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Elliptic curves

Smooth projective complex algebraic curves are closed oriented real surfaces.
Their topology is thus determined by an integer, the genus of the curve.
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A curve of genus 0
The projective line P!

A curve of genus 3
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An elliptic curve is a smooth algebraic curve of genus 1.
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Elliptic surfaces

An elliptic surface § is a smooth algebraic surface
equipped with a map to the projective line

f:8— P!

such that all but finitely many fibres £~ (¢) are elliptic curves.
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Elliptic surfaces

Example: The small Apéry numbers is a sequence that was
introduced by Apéry to prove the irrationality of {(2).

+ k -
“, —2( > <” > f@) = Y " = 143t + 1922 + 1477 + 12511 +

n=0
They are characterised by an integral solution to the differential operator
(P + 1172 —1)or + (3P +22t— 1) ot +1+3
which can be linked to the geometry of the rational elliptic surface

Vi (t—Dxy+ty =x> —x?.

Example: The sunset graph (a Feynman graph) is associated to an elliptic K3 surface.

m
m [Bloch&Vanhove, 2014]
: w K

7PT(3 — D) / / :1:+y+acy) dacdy
(u?)P—3 ((miz +m3y + m3)(z +y + zy) — K?zy)>~P
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Periods and classifying varieties

A period of an algebraic variety is the integral of a form of the variety on a cycle.

Y
/\ A is a polynomial
Some integration domain A
—— without boundary —_— _ _
Pk P defines a smooth variety
V(P) ={z | P(z) = 0}

They encode the comparison between topological data (cycles)
and algebraic data (algebraic De Rham forms).

H,(S,Z) X Hjx(S) — C Y, > J W [Stiller 1987]
y

Reach in Quantum field theory (Feynman integrals), Hodge theory,
motives, number theory (BSD conjecture) ...

e.g. Torelli-type theorems:
V(P,) is isomorphic to V(P,) if and only if their periods are “the same”.

Goal: compute numerical approximations of these integrals with large precision.

For this we need a representation of the integration cycles that is well suited for integration.
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Previous works

[Deconinck, van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]:
Algebraic curves (Riemann surfaces)

<> <>
/\@
[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]:

Higher dimensional varieties (double covers of P? ramified
along 6 lines / of P3 ramified along 8 planes)

Picture by
Alessandra Sarti

[Sertoz 2019]: compute the period matrix of hypersurfaces by deformation.

C:j [Lairez, PP, Vanhove 2023]: compute the period matrix of
hypersurfaces by integration.

fz (Efficient enough to compute periods of quartic surfaces)

relies on an effective description of the topology
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Monodromy

The fibre E, =f_1(t) above £, which is an elliptic curve, deforms as ¢ moves in P!
(Ehresmann’s fibration theorem).

The map 7 : H|(E,) — H,(E,) induced by this deformation
along a loop ¢ is called the monodromy along 7.

A Dehn twist

When the monodromy is a Dehn twist, the
singular fibre is said to be of Lefschetz type.

Zx — 1d has rank 1 and its image is primitive.

The monodromy is encoded in a differential
operator: the Picard-Fuchs equation.
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Computing the homology of elliptic surface

ot (y) =y —7

We can recover integration 2-cycles
for the periods of elliptic surfaces as
extensions of 1-cycles of the fibre.

S.b) X H,(E,) > Hy(S, E,)

y'=7Csy

» ) > Tf(}/)
7 does not have boundary
_ o . _ iff y = ¢/, that is
This description of cycles is well-suited iff y € ker £ — id
for integrating the periods:
2

= (]

J Jx, y)dxdy = [ ( [ Jx, y)dX> dy .

72(y) 4 b
) ) P!

(

Two line integrals: °

we know how to compute these efficiently!
[Chudnovsky2, Van der Hoeven, Mezzarobba]

such a path is called a 8
A8



The Lefschetz case

When all fibres are of Lefschetz type, each contributes a single
nontrivial relative homology class, called the

Thimbles serve as building blocks for
extensions: we can glue thimbles
together in a way that matches their

H,(E,) O boundary to obtain closed cycles.
O Obtained from the monodromy :
0t,(y) = Cay — v

Furthermore H,(S) is generated
by , a generic fibre,
. c and a

Their periods are zero.
We only need to compute

Algorithm for the Lefschetz case periods of extensions.

1. Compute the set 2 of critical values.
2. Compute a basis of 1, ....0 of ;;(PN\Z, b).
3. Foreach 1 <i < r, compute the monodromy map .

4. Glue thimbles together to obtain :
5. Integrate the periods on these extensions. 9
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Computing monodromy

Globally defined
= no monodromy

\ Analytic

I ; continuation ﬁ ; Z ;
se — a) > .o — a) — C . a)
Y =t [Chudnovsky2 90, Van der Hoeven 99, g =t k] -t

]/j Mezzarobba 2010] Zk C kjyk k Y
Solution to )

Picard-Fuchs y
[ f Vi = CiY,
equation of w, j Z kjlk
k
The ¢;;’s are integers

Thus Il =1IC i.e.

; [T = C € GL,(2)

H ® It is sufficient to carry out this
° ] Computation of computation with precision < 1/2
transcendental
nature to recover C exactly.
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The general case: an example

The Apéry surface S, defined by y? + (t — D)xy + ty = x° — tx°.

1. Compute the set X of critical values

(4,0) not i.e., the roots of the discriminant #*(z — E)
primitive
®
0
o
(0 9)
® ®

1/16 2. Pick a base point rank (?’ﬂ* - ld) 7 1

Not all fibres
are Lefschetz!

We have to find a workaround ...

11
18



The general case: an example

We deform the surface to S : y2 4+ (t — Dxy + ty = x> — tx*> + ¢.

As the deformation is smooth,
the topology is the same:
H,(S) ~ Hy(S).
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The general case: an example

We deform the surface to S : y2 4+ (t — Dxy + ty = x> — tx*> + ¢.

(5 1) o
11 01
0 1

( (
o) \ (4 9)
x / (6 1)
() === J (1))

w ()

1

6y

We apply the previous steps.

Now all fibres are of Lefschetz type.

This is called a morsification. <_1 1 (1)>
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The general case: an example

We deform the surface to S : y2 4+ (t — Dxy + ty = x> — tx*> + ¢.

)y GG

Some new vanishing extensions appear:
they correspond to singular components.
Their periods are zero. < 1 o>
1

Some other new extensions also appear.

14
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The general case

Theorem [Moishezon 1977]: Morsifications always exist.

Monodromy preserves the Kodaira classification [1963]
intersection product

=) @ (((} :1)) o-(4 1)

-1 0
a b\ (0 1\(a b\ _(0 1 N A R
c d)\-1 0)\c d/ \-10 -1.0
& ad—-bc=1 v (_01 _11) (VU)?

The monodromy matrix is in SL,(Z).

Theorem [Cadavid, Vélez 2009]:
The monodromy of the morsification is determined by the monodromy of §.

only cycles with
nonzero periods

Theorem: The sublattice of H,(S) generated by of S, the ,

the fibre and singular components has full rank.
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Theorem [Cadavid, Vélez 2009]:
The monodromy of the morsification is determined by the monodromy of S.

Z ‘5 {5

(0 1) (G5

[,:U L:U* IF - yvuvuv

morsification
v v

GDGEDG) 6D GDGDEDCH D6

2 £y Ch  Ch Ty 5 Ty 3 Uiy 35 36 2y

In particular we do not need to find an explicit realisation of the morsification!
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The algorithm

1. Compute a basis of £1,.... 0 of ;| (PN\Z, b)
2. Foreach 1 <i < r, compute the monodromy map &,

3. Glue thimbles together to obtain of H,(S).
4. Integrate the periods on these cycles.

5. From the monodromy type of £«, recover the monodromy matrices of a
morsification S.

6. Glue thimbles together to obtain of Hz(S').

7. Recover the homology HZ(S’) of the morsification ( + fibre + ).

8. Describe the extensions of H,(S) in terms of the extensions of HQ(S' ).

9. Recover the periods of all of H,(S) =~ HQ(S ).

This allows for the (heuristic) computation of certain algebraic invariants of the elliptic
surface (Néron-Severi group, Mordell-Weil group, ...)

. Implemented in the lefschetz-family Sagemath package, available on my webpage.
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Thank you for listening!
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