ

))
, p(z, x) = (1 + exp(−2(z − x)))−1 ,

V (z, x) = 1− q(z, x) +

∫
q(z, x)ρ̄(z)− 1

10
log ρ̃+

6z

100
, q(z, x) = 1− p(z, x)

d = 1, ρ0 = ρ̃ = N (54, 10), ρ̄ = ρ(95) − ρ0.

q(z, x) is the probability that the classifier assigns a label of
”qualified” to a family with attributes z and classifier
parameters x.

Families aim to maximize their probability of such a
classification.

The term 6z
100

models a preference for a lower poverty index
score, regardless of the classifier parameters.

Figure: p(z, 48)
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Does the model describe real-world data?
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Interplay between retraining and distribution shift

Retraining of algorithm: x(t) is minimizing loss L(z, x)

ẋ = −∇x [Ez∼ρL(z, x)] =⇒ ∂tµ = ∇ ·
(
µ∇

∫
L(z, x)dρ(t, z)

)

Aligned Objectives:

∂tρ = −∇W2,ρGa(ρ, µ) , ∂tµ = −∇W2,µGa(ρ, µ) ,

Competing Objectives:

∂tρ = +∇W2,ρGc(ρ, µ) , ∂tµ = −∇W2,µGc(ρ, µ) ,

−→ bridge between mathematical biology and game theory!
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Aligned Objectives

Coupled gradient flow for γ = (ρ, µ) with respect to W̄ (γ, γ′)2 = W2(ρ, ρ
′)2 +W2(µ, µ

′)2

∂tγ = −∇W̄Ga(γ)

Energy functional

Ga(ρ, µ) =

∫∫
f1(z, x)dρ(z)dµ(x) +

∫∫
f2(z, x)dρ̄(z)dµ(x)

+
β

2

∫
∥x− x0∥2dµ(x) +

1

2

∫
ρW ∗ ρ+ α

∫
ρ log

(
ρ

ρ̃

)
.

Example: classification of 1D features

ρ(t, z) = true label 0; ρ̄(z) = true label 1 (fixed);

µ(t, x) = δx(t) algorithm threshold below which agents are classified as having label 0;

ρ̃(z) = fixed reference distribution: agents (true label 0) are penalized with strength α to deviate from ρ̃;

x0 = fixed algorithm threshold : the algorithm is penalized with strength β to deviate from x0.

12 / 29



Aligned Objectives

Coupled gradient flow for γ = (ρ, µ) with respect to W̄ (γ, γ′)2 = W2(ρ, ρ
′)2 +W2(µ, µ

′)2

∂tρ = α∆ρ+ div

(
ρ∇z

(∫
f1dµ− α log ρ̃+W ∗ ρ

))
,

∂tµ = div

(
µ∇x

(∫
f1dρ+

∫
f2dρ̄+

β

2
∥x− x0∥2

))
.

Energy functional

Ga(ρ, µ) =

∫∫
f1(z, x)dρ(z)dµ(x) +

∫∫
f2(z, x)dρ̄(z)dµ(x)

+
β

2

∫
∥x− x0∥2dµ(x) +

1

2

∫
ρW ∗ ρ+ α

∫
ρ log

(
ρ

ρ̃

)
.

Example: recommender systems with 1D features

ρ(t, z) = true label 0; ρ̄(z) = true label 1 (fixed);
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Aligned Objectives

Coupled gradient flow for γ = (ρ, µ) with respect to W (γ, γ′)2 = W2(ρ, ρ
′)2 +W2(µ, µ

′)2

∂tγ = −∇WGa(γ)

Energy functional

Ga(ρ, µ) =

∫∫
f1(z, x)dρ(z)dµ(x) +

∫∫
f2(z, x)dρ̄(z)dµ(x)

+
β

2

∫
∥x− x0∥2dµ(x) +

1

2

∫
ρW ∗ ρ+ α

∫
ρ log

(
ρ

ρ̃

)
.

Example: recommender systems with 1D features

f1(z, x) = cost if agents (label 0) have attributes z and algorithm has parameters x;

f2(z, x) = cost if agents (label 1) have attributes z and algorithm has parameters x;

W (z) = interaction potential for agents (label 0).
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Aligned Objectives: Assumptions[4]

Convexity of f1 and f2

The functions f1, f2 ∈ C2(Rd × Rd; [0,∞)) satisfy for all (z, x) ∈ Rd × Rd the following:

There exists constants λ1, λ2 ≥ 0 such that Hess (f1) ⪰ λ1 Id2d and ∇2
xf2 ⪰ λ2 Idd;

There exist constants ai > 0 such that x · ∇xfi(z, x) ≥ −ai for i = 1, 2;

Reference Distribution
There exists λ̃ > 0 s.t. ρ̃ ∈ P(Rd) ∩ L1(Rd) satisfies log ρ̃ ∈ C2(Rd) and ∇2

z log ρ̃(z) ⪯ −λ̃ Idd.

Convex Interaction Kernel
The interaction kernel W ∈ C2(Rd; [0,∞)) is convex, symmetric W (−z) = W (z), and for some D > 0 satisfies

z · ∇zW (z) ≥ −D, |∇zW (z)| ≤ D(1 + |z|) ∀ z ∈ Rd .

[4] José A. Carrillo, Robert J. McCann, and Cédric Villani. Kinetic equilibration rates for gran-
ular media and related equations: entropy dissipation and mass transportation estimates. Revista
Matemática Iberoamericana, 2003.

15 / 29



Aligned Objectives: Results

Consider solutions γt := (ρt, µt) to the dynamics

∂tγ = −∇WGa(γ) (2)

with initial conditions satisfying γ0 ∈ P2(Rd)× P2(Rd) and Ga(γ0) < ∞.

Theorem (Existence of steady states)

There exists a unique minimizer γ∞ = (ρ∞, µ∞) of Ga, which is also a steady state for equation (2). Moreover,
ρ∞ ∈ L1(Rd), has the same support as ρ̃, and its density is continuous.

Theorem (Convergence)

The solution γt converges exponentially fast in Ga(· | γ∞) = Ga(·)−Ga(γ∞) and W ,

Ga(γt | γ∞) ≤ e−2λatGa(γ0 | γ∞) and W (γt, γ∞) ≤ ce−λat for all t ≥ 0 ,

where c > 0 is a constant only depending on γ0, γ∞ and the parameter λa,

λa := λ1 +min(λ2 + β, αλ̃) > 0 .
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Aligned Objectives: Proof Sketch

Ga is lower semi-continuous with respect to the weak-∗ topology.

Ga uniformly displacement convex with constant λa > 0.

Existence of minimizer of Ga: direct method in the calculus of variations.

HWI inequality: For the dissipation functional Da(γ) :=
∫∫

|∇zxδγGa(z, x)|2dγ(z, x),

Ga(γ0)−Ga(γ1) ≤ W (γ0, γ1)
√

Da(γ0)−
λa

2
W (γ0, γ1)

2 .

Generalized Log-Sobolev inequality: for the unique minimizer γ∗ of Ga,

Da(γ) ≥ 2λa Ga(γ|γ∗) .

Talagrand inequality: for the unique minimizer γ∗ of Ga,

W (γ, γ∗)
2 ≤ 2

λa
Ga(γ | γ∗) .

Differentiating Ga along solutions γt:

d

dt
Ga(γt) = −

∫
∥∇zδρGa[γt](z)∥2 dρt(z)−

∫
∥∇xδµGa[γt](x)∥2 dµt(x)

= −Da(γt) ≤ −2λaGa(γt | γ∗) + Gronwall + Talagrand.
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Competing Objectives

Min-Max problem
∂tρ = +∇W2,ρGc(ρ, µ) , ∂tµ = −∇W2,µGc(ρ, µ) .

Energy functional

Gc(ρ, µ) =

∫∫
f1(z, x)dρ(z)dµ(x) +

∫∫
f2(z, x)dρ̄(z)dµ(x)

+
β

2

∫
∥x− x0∥2dµ(x)−

1

2

∫
ρW ∗ ρ− α

∫
ρ log

(
ρ

ρ̃

)
.

Example: classification of 1D features

f1(z, x) = cost if agents (label 0) at z and algorithm at x (now maximized by agents);

f2(z, x) = cost if agents (label 1) at z and algorithm at x;

W (z) = interaction potential for agents (label 0).
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Nash Equilibrium

Definition

A pair of measures γ∗ = (ρ∗, µ∗) ∈ P(Rd)× P(Rd) is a Nash equilibrium for the competitive
objective case if it satisfies

Gc(ρ∗, µ∗) ≥ Gc(ρ, µ∗) ∀ ρ ∈ P(Rd) ,

Gc(ρ∗, µ∗) ≤ Gc(ρ∗, µ) ∀ µ ∈ P(Rd) .
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Competing Objectives: Additional Assumptions

Upper bounds for f1 and f2

There exists a constant Λ1 > 0 such that

∇2
zf1(z, x) ⪯ Λ1Id for all (z, x) ∈ Rd × Rd .

For any R > 0 there exists a constant c2 = c2(R) ∈ R such that

sup
x∈BR(0)

∫
f2(z, x)dρ̄(z) < c2 .

The function f1 satisfies ∥∇2
xzf1(z, x)∥2 ≤ L for all x, z ∈ Rd for some L ≥ 0.

There exists a constant Λ2 > 0 such that ∇2
xf1(z, x) ⪯ Λ2 Idd for all (z, x) ∈ Rd × Rd.
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Competing Objectives: Results (new)

Consider solutions γt := (ρt, µt) to the dynamics

∂tρ = +∇W2,ρGc(ρ, µ) , ∂tµ = −∇W2,µGc(ρ, µ) . (4)

Theorem (Existence of Nash equilibrium)

There exists a unique critical point γ∗ for Gc over P which is also a steady state for equation (4) and a Nash
equilibrium. γ∗ = (ρ∗, µ∗) satisfies ρ∗ ∈ P2 ∩ L1

+(R
d) with ∥ρ∗∥1 = 1, and µ∗ ∈ P2 with ∥µ∗∥1 = 1.

Theorem (Convergence)

Assume λb = αλ̃− Λ1 > 0 and λ2 + 2L < min{β̂, λb} for β̂ := β
2(∥x0∥+1)

. Then

W (γt, γ∗) ≤ ce−λct for all t ≥ 0 ,

where

λc :=
1

2
min{λ1 + λ2 + β, λb} > 0 .

21 / 29



Competing Objectives: Proof Sketch

Define Ĝc(γ, γ̂) := Gc(ρ̂, µ)−Gc(ρ, µ̂).

Gc is uniformly displacement (λ1 + λ2 + β)-convex in µ for any fixed ρ ∈ P.

Gc is uniformly displacement λb-concave in ρ for any fixed µ ∈ P.

Ĝc(γ, γ̂) is uniformly displacement 2λc-convex in γ for any fixed γ̂ ∈ P.

Existence of a unique Nash equilibrium for Gc:
generalization of the Browder-Ky Fan fixed point theorem for the map

B(γ) :=

{
ζ ∈ P̂

∣∣∣∣Ĝc(ζ, γ) = min
π∈P̂

Ĝc(π, γ)

}
.

Any critical point γ∗ of Gc is a steady state and ρ∗ satisfies supp (ρ∗) = supp (ρ̃).

Exponential convergence: explicitly differentiate W (γt, γ
∗)2.
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Competing Objectives: Timescale Separation[5]

Recall the dynamics
∂tρ = +∇W2,ρGc(ρ, µ) , ∂tµ = −∇W2,µGc(ρ, µ) .

Fast algorithm: µ(t, ·) = δx(t) and

∂tρ = + ∇W2,ρGc(ρ, δx)|x=b(ρ) , b(ρ) := argmin
x̄

Gc(ρ, δx̄) .

−→ Define Gb(ρ) := Gc(ρ, b(ρ)) and consider ∂tρ = +∇W2,ρGb(ρ).
−→ Examples: Online advertising, Uber/Lyft, ...

Fast agents: µ(t, ·) = δx(t) and

r(x(t)) := argmax
ρ̂∈P

Gc(ρ̂, δx(t)) ,
d

dt
x(t) = − ∇xGc(ρ, δx(t))

∣∣
ρ=r(x(t))

.

−→ Define Gd(ρ) := Gc(r(x), δx) and consider ẋ(t) = −∇xGd(x(t)).
−→ Examples: Loans, government policies, video game rule updates, ...

[5] Lauren Conger, F H, Eric Mazumdar, and Lillian Ratliff. Strategic distribution shift of in-
teracting agents via coupled gradient flows. In Advances in Neural Information Processing Systems
(NeurIPS). Curran Associates, Inc., 2023.
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Competing Objectives: Results

Theorem (Fast Algorithm)

(a) There exists a unique maximizer ρ∞ of Gb(ρ), which is also a steady state. Moreover, ρ∞ ∈ L1(Rd), has
the same support as ρ̃, and its density is continuous.

(b) The solution ρt converges exponentially fast to ρ∞ with rate λb in Gb(· | ρ∞) and W2,
Gb(ρt | ρ∞) ≤ e−2λbtGa(ρ0 | ρ∞) and W2(ρt, ρ∞) ≤ ce−λbt for all t ≥ 0 ,

where c > 0 is a constant only depending on ρ0, ρ∞ and the parameter λb := αλ̃− Λ1 > 0.

Theorem (Fast Agents)

(a) There exists a unique minimizer x∞ of Gd(x) which is also a steady state.

(b) The vector x(t) solving the dynamics with initial condition x(0) ∈ Rd converges exponentially fast to x∞,
∥x(t)− x∞∥ ≤ e−λdt∥x(0)− x∞∥ ,

Gd(x(t))−Gd(x∞) ≤ e−2λdt (Gd(x(0))−Gd(x∞))

for all t ≥ 0 for parameter λd := λ1 + λ2 + β > 0.
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Comments on proof

Fast algorithm:

The best response b(ρ) is uniformly bounded.

Gb is upper semi-continuous with respect to the weak-∗ topology.

Gb is λb uniformly displacement concave.
Remark: concavity of Gb is unknown, use Danskin’s Theorem (game theory).

Existence of maximizer for Gb: direct method in the calculus of variations.

Any maximizer Gb is a steady state and satisfies supp (ρ∗) = supp (ρ̃).

Convergence follows from functional inequalities as before.

Fast agents:

For each x ∈ Rd there exists a unique maximizer ρ∗ := r(x) solving argmaxρ̂∈P Gc(ρ̂, x). Further,

r(x) ∈ L1(Rd) ∩ P2(Rd), supp (r(x)) = supp (ρ̃).

Consider xn → x̄ in Rd. Define Fn(ρ) := −Gc(ρ, xn) and F̄ (ρ) := −Gc(ρ, x̄). Then Fn
Γ−→ F̄ in the

narrow topology.

The best response r(x) ∈ P2(Rd) is continuous in x ∈ Rd in the narrow topology.

Danskin’s Result: We have ∇xGd(x) = (∇xGc(ρ, x))|ρ=r(x), and Gd is strongly λd convex.
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Modeling Societal Systems

How can we model population dynamics under algorithmic influence?

Real-world questions can we answer:

Does the model describe real-world data?

What dynamical features do we observe?

How fast should the algorithm learn?

Is gradient descent an optimal learning strategy for the algorithm?

When do other state-of-the-art techniques for performative prediction fail?

What if the algorithm only has access to samples from the population?

Learning cost and interactions from data?
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Modeling Societal Systems

How can we model population dynamics under algorithmic influence?

Real-world questions can we answer:

Does the model describe real-world data? Yes

What dynamical features do we observe? e.g. polarization

How fast should the algorithm learn? timescale selection is critical for design

Is gradient descent an optimal learning strategy for the algorithm? Not necessarily!

When do other state-of-the-art techniques for performative prediction fail?
Moment models are not sufficiently detailed.

What if the algorithm only has access to samples from the population?
interesting problem for future research!

Learning cost and interactions from data? kernel methods

−→ ask Lauren Conger! (Tuesday poster session)

Takeaway: PDEs provide a powerful and necessary tool for understanding strategic distribution shift.
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Current Work & Future Directions

Generalizing results for timescale separated case.

Adversarial setting without timescale separation.

N -player game with arbitrary dynamics: competition among multiple algorithms and multiple populations.

Analysis when the algorithm only has access to population samples.

Learning PDE dynamics from data.
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