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Motivational Example

Global Optimization Problem
Given a smooth function f on a compact domain Cn ⊂ Rn, find all local
minima of f located in the interior of Cn.

Cn = [−1, 1]n,

f ∈ C∞(Cn,R), crit(f ) = {x ∈ int(Cn) | ∇f (x) = 0}.

f (x , y) =
(
exp(x2 + y2)− 3

)2
+ (x + y − sin(3(x + y)))2
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Smooth Functions and Critical Points

Geometric Form of Sard’s Theorem

Given f a smooth function over a compact domain, the critical values of f
form a closed negligible set in R, i.e. a set of measure 0.

f = (x2 + y2 − 1)2
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Critical Points of Morse - Analytic Functions

Lemma

Let f : Rn → R be analytic on a neighborhood of x∗, an isolated local
minimum of f in Cn.
There exists an r0 > 0 such that for any choice of r ∈ (0, r0], there is a
constant ϵ > 0 such that if a function g , analytic on the ball B(x∗, r0)
satisfies

∥f − g∥L2(B(x∗,r)) < ϵ,

then g admits a local minimum in B(x∗, r).
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Approximation theory

Project f onto some subset X of m-dimensional linear spaces Vm.

"Why are polynomial and rational approximations useful? Not because r(x) is
easier to evaluate than exp(x), but because [. . . ] r(∂/∂x) is easier to evaluate
than exp(∂/∂x).
Not because we can evaluate p(x), but because we can find its roots !"- N.
Trefethen
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Summarized Method

Let Pd ⊂ R[x1, . . . , xn] denote the space of real polynomials of degree at
most d , of dimension m =

(n+d
d

)
.

Accurately approximate f by a polynomial u ∈ Pd .
(a) Constructed from point evaluations of f ,
(b) Stable with respect to the sample set and robust to noise

perturbations,
(c) Of the lowest degree possible.

Use symbolic computation methods to compute exactly the critical locus
crit(u) of u in Cn.

Initiate local minimization methods on f at each point in crit(u).
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Approximations in L2-Norm and Discrete L2-Norm

ρ : probability measure on Cn
S ← {s1, . . . , sK | si ∈ Cn} ∼i .i .d . ρ

∥f ∥ =
(∫

Cn
f (x)2dρ(x)

) 1
2

and ∥f ∥S =

(
1
K

K∑
i=1

f (si )
2

) 1
2

Ud = argmin
p∈Pd

(∫
Cn
(p(x)− f (x))2 dρ(x)

)

ud ,S = argmin
p∈Pd

(
K∑
i=1

(p(si )− f (si ))
2

)
.

ed(f ) = ∥f − Ud∥.
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Solving Polynomial Least Squares - Uniform Weights

Let L1, . . . , Lm be a basis of Pd , where m =
(n+d

d

)
.

S ← {s1, . . . , sK | si ∈ Cn} ∼i .i .d . ρ

Let G be the m ×m Gramian matrix

G (S)j ,k = ⟨Lj , Lk⟩S =
1
K

∑
s∈S

Lj(s)Lk(s). (0.1)

The vector of evaluations F = [F1, . . . ,Fm] given by

Fj =
1
K

K∑
i=1

f (si )Lj(si ).

The solution to the normal equation

Gc = F (0.2)

gives the coefficients of the polynomial ud ,S =
∑m

i=1 ciLi .
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Least Squares Polynomial Approximation - Uniform Weights

Let L1, . . . , Lm be a basis of Pd , where m =
(n+d

d

)
.

km(x) =
m∑
i=1

Li (x)
2

L2-norm convergence in expectation [Cohen and Migliorati]
Assuming supx∈Cn(|f (x)|) ≤ τ , and for a set r > 0, if the following holds

sup
x∈Cn

km(x) ≤ κ
K

lnK
, κ =

1− ln 2
2 + 2r

, (0.3)

then we have

E(∥f − ud ,S∥2) ≤ (1 + ϵ(K )) ed(f )
2 + 8τ2K−r (0.4)

where ϵ(K ) = 4κ
lnK , which converges to 0 as K goes to infinity.
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lnK , which converges to 0 as K goes to infinity.

Georgy Scholten (LIP6-LJLL) Global Optimization March 4, 2024 9 / 27



Superlinear Dependence on m

Let ρ be the Lebesgue measure on [−1, 1], and L1, . . . , Lm be the
re-normalized Legendre polynomials of degree at most m.

In that case, we have supx∈[−1,1]|Lj(x)| = Lj(1) =
√

1 + 2j .

This requires a

km(x) = m2 ≤ κ
K

ln(K )
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Solving Weighted Polynomial Least Squares

Now we consider L1, . . . , Lm an L2(Cn, ρ) orthonormal basis of Pd and w a
weight function such that

∫
Cn w

−1dρ = 1.
We consider a new sampling measure

w dµ = dρ

We sample S from µ and compute

ud ,w ,S = argmin
p∈Pd

(
K∑
i=1

w(si ) (p(si )− f (si ))
2

)
.
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Weighted Least Squares Polynomials

The polynomial ud ,w ,S is given by the solution to the normal equation

Gwc = Fw , (0.5)

where

Gw (S)j ,k = ⟨Lj , Lk⟩S =
1
K

K∑
i=1

w(si )Lj(si )Lk(si )

(Fw )j =
1
K

K∑
i=1

w(si )f (si )Lj(si ),

gives the coefficients of the polynomial ud ,w ,S =
∑m

i=1 ciLi .
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Optimal Weighted Least Squares

The weighted version of the quantity previously defined,

km,w (x) =
m∑
i=1

w(x)Li (x)
2, (0.6)

gives us some control over the convergence of the weighted least squares
polynomial approximant.

Weighted L2 convergence in expectation [Cohen and Migliorati, 2017]
Assuming supx∈Cn(|f (x)|) ≤ τ , and for a set r > 0, if the following holds

sup
x∈Cn

km,w (x) ≤ κ
K

lnK
, κ =

1− ln 2
2 + 2r

,

then we have

E(∥f − ud ,w ,S∥2) ≤ (1 + ϵ(K )) ed(f )
2 + 8τ2K−r , (0.7)

where ϵ(K ) = 4κ
lnK , which converges to 0 as K goes to infinity.
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Optimal Weighted Least Squares

For the choice of sampling measure and weight function

dµ =
km
m

dρ, w(x) =
m∑m

i=1 Li (x)
2 ,

We can restate the previous result as follows:

Corollary
For r > 0, if

m ≤ κ
K

lnK
where κ =

1− ln 2
2 + 2r

,

then we have

E(∥f − ud ,S∥2) ≤ (1 + ϵ(K )) ed(f )
2 + 8τ2K−r . (0.8)
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Our Method Summarized

Set a relative error δ, a confidence level µ and a tolerance ϵ > 0.
For any given r > 0 and d ∈ N
1: Kd ← min

{
K ∈ N |

(n+d
d

)
≤ 1−ln 2

2+2r
K
lnK

}
2: S1(d)← {s1, . . . , sKd

} ∼i .i .d . µ

3: ud ← argminp∈Pd

(
1
Kd

∑Kd
i=1 w(si )(p(si )− f (si ))

2
)

4: S2(d)← {s1, . . . , s2∗Kd
} ∼i .i .d . µ, with S1(d) ⊆ S2(d)

5: ũd ← argminp∈Pd

(
∥p − f ∥S2(d)

)
6: Kcheck ← min

{
K ∈ N | 2

(n+d
d

)
exp

(
− ζ(δ)K

(n+d
d )

)
≤ µ

}
7: S̃ ← {s1, . . . , sKcheck

} ∼i .i .d . ρ
8: if ∥ud − ũd∥S̃ ≥ ϵ then
9: Kd ← 2Kd

10: S1(d)← S2(d)
11: ud ← ũd
12: Repeat from (4)
13: end if
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Example

f (x) = sin(10πx)+sin(10πy)+sin(20πx) sin(20πy)−cos(30πx) cos(30πy)

Least-squares approximant of degree 10 on K = 10000 samples.Georgy Scholten (LIP6-LJLL) Global Optimization March 4, 2024 16 / 27



Example

Least-squares approximant of degree 12 on K = 10000 samples.
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Example

Least-squares approximant of degree 14 on K = 10000 samples.
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Example

Least-squares approximant of degree 16 on K = 10000 samples.
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Example

Least-squares approximant of degree 18 on K = 10000 samples.
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Example

Least-squares approximant of degree 20 on K = 10000 samples.
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Back To Deuflhard’s Example

Approximant constructed on K = 200 sample points.

Degree 8 approximant in Chebyshev
basis, condition number of Gw : 57

.

Degree 8 approximant in standard basis,
condition number of G : 1.67 · 105
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Back To Deuflhard’s Example

Approximant constructed on K = 200 sample points.

Degree 16 approximant in Chebyshev
basis, condition number of Gw : 3.31 · 106

.

Degree 16 approximant in standard
basis, condition number of G : 6.30 · 1011
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Back To Deuflhard’s Example

Approximant constructed on K = 800 samples, condition number of Gw :
3.96 · 103
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Discussions

Numerical stability of constructing Least-Squares approximants.

Lemma (Morse’s Lemma)
Let f ∈ crit∞ and x∗ ∈ Cn be a non-degenerate critical point of f with
Hf (x

∗) of index j . Then there exists (x1, . . . , xn) such that, on some small
open neighborhood of x∗, we have

f (x) = f (x∗)−
j∑

i=1

x2
i +

n∑
i=j+1

x2
i .

Maple LS Solve for larger examples.
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A More Ambitious Example

f (x , y) = expsin(50x)+sin(60 expy ) sin(70 sin(x))

+ sin(sin(80y))− sin(10(x + y)) + (x2 + y2)/4. (0.9)
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