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Random vs. deterministic quantization

From Xu, Korba, S. Accurate Quantization of Measures via Interacting
Particle-based Optimization, ICML 2022.

(a) i.i.d. sample (b) deterministic arrangement

Figure: Quantizing a Gaussian using 1024 particles.
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Measuring Quantization error

@ d — a metric or general dissimilarity measure on P(R) or its subset
[Wasserstein metric, MMD, KSD, =-discrepancy, etc.]

e ueP(RY)
Random quantization error
QFi’(na d) = E[d(:u‘v Hn)]
where u, = %Z, Oy, and x; ~ p are i.i.d samples of .

Optimal quantization error

QO(nad)) = inf d(,ua ,un)

{X1,0Xn}
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Quantization error of optimal transport

Given u,v e Pp(Rd), transport plans, 7 are probability measures on
RY x RY with first marginal 1 and second marginal v:

N(p,v) = {re P(RY x RY) : 7(A x RY) = pu(A), 7(RY x A) = v(A)}.
p-OT distance
R O e

mel(u,v)

For w with bounded support on a connected domain, with density bounded
from below (Ajtai, Komlos, Tusnady 1984, Talagrand and Yukic 1993)

n-1/2 if d =1
Qr(n,dp) < { n2(logn)z ifd=2
n-1/d if d > 3.

and
QO(nv dp) ~ ni‘l/d
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Reproducing Kernel Hilbert Space (RKHS)

Definition. Hilbert space H is an RKHS if pointwise evaluation f — f(x) is
a continuous operator.
Example: Sobolev space H* for s > d/2 is an RKHS.

@ For all x there exists ¢y € H such that (¢, f)y = f(x).

@ The associated kernel is K(x,y) = {¢x, ¢y )H-

o Forf=3adx,(f.f) =2, aiaK(x,x) > 0. So K is positive
definite.

@ If the Hilbert space is translation invariant, K(x,y) = K(x — y)

@ Conversely, any positive definite continuous kernel K(x — y) defines
am RKHS, Hk, functions f = K « 8 € Hk for 8 finite measure and

2 . _ 1T 2
11, = || Kx = y)dbrabin - | 7o Mera

Examples: K(x) = exp(—|x|?) -Gaussian, K(x) = exp(—|x|) - Laplace.
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Maximum Mean Discrepancy (MMD)

Let Hx be RKHS corresponding to a kernel K.

MMDy, (p,m) = sup Jﬁﬁdp f(bdﬂ'
]y <1
It is known that
MMDE, (5. ) = | [ K(x,y) dlp = m) () dllp = 7))

If K(x,y) = K(x — y) then

MMD,Q_,K(p,W):JK*pdp—2jK*pdw+fK*ﬂdw

For kernels K which decay at infinity and are strictly integrally positive
definite, MMDy,, metrizes narrow convergence of measures. (see
Sriperumbudur 2016)
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Quantization in MMD

For a broad set of Kernels and p € P(RY) (see Sriperumbudur 2016)

Qr(L, MMD) < \F

Theorem [Xu, Korba, S.]

Assume K(x,y) = K(x — y) and K(€) < (1 + |€[2)~9/2, which holds for
Gaussian, a range of Matérn kernels and others.

@ Lebesgue measure on [0, 1]°.

0o, mmp) < UM

o Light-tailed probability measure on RY.

(|n n)(5d+1)/2

Qo(m, MMD) < :
n 4

Open: Optimal rate on n. Dependance of constants on d.
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MMD gradient flows in Wasserstein Metric

Arbel, Korba, Salim, Gretton, '19
For fixed p consider MMD(p, 7) as a functional of p. More precisely let

1
E(p) = ZJK*pdp—JK*de
Note: total energy = interaction energy + potential energy.

Gradient flow in Wasserstein metric

oip+ V- (pVK = (m—p)) =0.
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MMD gradient flows: Discrete measures

For fixed pp = 1 37, 6,
1 1
E(pn) = ﬂZZK(Xi—Xj) - EZK*W(Xi)
i i

Gradient flow in Wasserstein metric
oip+ V- (pVK = (m—p)) =0.

Gradient flow for discrete measures: p,(t) = 1 37, 6,
1 n
%= VK= m(x) — 21 VK(xi — x)
=
Note: We need to know 7 which is not available in sampling problems.
Open Problems
@ Does MMD(p(t), ) — 0 as n — o if p is absolutely continuous wrt
Lebesgue measure? At what rate?
@ What is the limit of MMD(pn(t), 1) as t — c0?
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MMD gradient flows: Discrete measures

oip+ V- (pVK = (m—p)) =0.
Gradient flow for discrete measures: p,(t) = %27:1 Oy, (t)

: 1¢
xi = VK = m(Xx;) — EZVK(X,’—X/)

i=1

Open Problems
@ Does MMD(p(t), 1) — 0 as n — o if p is absolutely continuous wrt
Lebesgue measure? At what rate?
Boufadene, Vialard show that for K(x, y) = [x — y|~9*2ford > 3, C'
positive solutions on compact manifolds satisfy

W, ) < e M.

@ What is the limit of MMD(pn(t), 1) as t — c0?

@ Approaches for 7 ~ e~ Y.
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Fokker—Planck equation

Consider Kullback-Leibler divergence, that is the relative entropy

KL(p) = Jm (%) pdx.

Wasserstein gradient flow is given by d;p = —V - (pv), where the vector
field v minimizes the Rayleigh functional
o KL

59:v-0)+ 521 = 5| Polx)de = [(np+ V)Y - (pv)ox

1
= 2f\v\zp(x)dx +Vp-v+VU: vpdx

R(v) =

where m = Cexp(—U). Minimizing over v gives v = — (% + VU). Thus
Wasserstein gradient flow is the Fokker-Planck equation

otp =V -(Vp+pVU).
Q: Is there a related model where the velocity makes sense for particles?
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Blob model

KL-divergence KL(p) = jln <§> p dx
Fokker-Planck equation oip=V-(pV(lnp+ U))

Q: Is there a related model where the velocity makes sense for particles?
A1: Blob model by Carrillo, Craig, and Patacchini, 2019: Regularize p in
the KL divergence, using a mollifier ..

E.(p) = fln <%> pax.

Wasserstein gradient flow

otp =V - (pV(In(p * 1) + U)).

@ Particle ODE give a true solution of the equation.

12/ 44



Blob model (cont.)
Blob model by Catrrillo, Craig, and Patacchini, 2019:

Ex(pe) = [ n (" 27) p. o

Wasserstein gradient flow
Otpe = V- (pV(In(pe * n:) + U)).

@ Particle ODE give a true solution of the equation.

@ Model introduces a bias. Let m. be a minimizer.
Lu, S., Wang, 2023 show do(m, ;) < €.

@ Convergence of p.(t) — p(t) as e — 0. [Carrillo, Craig, and
Patacchini; Craig, Jacobs, Topalova ]

Open problems/issues:

@ Convergence of p.(t) as t — .

@ Convergence of p.(0) as ¢ — 0.

@ Model is not viable in high dimensions.
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Birth-death dynamics

Hellinger distance
d? H(po, p1) = inf f J u, dp; dt,
pt,Ut) Rd

where (p¢, u;) satisfies the equation dip; = —p;u;. If measures pg, p1 < A
for some probability measure dA(x), then

[dp1 [ dpo
— 4 dA.
d (,00701 Rd ( d\ EBY

Restricted to probability measures

dr(po, p1)
H40 1>‘

Pure birth-death dynamics is the gradient flow of KL divergence wrt dgy.

dstH(po, p1) = 4 arcsin (

dipt = —ptlog Py Ptf ptlog Ptax.
™ Rd s
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Birth-death dynamics - convergence as t — 0.

Pure birth-death dynamics is the gradient flow of KL divergence wrt dsy.
Otpt = —ptlog by Ptf ptlog Pt ax.
T Rd T

Lu, Lu, Nolen and Lu, S., Wang establish

Theorem. If infycq ff(xx)) > M then

KL(pi|m) < e~ =38 KL (pg|r)

for every 6 € (0,1/4) and all t > t, := log(M/§%).

Regularization and particle based approximations:

Felp) = fplog(Ke *p) — fplogﬂ = fplog(Ka *p) + JpV-

K. = p® pe J K. # p°
e =—p° |l —_ K — 11 S —1].
G p [og( T >+ E*(Ke*p5> 8 T p
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Birth-death dynamics - convergence as ¢ — 0.

Results for dynamics of positive measures on torus:
(i) Regularized flow is well posed up to time T. — o0 as ¢ — 0.
(i) Solutions p* — p on finite time intervals.
(iii) If 7. < T; and 7. — oo then p*(1:) — .
Open problems:
(i) Long time existence of L' solutions
(i) Well posedness of measure-valued solutions
(iiiy Convergence of particle-based schemes.
(iv) Adding diffusion
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Stein Variational Gradient Descent

Consider Kullback-Leibler divergence, that is the relative entropy

KL(p) = fln (Z) p dx.

Wasserstein gradient flow is given by d;p = —V - (pv), where the vector
field v minimizes the Rayleigh functional

1 0 KL 1 5
R(v) = 59p(v,v) + W[V] =5 | VFpladx — | (Inp + U)V - (pv)dx

where y = Cexp(—U). Minimizing over v identifies the Wasserstein
gradient flow as the Fokker-Planck equation
otp=V-(Vp+pVU).

Liu, Wang (2016) introduced Stein Variational Gradient Descent:
g(v,v) = HVH,Z_,K, that is gradient descent vector minimizes

1 oKL
R(v) = SIvIE, + ——[v].
2 op
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Stein Variational Gradient Descent

Consider Kullback-Leibler divergence, that is the relative entropy

KL(p) = fln <Z) pax.

For Stein Variational Gradient Descent g(v, v) = |v|%, that is gradient
descent vector minimizes

1 0 KL
R(v) = 5lIvik + 5

which, for 1 ~ e~V leads to
(SVGD) o = V- (VK # p+ K * (pVU))p)

Note that the equation makes sense for discrete measures p = un

. 1 &
(SVGD,) x,-:—BZVK( — X)) —

1 n
D K(xi = x)VU(x).
j=1
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Stein Variational Gradient Descent |l

Lu, Lu, and Nolen
Theorem 1. For K smooth and po smooth with KL(pg) < o the solution of

(SVGD) satisfies
p(t) — mweakly ast — co.

There is no rate known. Linearization (Duncan, Nisken, Szpruch)
indicates that the convergence is not exponential.

Theorem 2. For K smooth if p,(0) — p(0) in d» then for all t > 0

pn(t) = p(t) asn— .
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Numerical Quantization Errors
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Figure: Quantization rates of the algorithms at study when = = N(0, 1ald).
MMD/KSD Descent use bandwidth 1; SVGD use Laplace kernel; NSVGD use

Laplace kernel with adaptive choice of bandwidth.
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More Numerical quantization Errors

d Eval. SVGD NSVGD MMD-lbfgs KSD-lbfgs KH SP

KSD -0.98 -0.94 -1.48 -1.46 -0.84 -0.77
MMD -1.04 -1.00 -1.60 -1.54 -0.93 -0.77
3 KSD -0.91 -0.81 -1.38 -1.44 -0.84 -0.78
MMD -0.96 -0.91 -1.51 -1.49 -0.92 -0.75
4 KSD -0.91 -0.81 -1.35 -1.39 -0.89 -
MMD -0.94 -0.89 -1.46 -1.40 -0.95 -
8 KSD -0.84 -0.80 -1.14 -1.16 - -
MMD -0.77 -0.90 -1.25 -1.13 - -

Table: Slopes for the quantization measured in KSD/MMD, for the different
algorithms at study and several dimensions d.
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Final States

(C) MMD-Ibfgs (d) iid.
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Testing with different bandwidths
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Figure: Changing the bandwidth in MMD evaluation metric when, in 2D. From

Left to Right: (evaluation) MMD bandwidth = 1, 0.7, 0.3.
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Radon transform

Radon Transform
For0eS%'andpeR

RI0.p) = 7(6.p):= | #(p0+y") "
(7
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Sliced Wasserstein distance

Radon Transform
For0eS%'andpeR

Rf(0,p) = 7(0,p) = J f(pd + y’) dy’,
QL

Sliced Wasserstein distance
For p, v € Pa(RY)

SW2(u, o J[ W2(P% 1, P% o) db = " w2 (5?,57%) de,

where P?(x) = (x - )0

Bonnotte '13 (on bounded domains) and Bayraktar and Guo 21 on R¢
show that W and SW induce the same topology on P-».
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Particle approximation error of W and SW

@ d — a metric or general dissimilarity measure on P(RY) or its subset
[Wasserstein metric, Sliced Wasserstein, MMD, etc.]
@ nePo (Rd)

Random quantization error

Qr(n,d) = E[d(u, pun)]

where i, = %Z, Oy, and x; ~ p are i.i.d samples of .

For 1 with bounded support, with density bounded from below

"o

Qpr(n, SW) 2 foralld.

(logn)z ifd=2
if d > 3.

Q\—‘ N\—‘
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Background of Radon Transform

Rf(0,p) = J;l f(po +y?)dy?,  R*g(x) = g(x) = J[g L 9(0,x-0)db.

(Rf, @12y = {f, R* @) 12(me)
Attenuated Sobolev Spaces

e, = | 1610+ €0)> 1 af ) o

Theorem (Sharafutdinov)

For se Rand t > —4 Radon transform is an isometry between HF(R9)

s+(d—1)/2 .
and Ht+(d—1)/2 (Pg):

£ 1 ety = HRf“Hfjfjjﬂ))/zz(Pd)'

Consequently HfHH:((gj))//E(RC’) = [ Rf]2(py)-
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Background of Radon Transform

Let A be given by

A (—i)9-1 5;:1 when d is odd
a (—i)d_1Hpaa;;1 when d is even

where H,, is the Hilbert transform in p variable.
Inversion formula for the Radon transform: on S(R)

f = cyR*N\Rf.
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Local geometry of Sliced Wasserstein distance

@ Metric derivative: Formally

% W2 (af, ] - .
S (:U’fzv.ut+h) :][ (Mt2#t+h) do =0 ][ 7 (6, )‘12” do.
h Sd—1 h Sd—1

@ If oy + div(uv) = 0 then o7i? + divp(7°N%v) = 0 and

2
dVipu

djit

L2 (fir)

w0 = | 170 f0 90 - o

12
e We define Bsy (u, J) = H9 : 37% ()
Hd
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Local geometry of Sliced Wasserstein distance

o Recall |13y, (1) = §su—1 |2/(6,-) |5 (t) db. The geodesic must satisfy
nd = (a8, if]:, where [ -, -]; is displacement interpolation in 1D.
However 11; := R~ ([i§, 1{]¢) may fail to be nonnegative!

@ (P2, SW) is not a geodesic length space.
Let £sw (1o, 111) be the minimal length of curves connecting o, 1.
© If iy := 1377 1 6, then

w0 = 2 33 f 1030 a0 = Ste

So when restricted do discrete measures £sw giscrete = %dw.
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Comparison of SW with negative Sobolev Spaces

Theorem
Let i, v, A € Pac, 2(RY). Assume 0 < a < b < o such that

a\’ <’ < b\ and 7Y < b)? forae. eS9.

b
(i) If Xis log-concave then lgy(u,v) < 2\/;SW(,M,V).

(i) Assume |A?] 0 (p,) < Cx. Then

3
E‘W - V||H—(d+1)/2(Rd) < SW(p,v).

If further © = v on a ¢ strip of 0€2 then

1 C
< ) < ) < o — A2l ©
bC) ”:U’ VHH,@ SW(:U‘ V) KSW(:U’ V) \/a”:u’ VHH, (d;ﬂ)
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Quantization properties of /g,

Let f% and FY the density and the CDF of [y,

F9 1 =
Sdo(p J[ J F (r) drdf
§d—1

Theorem

Assume fig « L1 and Sdo(p1) < 0. Let u" = 137 5x where X; are i.i.d
samples of u. Then

|
Cow (1", 1) < c\/Sda(11) (357;7 with high probability.
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SW near particle measures; SW gradient flows

Lemma

Assume 1 = >, m;dy,. Let L = min;; |y; — y;|, Then there exists C > 0
only dependent on d such that if Wi, (i, v) < é then

0 < — WA(1,v) — SWE (1, v) < CaWer (11, v) SWE (1, ).

@ "Gradient flows” in Sliced Wasserstein metric are high order
integro-differential equations

@ Gradient flows of Sliced Wasserstein metric with respect to
Wasserstein metric are of interest in generative sampling (Bonnotte
’13, Li, Moosmiuiller 23, Tanguy, Flamary, Delon, '23)
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Sliced Wasserstein quantization

4D
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Figure: Quantization measured in Sliced Wasserstein distance for u = A/(0, %Id).
States are same as before. In practice, we use 50 random directions drawn
uniformly on S°~'. Slopes of red lines are -0.71, -0.64, and -0.61 in 2,3, and 4D,
respectively.

Open Problem: Establish the optimal quantization rate in Sliced
1 1
Wasserstein metric. Theoretical prediction for grids n= 2" 24.
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Radon-Wasserstain metric

Given unit vector 6 let

Su(x-0))2dp(x) if wa(x) = 0u(d - x)
0 otherwise

g@(Wv W) = {
Consider the Radon-Wasserstein metric g given by
g(v,v) = inf {f o (W, wp)dl : v(x) = J ngS(&)}
Sd—1 §d—1
= inf{f go(Wy, wp)dl : v = ﬁ’*w}
§d—1

The resulting distance d satisfies dyy < d < dw. However the geodesics
often do not exist.
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Projected KL gradient flow

Consider m ~ e~Y. We want to determine the gradient flow of
E(p) = flog Ldp
T
with respect to g. Given unit vector 0, for s € R Radon transform
Ruls) = | 1(s0+y)ay
0L

Gradient flow is given by

oip+V-(pv)=0
Rg(pVU . 9)
— | 6 (asin(Ryp) + TLYZT)
v Ld1 (as n( OP) + Rep
Ry(pV U - 6)
Rop

> (x - 6)do

— —R*VIn(Rp) + R*
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Particle approximation of projected KL gradient flow

Gradient flow

oip+V-(pv)=0

v = _J 0 <as|n(/:,>9p) 4 BolpVU-0)
Sd—1

R > (x-0)do

Consider p, = 237 | 5. From Rppp = 1 37, 050 We approximate
projected density Ryp using a 1D KDE. Accuracy does not decay with d!

Xj - 9)d9

X = LM 9 <é’s|n(K* (Ropn)) + = TR (

We approximate the above by taking a random angle 6 at each step

25 K'((x = x;) - 0) + K((x; — x;) - 0) Dy U (x;)
xi(At) = x;(0) + At = S Ky —x) 0)

For convergence, complexity of each step is O(n), up to logarithms!

37/ 44



Observed speed of convergence
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Figure: MMD and KSD convergence rates in 2D, using processor time. We run
SVGD with bandwidth 0.7 and sliced flow with bandwidth 0.3. There are 1024
particles. Above: Initial distribution is the uniform distribution in a ball, target is
Gaussian. Below: Initial distribution is a Gaussian centered at (0, 2) while target
distribution is a Gaussian mixture, centered at (1,0) and (—1,0).
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Final States

Figure: Sampling 2-dimension normal distribution, final states. From column 1 to
3: kernel bandwidth 0.1, 0.3 and 1. We ran algorithms for 50,000 steps, take
timestep 0.03. The number of particles is 1024.
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Approximation Error
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Figure: The target distribution is Gaussian. We note that sliced-KL flow does not
result in variance collapse. [Variance is approximated very well.]
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Projection based metric 2

Let Hx be an RKHS on R. Given unit vector 6 instead of

Su(x-0))2dp(x) if w(x) = 0u(d - x)
o0 otherwise

g@(W> W) = {

consider

go(w, w) = {U‘IQ'IK if w(x) =0u(f-x)

0 otherwise.

Consider the sliced metric g given as

g(v,v) =inf {fsw 9o(Wy, wy)dl : v = LM ngS(Q)}
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Radon-Stein gradient flow (~SVGD)

Full gradient flow is given by
op+V-(pv)=0

(RSVGD) L ‘Ld 0 (K'+ (Rp) + K = (Ry(pV U - 0))) df

Consider pp = 37 | 6.

Xi = —Ld = Z K'(( -0) + DyU(x)K((x; — x;) - 0)) O

We approximate the above by taking a random angle 6 at each step

X(A0) = x(0) + A0 1 3 (K (x5~ x) -0) + Dy U)K~ x) - 6)
J
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Existence and convergence of Projected SVGD gradient

flow

~ Lu, Lu, Nolen

Assumption 1. K € C*(R, R) is positive definite, integrable, even, and
K, K', K" are bounded.

Assumption 2. U € C?(R?) is nonnegative, coercive, and satisfies
|[VU| < C(1 + U) and |D?U| < C(1 + U).

Assumption 3. {(1 + U)podx < .

Theorem [S. and Xu]

Under assumptions above (RSVGD) has a unigue solution
p € C([0, ), P).

Theorem [S. and Xu]
Under some mild further assumptions p(t) — = weakly as t — co.
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Open Problems

What is the optimal quantization error for MMD (for various kernels)?

What is a robust way to measure quantization error? [Remove
sensitivity to kernel width.]

Convergence properties of SVGD, especially for nonsmooth kernels

Well-posedness and convergence for Radon Wasserstein KL gradient
flow

Birth-death dynamics in high dimension

Quantitative information on convergence.

44/ 44



