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An elliptic curve is a smooth algebraic curve of genus 1. 

Elliptic curves
Smooth projective complex algebraic curves are closed oriented real surfaces.


Their topology is thus determined by an integer, the genus of the curve.

A curve of genus 3
A curve of genus 0


The projective line ℙ1

Λ

X ≃ ℂ/Λ

2
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An elliptic surface  is a smooth algebraic surface 

equipped with a map to the projective line

S

Elliptic surfaces

such that all but finitely many fibres  are elliptic curves.f −1(t)
f : S → ℙ1

ℙ1

f −1(t1) f −1(t2)

t1
t2t3

3

critical 

value

f −1(t3)
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Example: The sunset graph (a Feynman graph) is associated to an elliptic K3 surface.

[Bloch&Vanhove, 2014]

Example: The small Apéry numbers is a sequence that was 
introduced by Apéry to prove the irrationality of .ζ(2)

y2 + (t − 1)xy + ty = x3 − tx2 .

f(t) =
∞

∑
n=0

untn = 1 + 3t + 19t2 + 147t3 + 1251t4 + …un =
n

∑
k=0

(n
k)

2

(n + k
k )

(t3 + 11t2 − t) ∂t2 + (3t2 + 22t − 1) ∂t + t + 3
They are characterised by an integral solution to the differential operator

which can be linked to the geometry of the rational elliptic surface

Elliptic surfaces

4
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Periods and classifying varieties

5

A period of an algebraic variety is the integral of a form of the variety on a cycle.

They encode the comparison between topological data (cycles) 

and algebraic data (algebraic De Rham forms).

∫T(γ)

A
Pk

Some integration domain

without boundary

 defines a smooth variety
P
V(P) = {z ∣ P(z) = 0}

 is a polynomial A
γ

e.g. Torelli-type theorems: 

 is isomorphic to  if and only if their periods are “the same”.V(P1) V(P2)

          Hn(S, ℤ) × Hn
DR(S) → ℂ γ, ω ↦ ∫γ

ω

Reach in Quantum field theory (Feynman integrals), Hodge theory, 

motives, number theory (BSD conjecture) …

Goal: compute numerical approximations of these integrals with large precision.

[Stiller 1987]

For this we need a representation of the integration cycles that is well suited for integration.
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Previous works

6

[Sertöz 2019]: compute the period matrix of hypersurfaces by deformation.

[Deconinck, van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]: 

Algebraic curves (Riemann surfaces)

[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]: 

Higher dimensional varieties (double covers of  ramified 

along 6 lines / of  ramified along 8 planes)
ℙ2

ℙ3

[Lairez, PP, Vanhove 2023]: compute the period matrix of 
hypersurfaces by integration.


(Efficient enough to compute periods of quartic surfaces)

Picture by 
Alessandra Sarti

relies on an effective description of the topology
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Monodromy

A Dehn twist

The fibre  above , which is an elliptic curve, deforms as  moves in  
(Ehresmann’s fibration theorem).

Et = f −1(t) t t ℙ1

ℙ1

ℓ

The map  induced by this deformation 
along a loop  is called the monodromy along .

ℓ* : H1(Eb) → H1(Eb)
ℓ ℓ

Eb

b b

When the monodromy is a Dehn twist, the

singular fibre is said to be of Lefschetz type.


 has rank 1 and its image is primitive.ℓ* − id
The monodromy is encoded in a differential 

operator: the Picard-Fuchs equation. 7

  γ ≠ ℓ*γ
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Computing the homology of elliptic surface

∫τℓ(γ)
f(x, y)dxdy = ∫ℓ (∫γ

f(x, y)dx) dy

Two line integrals: 

we know how to compute these efficiently!


[Chudnovsky2, Van der Hoeven, Mezzarobba]

γ

b

ℓ

γ′ = ℓ*γ τγ′ 

ℙ1

We can recover integration 2-cycles 
for the periods of elliptic surfaces as 
extensions of 1-cycles of the fibre.

γ

This description of cycles is well-suited 
for integrating the periods:

 does not have boundary

iff , that is 


iff 

τ
γ = γ′ 

γ ∈ ker ℓ* − id


π1(ℙ1∖Σ, b) × H1(Eb) → H2(S, Eb)
ℓ, γ ↦ τℓ(γ)

∂τℓ(γ) = γ′ − γ

such a path is called a simple loop 8

Σ
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The Lefschetz case
When all fibres are of Lefschetz type, each simple loop  contributes a single 

nontrivial relative homology class, called the thimble.
ℓ

b
ℂ

H2(Eb)

1

H0(Eb)

1. Compute the set  of critical values.

2. Compute a basis of simple loops  of .

3. For each , compute the monodromy map .

4. Glue thimbles together to obtain extension cycles.

5. Integrate the periods on these extensions.

Σ
ℓ1, …, ℓr π1(ℙ1∖Σ, b)

1 ≤ i ≤ r ℓi*

9

Furthermore   is generated 
by extensions, a generic fibre, 

and a section.

H2(S)

Thimbles serve as building blocks for 
extensions: we can glue thimbles 

together in a way that matches their 
boundary to obtain closed cycles.

Obtained from the monodromy : 

∂τℓ(γ) = ℓ*γ − γ

Their periods are zero.

Algorithm for the Lefschetz case
We only need to compute


periods of extensions.
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Computing monodromy

Πij = ∫γj

∂i
tωt Π̃ij

Thus       i.e. Π̃ = ΠC

Π−1Π̃ = C ∈ GL2(ℤ)

Computation of

transcendental


nature

Πij

Π̃ij

It is sufficient to carry out this 
computation with precision  

to recover  exactly.
< 1/2

C

Analytic 

continuation

Solution to 
Picard-Fuchs

equation of ωt

Globally defined

 no monodromy⟹




The ’s are integers

γ̃j = ∑
k

ckjγk

ckj

[Chudnovsky2 90, Van der Hoeven 99,  
Mezzarobba 2010] 

10

Πij

= ∫∑k ckjγk

∂i
tωt = ∑

k
ckj ∫γk

∂i
tωt
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The general case: an example

11

1/16( 3 4
−1 −1)

The Apéry surface , defined by .S y2 + (t − 1)xy + ty = x3 − tx2

(1 4
0 1)

(−1 0
1 −1)

0

∞

1. Compute the set  of critical values


i.e., the roots of the discriminant 

Σ
t4(t − 1

16 )

2. Pick a base point

3. Compute a basis of 
simple loops of π1(ℂ∖Σ)

4. For each loop, compute 
the monodromy matrix

rank (ℓ* − id) ≠ 1

 not 

primitive
(4,0)

Not all fibres  
are Lefschetz! 

We have to find a workaround …
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The general case: an example

12

We deform the surface to  : .S̃ y2 + (t − 1)xy + ty = x3 − tx2 + ε

As the deformation is smooth,

the topology is the same: 


.H2(S) ≃ H2(S̃)
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The general case: an example

13

(1 1
0 1)

(1 1
0 1)

(1 1
0 1)

(1 1
0 1)

( 1 0
−1 1)

(1 1
0 1)

( 1 0
−1 1)

( 1 0
−1 1)

(1 1
0 1)

( 1 0
−1 1) (1 1

0 1)

This is called a morsification.
Now all fibres are of Lefschetz type.

(1 4
0 1)

(−1 0
1 −1)

( 3 4
−1 −1)( 3 4

−1 −1)

We apply the previous steps.

We deform the surface to  : .S̃ y2 + (t − 1)xy + ty = x3 − tx2 + ε
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The general case: an example

14

(1 1
0 1)

(1 1
0 1)

(1 1
0 1)

(1 1
0 1)

( 1 0
−1 1)

(1 1
0 1)

( 1 0
−1 1)

( 1 0
−1 1)

(1 1
0 1)

( 1 0
−1 1) (1 1

0 1)(1 4
0 1)

(−1 0
1 −1)

( 3 4
−1 −1) ( 3 4

−1 −1)

Some new vanishing extensions appear: 

they correspond to singular components.


Their periods are zero.
Some other new extensions also appear.

We deform the surface to  : .S̃ y2 + (t − 1)xy + ty = x3 − tx2 + ε
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The general case

15

Theorem [Moishezon 1977]: Morsifications always exist.

Theorem [Cadavid, Vélez 2009]: 

The monodromy of the morsification is determined by the monodromy of .S

Theorem: The sublattice of  generated by extensions of , the section, 
the fibre and singular components has full rank.

H2(S) S

Kodaira classification [1963]

…

Monodromy preserves the 
intersection product

(a b
c d) ( 0 1

−1 0) (a b
c d)

T

= ( 0 1
−1 0)

⟺ ad − bc = 1

The monodromy matrix is in .SL2(ℤ)

only cycles with 

nonzero periods
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(1 4
0 1) (−1 0

1 −1)( 3 4
−1 −1)

( 3 4
−1 −1)

Theorem [Cadavid, Vélez 2009]: 

The monodromy of the morsification is determined by the monodromy of .S

I1 : U I4 : U4 I*1 : UVUVUV

ℓ1 ℓ2 ℓ3

ℓ′ 1

(1 1
0 1) (1 1

0 1) (1 1
0 1) (1 1

0 1)
ℓ′ 21 ℓ′ 22 ℓ′ 23 ℓ′ 24

( 1 0
−1 1)(1 1

0 1)( 1 0
−1 1)( 1 0

−1 1) (1 1
0 1)( 1 0

−1 1) (1 1
0 1)

ℓ′ 31 ℓ′ 32 ℓ′ 33 ℓ′ 34 ℓ′ 35 ℓ′ 36 ℓ′ 37

In particular we do not need to find an explicit realisation of the morsification!

morsification
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The algorithm

Implemented in the lefschetz-family Sagemath package, available on my webpage.

1. Compute a basis of simple loops  of 

2. For each , compute the monodromy map .

3. Glue thimbles together to obtain extension cycles of .

4. Integrate the periods on these cycles.


5. From the monodromy type of , recover the monodromy matrices of a 
morsification .


6. Glue thimbles together to obtain extension cycles of .

7. Recover the homology  of the morsification (extensions + fibre + section).

8. Describe the extensions of  in terms of the extensions of .


9. Recover the periods of all of .

ℓ1, …, ℓr π1(ℙ1∖Σ, b)
1 ≤ i ≤ r ℓi*

H2(S)

ℓi*
S̃

H2(S̃)
H2(S̃)

H2(S) H2(S̃)

H2(S) ≃ H2(S̃)

This allows for the (heuristic) computation of certain algebraic invariants of the elliptic 
surface (Néron-Severi group, Mordell-Weil group, …)

17
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Thank you for listening!

18

7

ℙ1

xi

ti


