JNCF 2024

Topology and periods of elliptic surfaces

Eric Pichon-Pharabod

March 8th 2024

arXiv: 2401.05131

Elliptic curves

Smooth projective complex algebraic curves are closed oriented real surfaces. Their topology is thus determined by an integer, the **genus** of the curve.

An elliptic curve is a smooth algebraic curve of genus 1.

Elliptic surfaces

An **elliptic surface** S is a smooth algebraic surface equipped with a map to the projective line

 $f: S \to \mathbb{P}^1$

such that all but finitely many fibres $f^{-1}(t)$ are elliptic curves.

Elliptic surfaces

Example: The **small Apéry numbers** is a sequence that was

introduced by Apéry to prove the irrationality of $\zeta(2)$.

$$u_n = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k} \qquad f(t) = \sum_{n=0}^\infty u_n t^n = 1 + 3t + 19t^2 + 147t^3 + 1251t^4 + \dots$$

They are characterised by an integral solution to the differential operator

$$(t^3 + 11t^2 - t) \partial t^2 + (3t^2 + 22t - 1) \partial t + t + 3$$

which can be linked to the geometry of the rational elliptic surface

$$y^{2} + (t-1)xy + ty = x^{3} - tx^{2}$$
.

Example: The **sunset graph** (a Feynman graph) is associated to an **elliptic K3 surface**.

Periods and classifying varieties

A period of an algebraic variety is the integral of a form of the variety on a cycle.

They encode the comparison between **topological data** (cycles) and **algebraic data** (algebraic De Rham forms).

$$H_n(S, \mathbb{Z}) \times H_{DR}^n(S) \to \mathbb{C} \qquad \gamma, \omega \mapsto \int_{\gamma} \omega$$
 [Stiller 1987]

Reach in Quantum field theory (Feynman integrals), Hodge theory, motives, number theory (BSD conjecture) ...

e.g. Torelli-type theorems:

 $V(P_1)$ is isomorphic to $V(P_2)$ if and only if their periods are "the same".

Goal: compute numerical approximations of these integrals with large precision.

For this we need a representation of the integration cycles that is well suited for integration.

Previous works

[Deconinck, van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]:

Algebraic curves (Riemann surfaces)

[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]:

Higher dimensional varieties (double covers of \mathbb{P}^2 ramified along 6 lines / of \mathbb{P}^3 ramified along 8 planes)

Picture by Alessandra Sarti

[Sertöz 2019]: compute the period matrix of hypersurfaces by deformation.

[Lairez, PP, Vanhove 2023]: compute the period matrix of hypersurfaces by integration.

(Efficient enough to compute periods of quartic surfaces)

relies on an effective description of the topology

Monodromy

The fibre $E_t = f^{-1}(t)$ above *t*, which is an elliptic curve, deforms as *t* moves in \mathbb{P}^1 (Ehresmann's fibration theorem).

The map $\ell_*: H_1(E_b) \to H_1(E_b)$ induced by this deformation along a loop ℓ is called the **monodromy along** ℓ .

The monodromy is encoded in a differential operator: the **Picard-Fuchs equation**.

A Dehn twist

When the monodromy is a Dehn twist, the singular fibre is said to be of Lefschetz type. $\ell_* - id$ has rank 1 and its image is primitive.

7/18

Computing the homology of elliptic surface

 $\partial \tau_{\mathcal{P}}(\gamma) = \gamma' - \gamma$ We can recover integration 2-cycles $\gamma' = \ell_* \gamma$ for the periods of elliptic surfaces as extensions of 1-cycles of the fibre. $\pi_1(\mathbb{P}^1 \setminus \Sigma, b) \times H_1(E_h) \to H_2(S, E_h)$ $\ell, \gamma \mapsto \tau_{\ell}(\gamma)$ τ does not have boundary iff $\gamma = \gamma'$, that is This description of cycles is well-suited iff $\gamma \in \ker \ell_* - \operatorname{id}$ for integrating the periods: $f(x, y) dx dy = \iint_{\mathcal{C}} \left(\int_{Y} f(x, y) dx \right) dy$ ₽¹ Two line integrals: we know how to compute these efficiently! [Chudnovsky², Van der Hoeven, Mezzarobba]

8/18

The Lefschetz case

When all fibres are of Lefschetz type, each simple loop ℓ contributes a single nontrivial relative homology class, called the thimble.

Thimbles serve as building blocks for extensions: we can glue thimbles together in a way that matches their **boundary** to obtain closed cycles.

Obtained from the monodromy : $\partial \tau_{\ell}(\gamma) = \ell_* \gamma - \gamma$ Furthermore $H_2(S)$ is generated by extensions, a generic fibre,

and a section.

Their periods are zero.
 We only need to compute periods of extensions.

Algorithm for the Lefschetz case

- 1. Compute the set Σ of **critical values**.
- 2. Compute a basis of simple loops ℓ_1, \ldots, ℓ_r of $\pi_1(\mathbb{P}^1 \setminus \Sigma, b)$.
- 3. For each $1 \le i \le r$, compute the monodromy map ℓ_{i*} .
- 4. Glue thimbles together to obtain extension cycles.
- 5. Integrate the **periods** on these extensions.

Computing monodromy

We deform the surface to $\tilde{S}: y^2 + (t-1)xy + ty = x^3 - tx^2 + \varepsilon$.

We deform the surface to $\tilde{S}: y^2 + (t-1)xy + ty = x^3 - tx^2 + \varepsilon$.

 $\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ $\begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$ Some new vanishing extensions appear: they correspond to singular components. Their periods are zero. $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ Some other new extensions also appear.

The general case

Theorem [Moishezon 1977]: Morsifications always exist.

Kodaira classification [1963]

$$I_{\nu}, \nu \ge 1 \qquad \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} \qquad U^{\nu}$$

$$II \qquad \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \qquad VU \qquad U = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$III \qquad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad VUV \qquad V = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

$$IV \qquad \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \qquad (VU)^2$$

Theorem [Cadavid, Vélez 2009]:

The monodromy of the morsification is determined by the monodromy of S.

only cycles with nonzero periods

Theorem: The sublattice of $H_2(S)$ generated by **extensions** of *S*, the section, the **fibre** and **singular components** has full rank.

Theorem [Cadavid, Vélez 2009]:

The monodromy of the morsification is determined by the monodromy of S.

In particular we do not need to find an explicit realisation of the morsification!

The algorithm

- 1. Compute a basis of simple loops $\ell_1, ..., \ell_r$ of $\pi_1(\mathbb{P}^1 \setminus \Sigma, b)$
- 2. For each $1 \le i \le r$, compute the **monodromy map** ℓ_{i*} .
- 3. Glue thimbles together to obtain extension cycles of $H_2(S)$.
- 4. Integrate the **periods** on these cycles.
- 5. From the monodromy type of ℓ_{i^*} , recover the monodromy matrices of a **morsification** \tilde{S} .
- 6. Glue thimbles together to obtain **extension cycles** of $H_2(\tilde{S})$.
- 7. Recover the homology $H_2(\tilde{S})$ of the morsification (extensions + fibre + section).
- 8. Describe the extensions of $H_2(S)$ in terms of the extensions of $H_2(\tilde{S})$.
- 9. Recover the periods of all of $H_2(S) \simeq H_2(\tilde{S})$.

This allows for the (heuristic) computation of certain algebraic invariants of the elliptic surface (Néron-Severi group, Mordell-Weil group, ...)

Implemented in the lefschetz-family Sagemath package, available on my webpage.

Thank you for listening!

