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Introduction

Probabilistic methods
▶ prove the existence of combinatorial objects
▶ using probabilistic tools and arguments

▶ First moment principles: linearity of expectation
▶ Second moment inequalities
▶ Lovász Local Lemma
▶ Entropy Compression
▶ Concentration inequalities
▶ . . .
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Outline of today’s talk

▶ a warmup example
▶ hypergraph coloring problem
▶ statement of the Lovász Local Lemma
▶ application in hypergraph coloring
▶ application in acyclic graph coloring
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Warmup example

Given a graph on n vertices and m edges, what minimum size
of a bipartite (spanning) subgraph can be guaranteed?
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Warmup example

Given a graph on n vertices and m edges, what minimum size
of a bipartite (spanning) subgraph can be guaranteed?

The best we can hope for is ∼ m
2 :

▶ a complete graph on n vertices has
(n
2

)
∼ n2
2 edges

▶ a complete bipartite graph on ⌈n2⌉+ ⌊n2⌋ vertices has ∼
n2
4

edges
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Warmup example

Randomized procedure
▶ For each vertex, choose a color (red/blue) independently,
uniformly at random

▶ Remove monochromatic edges

For an edge e, let Xe =

{
1 if e is bichromatic,
0 if e is monochromatic.

Then E(Xe) = 1
2 , and by linearity of expectation,

E(
∑
e∈E(G) Xe) =

∑
e∈E(G) E(Xe) =

m
2 .

Therefore, there exists a coloring with at least m2 bichromatic
edges.
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Hypergraph coloring

A hypergraph H = (V ,E ) is a couple of sets with
▶ V a (finite nonempty) set of vertices, and
▶ E ⊆ 2V a set of nonempty subsets of V , called edges.

A hypergraph is k-uniform if |e| = k ∀e ∈ E .
A hypergraph is k-regular if |{e ∈ E : v ∈ e}| = k ∀v ∈ V .

A hypergraph H is t-colorable if one can color its vertices with
t colors without monochromatic edges.

Is every k-regular k-uniform hypergraph 2-colorable?

Not for k = 2.
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Hypergraph coloring

Is every k-regular k-uniform hypergraph 2-colorable?

Not for k = 3:

How about k sufficiently large?
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Hypergraph coloring
Is every k-regular k-uniform hypergraph 2-colorable?

How about k sufficiently large?

Randomized procedure
▶ For each vertex, choose a color (red/blue) independently,
uniformly at random

For e ∈ E , let Ae denote the event that e is monochromatic.

P(Ae) =
1
2k−1

∀e ∈ E P

(⋂
e∈E

Ae

)
= ?

If A := (Ae , e ∈ E ) were independent, we would have

P

(⋂
e∈E

Ae

)
=

(
1− 1
2k−1

)m
> 0

18/32
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Mutually independent events

Definition
Let A be an event and let B be a set of events in a probability
space. We say that A is mutually independent of B if

P

(
A |

⋂
Bi∈S

Bi

)
= P(A)

for every set S ⊆ B.

For example, in the context of random hypergraph coloring,
Ae is mutually independent of

{Ae′ : e ∩ e ′ = ∅} .
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Lovász Local Lemma
If a set of bad events that are mostly mutually independent happen with low
probability, then with positive probability none of them happen.

Theorem (Lovász Local Lemma, Symmetric version)
Let A = {A1,A2, . . . ,An} be a set of events such that for
each i = 1, 2 . . . , n
▶ P(Ai) ≤ p and
▶ ∃Di ⊂ A of size at most d such that
Ai is mutually independent of A \ Di .

If
e · p · (d + 1) ≤ 1

then

P

(
n⋂
i=1

Ai

)
> 0.
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Lovász Local Lemma
If a set of bad events that are mostly mutually independent happen with low
probability, then with positive probability none of them happen.

Theorem (LLL)
If P(Ai) ≤ p, Ai is mutually independent of A \ Di with

|Di | ≤ d, and ep(d + 1) ≤ 1, then P
(
n⋂
i=1
Ai

)
> 0.

In the context of random coloring of a k-regular k-uniform

hypergraph, p =
1
2k−1

and each Ae is mutually independent of

all but at most k2 other edges, so d = k2.

There exists a coloring without a monochromatic edge
whenever e

2k−1
· k2 ≤ 1.
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Hypergraph coloring

Theorem (Lovász and Erdős 1975)
Let k ≥ 9. Then every k-regular k-uniform hypergraph is
2-colorable.

Theorem (Alon and Bregman 1988)
Let k ≥ 8. Then every k-regular k-uniform hypergraph is
2-colorable.

Theorem (Alon and Bregman 1988, Henning and
Yeo 2013)
Let k ≥ 4. Then every k-regular k-uniform hypergraph is
2-colorable.
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Acyclic graph coloring
Definition
Let G = (V ,E ) be a graph. A coloring
φ : V (G ) → {1, 2, . . . , k} is an acyclic coloring of G if
▶ φ(u) ̸= φ(v) ∀uv ∈ E (G ), (φ is a proper coloring)
▶ there is no bichromatic cycle in G .

not a proper coloring
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Acyclic graph coloring

Definition
Let G = (V ,E ) be a graph. A coloring
φ : V (G ) → {1, 2, . . . , k} is an acyclic coloring of G if
▶ φ(u) ̸= φ(v) ∀uv ∈ E (G ), (φ is a proper coloring)
▶ there is no bichromatic cycle in G .

Definition
The acyclic chromatic number of a graph G, denoted by
χa(G ), is the smallest k such that G admits an acyclic
coloring with k colors.

Can we bound χa(G ) as a function of ∆(G ), the
maximum degree of G?
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Greedy bound
Can we bound χa(G ) as a function of ∆(G ), the maximum degree of G?

If we color every vertex with a color distinct from all the colors
of its neighbors and the neighbors of its neighbors, surely we
will not create any bichromatic cycle.

This is always possible provided we have at least

∆+∆(∆− 1) + 1 = ∆2 + 1

colors. Hence,
χa(G ) ≤ ∆2 + 1

for every graph G .

27/32



Using Lovász Local Lemma
Can we bound χa(G ) as a function of ∆(G ), the maximum degree of G?

Theorem (Alon, McDiarmid, Reed 1991)
Let G be a graph with maximum degree ∆. Then

χa(G ) ≤ 50∆4/3.

On the other hand, there are graphs for which

χa(G ) = Ω

(
∆4/3

(log∆)1/3

)
.
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Using Lovász Local Lemma
Can we bound χa(G ) as a function of ∆(G ), the maximum degree of G?

Theorem
Let G be a graph with maximum degree ∆. Then

χa(G ) ≤ 7∆3/2.

Let C be a set of K ≥ 7∆3/2 colors.
Randomized procedure : For each vertex v , let F (v) be the set
of colors forbidden at v – the colors of the neighbors already
colored, and let C (v) = C \ F (v) be the set of available colors
at v . Clearly, |F (v)| ≤ ∆.
▶ Choose an integer i ≤ K −∆ uniformly randomly and
color v with i -th available color.

This procedure gives a proper coloring of G .
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Using Lovász Local Lemma
Can we bound χa(G ) as a function of ∆(G ), the maximum degree of G?

Theorem
Let G be a graph with max degree ∆. Then χa(G ) ≤ 7∆3/2.
Let C be a set of K ≥ 7∆3/2 colors.
▶ Choose an integer i ≤ K −∆ uniformly randomly and
color v with i -th available color.

Let AP be the event that a 4-vertex path P = v1v2v3v4 gets
only two colors.

P(AP) ≤
1

(K −∆)2
.

AP is independent of all AP′ with P ∩ P ′ = ∅.
The dependency degree is (less than)

d < 4 · 4 ·∆3 = 16∆3.
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Theorem (LLL)
If P(Ai) ≤ p, Ai is mutually independent of A \ Di with

|Di | ≤ d, and ep(d + 1) ≤ 1, then P
(
n⋂
i=1
Ai

)
> 0.

Let C be a set of K ≥ 7∆3/2 colors. We have

p ≤ 1
(K −∆)2

and d < 4 · 4 ·∆3 = 16∆3

and so

ep(d + 1) ≤ e(16∆3)
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(∆1/2 − 1
7)
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< 1
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Conclusion

LLL: If a set of bad events that are mostly mutually
independent happen with low probability, then with positive
probability none of them happen.

Applications in graphs, hypergraphs, coloring, transversals,
satisfiability, combinatorics of words, etc.

Main inconvenience: Not algorithmic/non constructive, only
proves existence.

Thank you for your attention!
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