Probabilistic Methods
 Part I. Lovász Local Lemma

František Kardoš
LaBRI, Université de Bordeaux

ALEA Days, CIRM Marseille
13 March 2024

Introduction

Probabilistic methods

- prove the existence of combinatorial objects
- using probabilistic tools and arguments
- First moment principles: linearity of expectation
- Second moment inequalities
- Lovász Local Lemma
- Entropy Compression
- Concentration inequalities

Introduction

Probabilistic methods

- prove the existence of combinatorial objects
- using probabilistic tools and arguments
- First moment principles: linearity of expectation
- Second moment inequalities
- Lovász Local Lemma
- Entropy Compression
- Concentration inequalities

Outline of today's talk

- a warmup example
- hypergraph coloring problem
- statement of the Lovász Local Lemma
- application in hypergraph coloring
- application in acyclic graph coloring

Warmup example

Given a graph on n vertices and m edges, what minimum size of a bipartite (spanning) subgraph can be guaranteed?

Warmup example

Given a graph on n vertices and m edges, what minimum size of a bipartite (spanning) subgraph can be guaranteed?

Warmup example

Given a graph on n vertices and m edges, what minimum size of a bipartite (spanning) subgraph can be guaranteed?

Warmup example

Given a graph on n vertices and m edges, what minimum size of a bipartite (spanning) subgraph can be guaranteed?

Warmup example

Given a graph on n vertices and m edges, what minimum size of a bipartite (spanning) subgraph can be guaranteed?

Warmup example

Given a graph on n vertices and m edges, what minimum size of a bipartite (spanning) subgraph can be guaranteed?

The best we can hope for is $\sim \frac{m}{2}$:

- a complete graph on n vertices has $\binom{n}{2} \sim \frac{n^{2}}{2}$ edges
- a complete bipartite graph on $\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{n}{2}\right\rfloor$ vertices has $\sim \frac{n^{2}}{4}$ edges

Warmup example

Randomized procedure

- For each vertex, choose a color (red/blue) independently, uniformly at random
- Remove monochromatic edges

Warmup example

Randomized procedure

- For each vertex, choose a color (red/blue) independently, uniformly at random
- Remove monochromatic edges

For an edge e, let $X_{e}= \begin{cases}1 & \text { if } e \text { is bichromatic }, \\ 0 & \text { if } e \text { is monochromatic }\end{cases}$

Warmup example

Randomized procedure

- For each vertex, choose a color (red/blue) independently, uniformly at random
- Remove monochromatic edges

For an edge e, let $X_{e}= \begin{cases}1 & \text { if } e \text { is bichromatic, } \\ 0 & \text { if } e \text { is monochromatic }\end{cases}$
Then $\mathbb{E}\left(X_{e}\right)=\frac{1}{2}$,

Warmup example

Randomized procedure

- For each vertex, choose a color (red/blue) independently, uniformly at random
- Remove monochromatic edges

For an edge e, let $X_{e}= \begin{cases}1 & \text { if } e \text { is bichromatic, } \\ 0 & \text { if } e \text { is monochromatic. }\end{cases}$
Then $\mathbb{E}\left(X_{e}\right)=\frac{1}{2}$, and by linearity of expectation,
$\mathbb{E}\left(\sum_{e \in E(G)} X_{e}\right)=\sum_{e \in E(G)} \mathbb{E}\left(X_{e}\right)=\frac{m}{2}$.

Warmup example

Randomized procedure

- For each vertex, choose a color (red/blue) independently, uniformly at random
- Remove monochromatic edges

For an edge e, let $X_{e}= \begin{cases}1 & \text { if } e \text { is bichromatic, } \\ 0 & \text { if } e \text { is monochromatic. }\end{cases}$
Then $\mathbb{E}\left(X_{e}\right)=\frac{1}{2}$, and by linearity of expectation,
$\mathbb{E}\left(\sum_{e \in E(G)} X_{e}\right)=\sum_{e \in E(G)} \mathbb{E}\left(X_{e}\right)=\frac{m}{2}$.
Therefore, there exists a coloring with at least $\frac{m}{2}$ bichromatic edges.

Hypergraph coloring

A hypergraph $H=(V, E)$ is a couple of sets with

- V a (finite nonempty) set of vertices, and
- $E \subseteq 2^{V}$ a set of nonempty subsets of V, called edges.

Hypergraph coloring

A hypergraph $H=(V, E)$ is a couple of sets with

- V a (finite nonempty) set of vertices, and
- $E \subseteq 2^{V}$ a set of nonempty subsets of V, called edges.

A hypergraph is k-uniform if $|e|=k \forall e \in E$.
A hypergraph is $\underline{k \text {-regular }}$ if $|\{e \in E: v \in e\}|=k \forall v \in V$.

Hypergraph coloring

A hypergraph $H=(V, E)$ is a couple of sets with

- V a (finite nonempty) set of vertices, and
- $E \subseteq 2^{V}$ a set of nonempty subsets of V, called edges.

A hypergraph is k-uniform if $|e|=k \forall e \in E$.
A hypergraph is $\overline{k \text {-regular }}$ if $|\{e \in E: v \in e\}|=k \forall v \in V$.
A hypergraph H is t-colorable if one can color its vertices with t colors without monochromatic edges.

Hypergraph coloring

A hypergraph $H=(V, E)$ is a couple of sets with

- V a (finite nonempty) set of vertices, and
- $E \subseteq 2^{V}$ a set of nonempty subsets of V, called edges.

A hypergraph is k-uniform if $|e|=k \forall e \in E$.
A hypergraph is $\overline{k \text {-regular }}$ if $|\{e \in E: v \in e\}|=k \forall v \in V$.
A hypergraph H is t-colorable if one can color its vertices with t colors without monochromatic edges.

Is every k-regular k-uniform hypergraph 2-colorable?

Hypergraph coloring

A hypergraph $H=(V, E)$ is a couple of sets with

- V a (finite nonempty) set of vertices, and
- $E \subseteq 2^{V}$ a set of nonempty subsets of V, called edges.

A hypergraph is k-uniform if $|e|=k \forall e \in E$.
A hypergraph is $\overline{k \text {-regular }}$ if $|\{e \in E: v \in e\}|=k \forall v \in V$.
A hypergraph H is t-colorable if one can color its vertices with t colors without monochromatic edges.

Is every k-regular k-uniform hypergraph 2-colorable?
Not for $k=2$.

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
Not for $k=3$:

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
Not for $k=3$:

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
Not for $k=3$:

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
Not for $k=3$:

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
Not for $k=3$:

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
Not for $k=3$:

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
Not for $k=3$:

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
Not for $k=3$:

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
How about k sufficiently large?

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
How about k sufficiently large?
Randomized procedure

- For each vertex, choose a color (red/blue) independently, uniformly at random

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
How about k sufficiently large?
Randomized procedure

- For each vertex, choose a color (red/blue) independently, uniformly at random
For $e \in E$, let A_{e} denote the event that e is monochromatic.

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
How about k sufficiently large?
Randomized procedure

- For each vertex, choose a color (red/blue) independently, uniformly at random
For $e \in E$, let A_{e} denote the event that e is monochromatic.

$$
\mathbb{P}\left(A_{e}\right)=\frac{1}{2^{k-1}} \quad \forall e \in E
$$

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
How about k sufficiently large?
Randomized procedure

- For each vertex, choose a color (red/blue) independently, uniformly at random
For $e \in E$, let A_{e} denote the event that e is monochromatic.

$$
\mathbb{P}\left(A_{e}\right)=\frac{1}{2^{k-1}} \quad \forall e \in E \quad \mathbb{P}\left(\bigcap_{e \in E} \overline{A_{e}}\right)=?
$$

Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?
How about k sufficiently large?
Randomized procedure

- For each vertex, choose a color (red/blue) independently, uniformly at random
For $e \in E$, let A_{e} denote the event that e is monochromatic.

$$
\mathbb{P}\left(A_{e}\right)=\frac{1}{2^{k-1}} \quad \forall e \in E \quad \mathbb{P}\left(\bigcap_{e \in E} \overline{A_{e}}\right)=?
$$

If $\mathscr{A}:=\left(A_{e}, e \in E\right)$ were independent, we would have

$$
\mathbb{P}\left(\bigcap_{e \in E} \overline{A_{e}}\right)=\left(1-\frac{1}{2^{k-1}}\right)^{m}>0
$$

Mutually independent events

Definition

Let A be an event and let \mathscr{B} be a set of events in a probability space. We say that A is mutually independent of \mathscr{B} if

$$
\mathbb{P}\left(A \mid \bigcap_{B_{i} \in S} B_{i}\right)=\mathbb{P}(A)
$$

for every set $S \subseteq \mathscr{B}$.

Mutually independent events

Definition

Let A be an event and let \mathscr{B} be a set of events in a probability space. We say that A is mutually independent of \mathscr{B} if

$$
\mathbb{P}\left(A \mid \bigcap_{B_{i} \in S} B_{i}\right)=\mathbb{P}(A)
$$

for every set $S \subseteq \mathscr{B}$.
For example, in the context of random hypergraph coloring, A_{e} is mutually independent of

$$
\left\{A_{e^{\prime}}: e \cap e^{\prime}=\emptyset\right\} .
$$

Lovász Local Lemma

If a set of bad events that are mostly mutually independent happen with low probability, then with positive probability none of them happen.

Lovász Local Lemma

If a set of bad events that are mostly mutually independent happen with low probability, then with positive probability none of them happen.

Theorem (Lovász Local Lemma, Symmetric version)
Let $\mathscr{A}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be a set of events such that for each $i=1,2 \ldots, n$

- $\mathbb{P}\left(A_{i}\right) \leq p \quad$ and
- $\exists \mathscr{D}_{i} \subset \mathscr{A}$ of size at most d such that A_{i} is mutually independent of $\mathscr{A} \backslash \mathscr{D}_{i}$.

If

$$
e \cdot p \cdot(d+1) \leq 1
$$

then

$$
\mathbb{P}\left(\bigcap_{i=1}^{n} \overline{A_{i}}\right)>0 .
$$

Lovász Local Lemma

If a set of bad events that are mostly mutually independent happen with low probability, then with positive probability none of them happen.

Theorem (LLL)
If $\mathbb{P}\left(A_{i}\right) \leq p, A_{i}$ is mutually independent of $\mathscr{A} \backslash \mathscr{D}_{i}$ with
$\left|\mathscr{D}_{i}\right| \leq d$, and ep $(d+1) \leq 1$, then $\mathbb{P}\left(\bigcap_{i=1}^{n} \overline{A_{i}}\right)>0$.

Lovász Local Lemma

If a set of bad events that are mostly mutually independent happen with low probability, then with positive probability none of them happen.

Theorem (LLL)
If $\mathbb{P}\left(A_{i}\right) \leq p, A_{i}$ is mutually independent of $\mathscr{A} \backslash \mathscr{D}_{i}$ with $\left|\mathscr{D}_{i}\right| \leq d$, and ep $(d+1) \leq 1$, then $\mathbb{P}\left(\bigcap_{i=1}^{n} \overline{A_{i}}\right)>0$.
In the context of random coloring of a k-regular k-uniform hypergraph, $p=\frac{1}{2^{k-1}}$

Lovász Local Lemma

If a set of bad events that are mostly mutually independent happen with low probability, then with positive probability none of them happen.

Theorem (LLL)
If $\mathbb{P}\left(A_{i}\right) \leq p, A_{i}$ is mutually independent of $\mathscr{A} \backslash \mathscr{D}_{i}$ with $\left|\mathscr{D}_{i}\right| \leq d$, and ep $(d+1) \leq 1$, then $\mathbb{P}\left(\bigcap_{i=1}^{n} \overline{A_{i}}\right)>0$.
In the context of random coloring of a k-regular k-uniform hypergraph, $p=\frac{1}{2^{k-1}}$ and each A_{e} is mutually independent of all but at most k^{2} other edges, so $d=k^{2}$.

Lovász Local Lemma

If a set of bad events that are mostly mutually independent happen with low probability, then with positive probability none of them happen.

Theorem (LLL)

If $\mathbb{P}\left(A_{i}\right) \leq p, A_{i}$ is mutually independent of $\mathscr{A} \backslash \mathscr{D}_{i}$ with $\left|\mathscr{D}_{i}\right| \leq d$, and ep $(d+1) \leq 1$, then $\mathbb{P}\left(\bigcap_{i=1}^{n} \overline{A_{i}}\right)>0$.

In the context of random coloring of a k-regular k-uniform hypergraph, $p=\frac{1}{2^{k-1}}$ and each A_{e} is mutually independent of all but at most k^{2} other edges, so $d=k^{2}$.

There exists a coloring without a monochromatic edge whenever

$$
\frac{e}{2^{k-1}} \cdot k^{2} \leq 1
$$

Hypergraph coloring

Theorem (Lovász and Erdős 1975)
Let $k \geq 9$. Then every k-regular k-uniform hypergraph is 2-colorable.

Hypergraph coloring

Theorem (Lovász and Erdős 1975)
Let $k \geq 9$. Then every k-regular k-uniform hypergraph is 2-colorable.

Theorem (Alon and Bregman 1988)
Let $k \geq 8$. Then every k-regular k-uniform hypergraph is 2-colorable.

Hypergraph coloring

Theorem (Lovász and Erdős 1975)
Let $k \geq 9$. Then every k-regular k-uniform hypergraph is 2-colorable.

Theorem (Alon and Bregman 1988)
Let $k \geq 8$. Then every k-regular k-uniform hypergraph is 2-colorable.

Theorem (Alon and Bregman 1988, Henning and Yeo 2013)
Let $k \geq 4$. Then every k-regular k-uniform hypergraph is 2 -colorable.

Acyclic graph coloring

Definition
Let $G=(V, E)$ be a graph. A coloring
$\varphi: V(G) \rightarrow\{1,2, \ldots, k\}$ is an acyclic coloring of G if

- $\varphi(u) \neq \varphi(v) \quad \forall u v \in E(G), \quad$ (φ is a proper coloring)
- there is no bichromatic cycle in G.

Acyclic graph coloring

Definition

Let $G=(V, E)$ be a graph. A coloring
$\varphi: V(G) \rightarrow\{1,2, \ldots, k\}$ is an acyclic coloring of G if

- $\varphi(u) \neq \varphi(v) \quad \forall u v \in E(G), \quad$ (φ is a proper coloring)
- there is no bichromatic cycle in G.

Acyclic graph coloring

Definition

Let $G=(V, E)$ be a graph. A coloring
$\varphi: V(G) \rightarrow\{1,2, \ldots, k\}$ is an acyclic coloring of G if

- $\varphi(u) \neq \varphi(v) \quad \forall u v \in E(G), \quad$ (φ is a proper coloring)
- there is no bichromatic cycle in G.

not a proper coloring

Acyclic graph coloring

Definition

Let $G=(V, E)$ be a graph. A coloring
$\varphi: V(G) \rightarrow\{1,2, \ldots, k\}$ is an acyclic coloring of G if

- $\varphi(u) \neq \varphi(v) \quad \forall u v \in E(G), \quad$ (φ is a proper coloring)
- there is no bichromatic cycle in G.

Acyclic graph coloring

Definition

Let $G=(V, E)$ be a graph. A coloring
$\varphi: V(G) \rightarrow\{1,2, \ldots, k\}$ is an acyclic coloring of G if

- $\varphi(u) \neq \varphi(v) \quad \forall u v \in E(G), \quad$ (φ is a proper coloring)
- there is no bichromatic cycle in G.

not an acyclic coloring

Acyclic graph coloring

Definition

Let $G=(V, E)$ be a graph. A coloring
$\varphi: V(G) \rightarrow\{1,2, \ldots, k\}$ is an acyclic coloring of G if

- $\varphi(u) \neq \varphi(v) \quad \forall u v \in E(G), \quad$ (φ is a proper coloring)
- there is no bichromatic cycle in G.

Acyclic graph coloring

Definition

Let $G=(V, E)$ be a graph. A coloring
$\varphi: V(G) \rightarrow\{1,2, \ldots, k\}$ is an acyclic coloring of G if

- $\varphi(u) \neq \varphi(v) \quad \forall u v \in E(G), \quad$ (φ is a proper coloring)
- there is no bichromatic cycle in G.

an acyclic coloring with 4 colors

Acyclic graph coloring

Definition

Let $G=(V, E)$ be a graph. A coloring
$\varphi: V(G) \rightarrow\{1,2, \ldots, k\}$ is an acyclic coloring of G if

- $\varphi(u) \neq \varphi(v) \quad \forall u v \in E(G), \quad$ (φ is a proper coloring)
- there is no bichromatic cycle in G.

Definition

The acyclic chromatic number of a graph G, denoted by $\chi_{a}(G)$, is the smallest k such that G admits an acyclic coloring with k colors.

Acyclic graph coloring

Definition

Let $G=(V, E)$ be a graph. A coloring
$\varphi: V(G) \rightarrow\{1,2, \ldots, k\}$ is an acyclic coloring of G if

- $\varphi(u) \neq \varphi(v) \quad \forall u v \in E(G), \quad$ (φ is a proper coloring)
- there is no bichromatic cycle in G.

Definition

The acyclic chromatic number of a graph G, denoted by $\chi_{a}(G)$, is the smallest k such that G admits an acyclic coloring with k colors.

Can we bound $\chi_{a}(G)$ as a function of $\Delta(G)$, the maximum degree of G ?

Greedy bound

Can we bound $\chi_{a}(G)$ as a function of $\Delta(G)$, the maximum degree of G ?

If we color every vertex with a color distinct from all the colors of its neighbors and the neighbors of its neighbors, surely we will not create any bichromatic cycle.

This is always possible provided we have at least

$$
\Delta+\Delta(\Delta-1)+1=\Delta^{2}+1
$$

colors. Hence,

$$
\chi_{a}(G) \leq \Delta^{2}+1
$$

for every graph G.

Using Lovász Local Lemma

Can we bound $\chi_{a}(G)$ as a function of $\Delta(G)$, the maximum degree of G ?

Theorem (Alon, McDiarmid, Reed 1991)
Let G be a graph with maximum degree Δ. Then

$$
\chi_{a}(G) \leq 50 \Delta^{4 / 3} .
$$

On the other hand, there are graphs for which

$$
\chi_{a}(G)=\Omega\left(\frac{\Delta^{4 / 3}}{(\log \Delta)^{1 / 3}}\right) .
$$

Using Lovász Local Lemma

Can we bound $\chi_{a}(G)$ as a function of $\Delta(G)$, the maximum degree of G ?
Theorem
Let G be a graph with maximum degree Δ. Then

$$
\chi_{a}(G) \leq 7 \Delta^{3 / 2}
$$

Using Lovász Local Lemma

Can we bound $\chi_{a}(G)$ as a function of $\Delta(G)$, the maximum degree of G ?
Theorem
Let G be a graph with maximum degree Δ. Then

$$
\chi_{a}(G) \leq 7 \Delta^{3 / 2} .
$$

Let C be a set of $K \geq 7 \Delta^{3 / 2}$ colors.
Randomized procedure : For each vertex v, let $F(v)$ be the set of colors forbidden at v - the colors of the neighbors already colored, and let $C(v)=C \backslash F(v)$ be the set of available colors at v. Clearly, $|F(v)| \leq \Delta$.

- Choose an integer $i \leq K-\Delta$ uniformly randomly and color v with i-th available color.
This procedure gives a proper coloring of G.

Using Lovász Local Lemma

Can we bound $\chi_{a}(G)$ as a function of $\Delta(G)$, the maximum degree of G ?
Theorem
Let G be a graph with max degree Δ. Then $\chi_{a}(G) \leq 7 \Delta^{3 / 2}$. Let C be a set of $K \geq 7 \Delta^{3 / 2}$ colors.

- Choose an integer $i \leq K-\Delta$ uniformly randomly and color v with i-th available color.

Using Lovász Local Lemma

Can we bound $\chi_{a}(G)$ as a function of $\Delta(G)$, the maximum degree of G ?
Theorem
Let G be a graph with max degree Δ. Then $\chi_{a}(G) \leq 7 \Delta^{3 / 2}$. Let C be a set of $K \geq 7 \Delta^{3 / 2}$ colors.

- Choose an integer $i \leq K-\Delta$ uniformly randomly and color v with i-th available color.

Let A_{P} be the event that a 4-vertex path $P=v_{1} v_{2} v_{3} v_{4}$ gets only two colors.

$$
\mathbb{P}\left(A_{P}\right) \leq \frac{1}{(K-\Delta)^{2}}
$$

Using Lovász Local Lemma

Can we bound $\chi_{a}(G)$ as a function of $\Delta(G)$, the maximum degree of G ?
Theorem
Let G be a graph with max degree Δ. Then $\chi_{a}(G) \leq 7 \Delta^{3 / 2}$. Let C be a set of $K \geq 7 \Delta^{3 / 2}$ colors.

- Choose an integer $i \leq K-\Delta$ uniformly randomly and color v with i-th available color.

Let A_{P} be the event that a 4-vertex path $P=v_{1} v_{2} v_{3} v_{4}$ gets only two colors.

$$
\mathbb{P}\left(A_{P}\right) \leq \frac{1}{(K-\Delta)^{2}}
$$

A_{P} is independent of all $A_{P^{\prime}}$ with $P \cap P^{\prime}=\emptyset$.

Using Lovász Local Lemma

Can we bound $\chi_{a}(G)$ as a function of $\Delta(G)$, the maximum degree of G ?
Theorem
Let G be a graph with max degree Δ. Then $\chi_{a}(G) \leq 7 \Delta^{3 / 2}$. Let C be a set of $K \geq 7 \Delta^{3 / 2}$ colors.

- Choose an integer $i \leq K-\Delta$ uniformly randomly and color v with i-th available color.

Let A_{P} be the event that a 4-vertex path $P=v_{1} v_{2} v_{3} v_{4}$ gets only two colors.

$$
\mathbb{P}\left(A_{P}\right) \leq \frac{1}{(K-\Delta)^{2}}
$$

A_{P} is independent of all $A_{P^{\prime}}$ with $P \cap P^{\prime}=\emptyset$.
The dependency degree is (less than)

$$
d<4 \cdot 4 \cdot \Delta^{3}=16 \Delta^{3}
$$

Using Lovász Local Lemma

Can we bound $\chi_{a}(G)$ as a function of $\Delta(G)$, the maximum degree of G ?

Theorem

Let G be a graph with max degree Δ. Then $\chi_{a}(G) \leq 7 \Delta^{3 / 2}$.
Theorem (LLL)
If $\mathbb{P}\left(A_{i}\right) \leq p, A_{i}$ is mutually independent of $\mathscr{A} \backslash \mathscr{D}_{i}$ with
$\left|\mathscr{D}_{i}\right| \leq d$, and ep $(d+1) \leq 1$, then $\mathbb{P}\left(\bigcap_{i=1}^{n} \overline{A_{i}}\right)>0$.
Let C be a set of $K \geq 7 \Delta^{3 / 2}$ colors. We have

$$
p \leq \frac{1}{(K-\Delta)^{2}} \quad \text { and } \quad d<4 \cdot 4 \cdot \Delta^{3}=16 \Delta^{3}
$$

and so

$$
e p(d+1) \leq \frac{e\left(16 \Delta^{3}\right)}{\left(7 \Delta^{3 / 2}-\Delta\right)^{2}}<\frac{0.89 \Delta}{\left(\Delta^{1 / 2}-\frac{1}{7}\right)^{2}}<1
$$

Using Lovász Local Lemma

Can we bound $\chi_{a}(G)$ as a function of $\Delta(G)$, the maximum degree of G ?

Theorem

Let G be a graph with max degree Δ. Then $\chi_{a}(G) \leq 7 \Delta^{3 / 2}$.
Theorem (LLL)
If $\mathbb{P}\left(A_{i}\right) \leq p, A_{i}$ is mutually independent of $\mathscr{A} \backslash \mathscr{D}_{i}$ with
$\left|\mathscr{D}_{i}\right| \leq d$, and ep $(d+1) \leq 1$, then $\mathbb{P}\left(\bigcap_{i=1}^{n} \overline{A_{i}}\right)>0$.
Let C be a set of $K \geq 7 \Delta^{3 / 2}$ colors. We have

$$
p \leq \frac{1}{(K-\Delta)^{2}} \quad \text { and } \quad d<4 \cdot 4 \cdot \Delta^{3}=16 \Delta^{3}
$$

and so

$$
e p(d+1) \leq \frac{e\left(16 \Delta^{3}\right)}{\left(7 \Delta^{3 / 2}-\Delta\right)^{2}}<\frac{0.89 \Delta}{\left(\Delta^{1 / 2}-\frac{1}{7}\right)^{2}}<1
$$

Conclusion

LLL: If a set of bad events that are mostly mutually independent happen with low probability, then with positive probability none of them happen.

Applications in graphs, hypergraphs, coloring, transversals, satisfiability, combinatorics of words, etc.

Conclusion

LLL: If a set of bad events that are mostly mutually independent happen with low probability, then with positive probability none of them happen.

Applications in graphs, hypergraphs, coloring, transversals, satisfiability, combinatorics of words, etc.

Main inconvenience: Not algorithmic/non constructive, only proves existence.

Conclusion

LLL: If a set of bad events that are mostly mutually independent happen with low probability, then with positive probability none of them happen.

Applications in graphs, hypergraphs, coloring, transversals, satisfiability, combinatorics of words, etc.

Main inconvenience: Not algorithmic/non constructive, only proves existence.

Thank you for your attention!

