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Distribution Shift

Strategic agents interact with an algorithm:
m maximizing utility, minimizing loss (depends on learning algorithm).
Agents adjust their attributes

according to their objectives;

]

m random disturbances;

m due to interactions and pressures to become more or less similar;
E

due to exogenous forces.

Consequence: distribution shifts.



Distribution Shift

Strategic agents interact with an algorithm:
m maximizing utility, minimizing loss (depends on learning algorithm).
Agents adjust their attributes

m according to their objectives;
m random disturbances;
m due to interactions and pressures to become more or less similar;

m due to exogenous forces.

Consequence: distribution shifts.

Idea: formulate the game theoretic set-up in the language of PDE analysis.



Modeling distribution shifts

m Simpler models miss out on important features such as polarization.
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Figure: mean shift!! (left) vs PDE model (right)

[1] John P. MILLER, Juan C. PERDOMO, and Tijana ZRNIC. Outside the Echo Chamber: Optimizing
the Performative Risk. en. In Proceedings of the 38th International Conference on Machine Learning.
PMLR, 2021.



PDE model for distribution shift

SDE for individual agents

N
Az = -vv(Z®, z)dt - Z w(z{?, z{)dt + V2adB{"

PDE for distribution of agents

9p=V - (pV (V(2,z) + W x p + alogp)) = —Vw, F(p, z)

m W> gradient flow for F(p,z) := [V (z,2)dp(z) + 1 [ pW *p+a [ plogp,
V(era) = ~U(era) — alog (2),
m U(z,z) utility maximized by agents,

m penalization to deviate from reference measure p(z).



Does the model describe real-world data?

Study of Census Data in Colombia from 1995 to 2003%
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Poverty index score Poverty index score

m Local officials misreported data in order to obtain lower poverty index scores for their constituents.

m Households with a poverty index score below a given threshold receive government aid.

m Release of algorithm for the poverty index score and threshold (1997) shifts distribution of scores.

[2] Adriana CAMACHO and Emily CONOVER. Manipulation of Social Program Eligibility. American
Economic Journal: Economic Policy, 2011.



Does the model describe real-world data?

Study of Census Data in Colombia from 1995 to 2003
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Poverty index score Poverty index score

m Classification problem: an algorithm aims to separate poverty index scores into ones which qualify for aid
and ones that do not. The algorithm cannot observe the true labels for each data point.

m Each family aims to be classified as qualifying for aid, regardless of their true label.

[3] Adriana CaMACHO and Emily CONOVER. Manipulation of Social Program Eligibility. American
Economic Journal: Economic Policy, 2011.



Does the model describe real-world data?

o= (¥ (V(z,m) T 1ogp)) L pea) = (1 +exp(—2(z—2) ",

6

Vizo) = 1= q(z0) + [ alsaple) - (loss+ qpe alsa) =1 ple)

1.0/

md=1, po=p=N(54,10), 5= p° — po.

m ¢(z,x) is the probability that the classifier assigns a label of
"qualified” to a family with attributes z and classifier I
parameters x. 04

0.8}

m Families aim to maximize their probability of such a
classification.

02

m The term % models a preference for a lower poverty index

score, regardless of the classifier parameters.

60 80 100

Figure: p(z,48)



Does the model describe real-world data?

0.05 Model Evolution
= 1995 truth
= 1998 truth
0.04 [ 1995 simulated
[ 1998 simulated
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60 80
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Interplay between retraining and distribution shift

Retraining of algorithm: z(t) is minimizing loss L(z, x)

b= Vo [EyL(z2)] — Ou=V-. (w / L(z, 2)dp(t, z))

m Aligned Objectives:

Ohp = —VwaoGalp,p), O ==V, ,Galp, 1),

m Competing Objectives:
Oip = +Vyy ,Gelp, 1) Ot = =V, 1 Ge(p, 1)

— bridge between mathematical biology and game theory!
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Aligned Objectives

Coupled gradient flow for v = (p, i) with respect to W (v,v')? = Wa(p, p')* + Wa(, p')?
Oy = =V Ga(v)

Energy functional

Golpon) = [[ Az 0)dp@na) + [[ fe.2)dp()duto)

1
+ 8 [le—smolPaut)+ 3 [ oW p+a [ piog (g) .

Example: classification of 1D features

m p(t,z) = true label 0; p(z) = true label 1 (fixed);
B u(t, x) = O,y algorithm threshold below which agents are classified as having label 0;

m p(z) = fixed reference distribution: agents (true label 0) are penalized with strength « to deviate from p;

m xo = fixed algorithm threshold : the algorithm is penalized with strength 8 to deviate from xo.

12 /29



Aligned Objectives

Coupled gradient flow for v = (p, i) with respect to W (v,v')% = Wa(p, p')* + Wa(u, p')?

Orp = alAp + div (sz (/fld,u—alogﬁ—l-W*p)) ,

Oy = div (;Nm (/f1dp+/f2dﬁ+ g\lx—onQ)) :

Gulpop) = / f1(z 2)dp(z)dpu(z) + / fo(z 2)dp(z)dpu(z)

1
—|—§/Hx—xo||2du(x)+E/pW*p—i-a/plog (%) .

Example: recommender systems with 1D features

Energy functional

p(t, z) = true label 0; p(z) = true label 1 (fixed);
n(t

, &) = dy(1) algorithm threshold below which agents are classified as having label 0;
p(z) = fixed reference distribution: agents (true label 0) are penalized with strength « to deviate from p;

xo = fixed algorithm threshold : the algorithm is penalized with strength 3 to deviate from x.
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Aligned Objectives

Coupled gradient flow for v = (p, i) with respect to W (v,v')? = Wa(p, p')* + Wa(, p')?
Oy = —VwGa(y)

Energy functional

Golpon) = [ [ Az 0)dp@nta) + [[ 22,2100 duto)

1
+ 2 [le—smolPaut) + 3 [ oW+ p+a [ piog (g) |

Example: recommender systems with 1D features

m fi(z,x) = cost if agents (label 0) have attributes z and algorithm has parameters z;

)
m fo(z,x) = cost if agents (label 1) have attributes z and algorithm has parameters x;

m W(z) = interaction potential for agents (label 0).

14 /29



Aligned Objectives: Assumptions!*]

[0, 00)) satisfy for all (z,z) € R* x R? the following:

The functions f1, fo € C*(R? x R%; ,
m There exists constants A1, A2 > 0 such that Hess (f1) =
>

m There exist constants a; > 0 such that = - V, f;(z, z)

Reference Distribution

There exists A > 0 s.t. 5 € P(RY) N L' (R?) satisfies log 5 € C*(R?) and V2 log p(z) < —AIdg.

Convex Interaction Kernel

The interaction kernel W € C%(R%; [0, 00)) is convex, symmetric W (—z) = W (z), and for some D > 0 satisfies

VzeR?.

A1 Idag and V2 fo = Ao 1dy;

—a; fori=1,2;

z2-V.W(z) >—-D, |V.W(z)|<D(+|z|)

[4] José A. CARRILLO, Robert J. McCANN, and Cédric VILLANI. Kinetic equilibration rates for gran-
ular media and related equations: entropy dissipation and mass transportation estimates. Revista

Matematica Iberoamericana, 2003.
15 /2
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Aligned Objectives: Results

Consider solutions ¢ := (p¢, p1¢) to the dynamics
Oy = =VGa(y) )
with initial conditions satisfying 7o € P2(R%) x P2(R%) and Ga(v0) < .

Theorem (Existence of steady states)

There exists a unique minimizer Yoo = (pPoo, fioc) of G, which is also a steady state for equation (2). Moreover,
poo € L*(R?), has the same support as p, and its density is continuous.

Theorem (Convergence)

The solution «y; converges exponentially fast in Go(- | Yoo) = Ga(-) — Ga(Voo) and W,

Ga(Vt|700) < €' Galv0|¥00)  and  W(y,70) < ce™ @ forallt >0,

where ¢ > 0 is a constant only depending on 7o, Yo and the parameter \,,
Ag := A1 +min(A2 + ﬂ,aS\) >0.

16 / 29



Aligned Objectives: Proof Sketch

G, is lower semi-continuous with respect to the weak-* topology.

G uniformly displacement convex with constant A, > 0.

Existence of minimizer of G,: direct method in the calculus of variations.

HWI inequality: For the dissipation functional D, () := [[|V.26Ga(2,2)|?dv(2, 2),

Ga(v0) = Ga(11) < W(y0,7)v/Dal0) — fW(%m)z :
m Generalized Log-Sobolev inequality: for the unique minimizer v, of G,

Da(v) = 2Xa Ga(7]7+) -

m Talagrand inequality: for the unique minimizer ~y, of G,
W(37)* < 5Galy] 7).
m Differentiating GG, along solutions ~;:
$16a00) == [19-8,6ubl @) dpez) = [ IV.8,Galrl ) ()

= —Da(v) < =2XaGa(y¢ |7+) + Gronwall + Talagrand.

17 /29



Competing Objectives

Min-Max problem
Op=+Vwy oGelp,p),  Oepp ==V, uGelp,p).

0= [[ i@ + [[ B o)
+2 [z = solPduta >f§/pvv*p—a/plog(§).

Example: classification of 1D features

Energy functional

m fi(
m fo(z,z

m W (z) = interaction potential for agents (label 0).

I\

,x) = cost if agents (label 0) at z and algorithm at = (now maximized by agents);

) =
) =

= cost if agents (label 1) at z and algorithm at z;

18 / 29



Nash Equilibrium

A pair of measures 7, = (px, it+) € P(R?) x P(RY) is a Nash equilibrium for the competitive
objective case if it satisfies

Ge(psr pix) > Gelp, i) ¥ p € P(RY),
Gelper pin) < Gelparpr) ¥V € P(RY).

19 /29



Competing Objectives: Additional Assumptions

Upper bounds for f; and f5

m There exists a constant A; > 0 such that

V2fi(z,z) 2 Arly for all (z,2) € R? x R%.

m For any R > 0 there exists a constant ¢a = c2(R) € R such that

sup /fz(z,m)dﬁ(z) <cs.

zEBR(0)

m The function f; satisfies | V2, fi(z,2)|2 < L for all z, z € R? for some L > 0.
m There exists a constant Az > 0 such that V2 fi(z,2) < Ay Idy for all (z,2) € R* x R%.

20 /29



Competing Objectives: Results (new)

Consider solutions ¢ := (p¢, pi¢) to the dynamics

8tp = +VW2,PGC(p7 /1') ) atlu/ = _VW%MGC(pv :U/) . (4)

Theorem (Existence of Nash equilibrium)

There exists a unique critical point v, for G. over P which is also a steady state for equation (4) and a Nash
equilibrium. ~v. = (p«, pi) satisfies p. € Po N LY (RY) with ||p«|ls = 1, and p € P2 with ||p|ls = 1.

Theorem (Convergence)

Assume Xy = aX — A1 > 0 and Ay + 2L < min{B7 Ao} for 8= Then

B
2([lzoll+1)

Wy, 74) <ce ™' forallt >0,

where 1
Xe = 7 min{A; + A2 + 8, Ay} > 0.



Competing Objectives: Proof Sketch

u Define Ge(7,4) = Ge(p, 1) — Ge(p, i1)-
m G, is uniformly displacement (A1 + A2 + 3)-convex in p for any fixed p € P.
m G, is uniformly displacement Ay-concave in p for any fixed u € P.

m Gc(7,%) is uniformly displacement 2\.-convex in vy for any fixed § € P.

m Existence of a unique Nash equilibrium for G.:
generalization of the Browder-Ky Fan fixed point theorem for the map

weP

B(v) = {C € 73‘@c(4w) = mir}@c(mv)} :

m Any critical point 7. of G. is a steady state and p.. satisfies supp (p«) = supp (p).

m Exponential convergence: explicitly differentiate W (ry;, v*)?.

22 /29



Competing Objectives: Timescale Separation!®!

Recall the dynamics
Op=+VwyoGelpp),  Op=—VwyuGelp, ).

m Fast algorithm: pu(t,-) = d,(;) and
atp =+ sz,PGC(p7 §Z)|gg:b(p) ’ b(p) = arg{nin GC(p7 555) .

— Define Gy(p) == Gc(p, b(p)) and consider O;p = +Vw,, ,Go(p).
— Examples: Online advertising, Uber/Lyft, ...

m Fast agents: u(t,-) = d,(+) and

R d
T(Z’(t)) = argmax GC(P» éz(t)) ’ 71’(t) = - VIGC(pv 5z(t))’

sep dt p=r(z(t)) *
— Define Ga(p) == Gc(r(z), ) and consider z(t) = —V,Ga(z(t)).
— Examples: Loans, government policies, video game rule updates, ...
[5] Lauren CONGER, F H, Eric MAZUMDAR, and Lillian RATLIFF. Strategic distribution shift of in-

teracting agents via coupled gradient flows. In Advances in Neural Information Processing Systems
(NeurlPS). Curran Associates, Inc., 2023.
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Competing Objectives: Results

Theorem (Fast Algorithm)

(a) There exists a unique maximizer po, of Gy(p), which is also a steady state. Moreover, po, € L'(R?), has
the same support as p, and its density is continuous.

(b) The solution p; converges exponentially fast to po with rate Xy in Gy(- | poo) and W,
Go(pt | poo) < €2 Gu(po | poo)  and  Wa(pe, poo) < ce ™' forallt >0,

where ¢ > 0 is a constant only depending on po, pes and the parameter \, := aX — Ay > 0.

Theorem (Fast Agents)

(a) There exists a unique minimizer xo, of Ga(x) which is also a steady state.

(b) The vector z(t) solving the dynamics with initial condition z:(0) € R? converges exponentially fast to oo,
)
l2(t) = ool < €™ *"[[2(0) — @ool,

Ga(x(t)) = Ga(zes) < €™ (Ga((0)) — Ga(wes))

for all t > 0 for parameter \; := \i + A2 + 3 > 0.

24 /29



Comments on proof

Fast

algorithm:

The best response b(p) is uniformly bounded.
Gy, is upper semi-continuous with respect to the weak-* topology.

G is Ay uniformly displacement concave.
Remark: concavity of G} is unknown, use Danskin’s Theorem (game theory).

Existence of maximizer for Gy: direct method in the calculus of variations.
Any maximizer G is a steady state and satisfies supp (p«) = supp (p).
Convergence follows from functional inequalities as before.

agents:

For each = € R? there exists a unique maximizer p. := r(z) solving argmaxcp Ge(p, ). Further,
r(z) € L'(RY) N P2(R?), supp (r(z)) = supp ().

Consider x,, — % in R%. Define F,(p) := —Ge(p,xs) and F(p) := —Gc(p,Z). Then F, Ly Fin the
narrow topology.

The best response 7(z) € P2(R?) is continuous in = € R? in the narrow topology.

Danskin’s Result: We have V,Gq(z) = (VoGc(p, ))| and Gy is strongly Ag convex.

p=r(z)’

25/
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Modeling Societal Systems

How can we model population dynamics under algorithmic influence?

Real-world questions can we answer:

m Does the model describe real-world data?

m What dynamical features do we observe?

m How fast should the algorithm learn?

m Is gradient descent an optimal learning strategy for the algorithm?

m When do other state-of-the-art techniques for performative prediction fail?
m What if the algorithm only has access to samples from the population?

m Learning cost and interactions from data?

26 /29



Modeling Societal Systems

How can we model population dynamics under algorithmic influence?

Real-world questions can we answer:

m Does the model describe real-world data? Yes

m What dynamical features do we observe? e.g. polarization

m How fast should the algorithm learn? timescale selection is critical for design

m Is gradient descent an optimal learning strategy for the algorithm? Not necessarily!

m When do other state-of-the-art techniques for performative prediction fail?
Moment models are not sufficiently detailed.

m What if the algorithm only has access to samples from the population?
interesting problem for future research!

m Learning cost and interactions from data? kernel methods

— ask Lauren Conger! (Tuesday poster session)

Takeaway: PDEs provide a powerful and necessary tool for understanding strategic distribution shift.

27 /29



Current Work & Future Directions

m Generalizing results for timescale separated case.

m Adversarial setting without timescale separation.

m N-player game with arbitrary dynamics: competition among multiple algorithms and multiple populations.
m Analysis when the algorithm only has access to population samples.

m Learning PDE dynamics from data.
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