Cryptanalysis of multivariate signatures: Singular points of UOV and VOX

Pierre Pébereau
Sorbonne Université, LIP6, CNRS, Thales SIX UNIVERSITÉ
\section*{THALES}
March, 2024

Context

NIST Post-quantum competition

- First NIST post-quantum standards: 2022
- 2 lattice-based signatures (Dilithium, Falcon)
- a hash-based signature (SPHINCS+)

Context

NIST Post-quantum competition

- First NIST post-quantum standards: 2022
- 2 lattice-based signatures (Dilithium, Falcon)
- a hash-based signature (SPHINCS+)
- Additional signature round targeting efficiency
- 11 among 40 based on multivariate polynomial systems
- 7 among 11 multivariate schemes are based on UOV

Context

NIST Post-quantum competition

- First NIST post-quantum standards: 2022
- 2 lattice-based signatures (Dilithium, Falcon)
- a hash-based signature (SPHINCS+)
- Additional signature round targeting efficiency
- 11 among 40 based on multivariate polynomial systems
- 7 among 11 multivariate schemes are based on UOV

Our approach

Study UOV to derive results on schemes related to UOV.

Building cryptography from (quantum-)hard problems

Multivariate Quadratic Problem - MQ (n, m, q)
Find a solution (if any) $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ to a system of m quadratic equations in n variables

$$
\mathcal{P}(x)=0 \in \mathbb{F}_{q}^{m}
$$

Building cryptography from (quantum-)hard problems

Multivariate Quadratic Problem - MQ (n, m, q)

Find a solution (if any) $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ to a system of m quadratic equations in n variables

$$
\mathcal{P}(x)=0 \in \mathbb{F}_{q}^{m}
$$

Multivariate Quadratic Cryptography

A multivariate signature scheme is defined by a key pair $(\mathcal{P}, \mathcal{S})$:

Building cryptography from (quantum-)hard problems

Multivariate Quadratic Problem - MQ (n, m, q)

Find a solution (if any) $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ to a system of m quadratic equations in n variables

$$
\mathcal{P}(x)=0 \in \mathbb{F}_{q}^{m}
$$

Multivariate Quadratic Cryptography

A multivariate signature scheme is defined by a key pair $(\mathcal{P}, \mathcal{S})$:

- The public key \mathcal{P} is an instance of $\mathrm{MQ}(n, m, q), n>m$.

Building cryptography from (quantum-)hard problems

Multivariate Quadratic Problem - MQ (n, m, q)

Find a solution (if any) $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ to a system of m quadratic equations in n variables

$$
\mathcal{P}(x)=0 \in \mathbb{F}_{q}^{m}
$$

Multivariate Quadratic Cryptography

A multivariate signature scheme is defined by a key pair $(\mathcal{P}, \mathcal{S})$:

- The public key \mathcal{P} is an instance of $\mathrm{MQ}(n, m, q), n>m$.
- The secret key \mathcal{S} enables, for all $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$, to efficiently find

$$
\boldsymbol{x} \in \mathbb{F}_{q}^{n} \text { s.t. } \mathcal{P}(\boldsymbol{x})=\boldsymbol{t}
$$

UOV: Original formulation

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]
Secret key: - m quadratic polynomials $\boldsymbol{x}^{T} F_{i} \boldsymbol{x} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$
linear in x_{1}, \ldots, x_{m}.

- invertible change of variables A.

Figure 1: UOV key pair in \mathbb{F}_{257}

UOV: Original formulation

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]
Secret key: - m quadratic polynomials $\boldsymbol{x}^{T} F_{i} \boldsymbol{x} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$
linear in x_{1}, \ldots, x_{m}.

- invertible change of variables A.

Public key: m quadratic polynomials $\boldsymbol{x}^{T} P_{i} \boldsymbol{x}$.

$$
\mathcal{P}=\mathcal{F} \circ A=\left(A^{T} F_{1} A, \ldots, A^{T} F_{m} A\right)
$$

Figure 1: UOV key pair in \mathbb{F}_{257}

UOV: Original formulation

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]
Secret key: - m quadratic polynomials $\boldsymbol{x}^{T} F_{i} \boldsymbol{x} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$
linear in x_{1}, \ldots, x_{m}.

- invertible change of variables A.

Public key: m quadratic polynomials $\boldsymbol{x}^{\top} P_{i} \boldsymbol{x}$.

$$
\mathcal{P}=\mathcal{F} \circ A=\left(A^{T} F_{1} A, \ldots, A^{T} F_{m} A\right)
$$

Naming conventions and parameters
With $I=\left\langle p_{1}(\boldsymbol{x}), \ldots, p_{m}(\boldsymbol{x})\right\rangle$, define the UOV variety:

$$
V(I)=\left\{x \in \overline{\mathbb{F}}_{q}^{m}, \mathcal{P}(\boldsymbol{x})=\mathbf{0}\right\}
$$

UOV: Original formulation

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]
Secret key: - m quadratic polynomials $\boldsymbol{x}^{\top} F_{i} \boldsymbol{x} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ linear in x_{1}, \ldots, x_{m}.

- invertible change of variables A.

Public key: m quadratic polynomials $\boldsymbol{x}^{\top} P_{i} \boldsymbol{x}$.

$$
\mathcal{P}=\mathcal{F} \circ A=\left(A^{T} F_{1} A, \ldots, A^{T} F_{m} A\right)
$$

Naming conventions and parameters
With $I=\left\langle p_{1}(\boldsymbol{x}), \ldots, p_{m}(\boldsymbol{x})\right\rangle$, define the UOV variety:

$$
V(I)=\left\{\boldsymbol{x} \in \overline{\mathbb{F}}_{q}^{m}, \mathcal{P}(\boldsymbol{x})=\mathbf{0}\right\}
$$

$\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ is a signature for message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$ if $\mathcal{P}(\boldsymbol{x})=\boldsymbol{t}$.

UOV: Alternative formulation

Characterisation of the secret key [Kipnis, Shamir 1998]

Trapdoor: linear subspace $\mathcal{O} \subset \mathbb{F}_{q}^{n}$ of dimension m such that

$$
\mathcal{O} \subset V(I)
$$

UOV: Alternative formulation

Characterisation of the secret key

Trapdoor: linear subspace $\mathcal{O} \subset \mathbb{F}_{q}^{n}$ of dimension m such that

$$
\mathcal{O} \subset V(I)
$$

Observation

The first m columns of the secret matrix A^{-1} form a basis of \mathcal{O}.

UOV: Alternative formulation

Characterisation of the secret key

Trapdoor: linear subspace $\mathcal{O} \subset \mathbb{F}_{q}^{n}$ of dimension m such that

$$
\mathcal{O} \subset V(I)
$$

Observation

The first m columns of the secret matrix A^{-1} form a basis of \mathcal{O}.

Cryptanalysis: Key recovery

Find a basis of \mathcal{O} with less than 2^{λ} logical gates.

UOV: Alternative formulation

Characterisation of the secret key
Trapdoor: linear subspace $\mathcal{O} \subset \mathbb{F}_{q}^{n}$ of dimension m such that

$$
\mathcal{O} \subset V(I)
$$

Observation

The first m columns of the secret matrix A^{-1} form a basis of \mathcal{O}.

Cryptanalysis: Key recovery

Find a basis of \mathcal{O} with less than 2^{λ} logical gates.

Security level	I	III	V
Classical gates	2^{143}	2^{207}	2^{272}

Contributions

One vector to full key recovery in polynomial time

From one vector in \mathcal{O}, return a basis of \mathcal{O} in polynomial time.

Contributions

One vector to full key recovery in polynomial time [P. 2023]

From one vector in \mathcal{O}, return a basis of \mathcal{O} in polynomial time.
Singular points of UOV and UOV $\hat{+}$

- Existence and dimension of singular locus of $V(I)$.

Contributions

One vector to full key recovery in polynomial time P. 2023]

From one vector in \mathcal{O}, return a basis of \mathcal{O} in polynomial time.
Singular points of UOV and UOV ${ }^{\hat{+}}$

- Existence and dimension of singular locus of $V(I)$.
- Faster computation of singular points of $\mathrm{UOV}^{\hat{+}}$.

Contributions

One vector to full key recovery in polynomial time [P. 2023]

From one vector in \mathcal{O}, return a basis of \mathcal{O} in polynomial time.

Singular points of UOV and UOV ${ }^{\hat{+}}$

- Existence and dimension of singular locus of $V(I)$.
- Faster computation of singular points of $\mathrm{UOV}^{\hat{+}}$.

Subfield attack on QR-UOV ${ }^{\hat{+}}$

Identified a weakness in a structured variant of UOV ${ }^{\hat{+}}$ submitted to the additional NIST call for signature schemes ${ }^{1}$:

- Broken on a laptop in $0.3 s, 1.35 s, 0.56 s$ (level I, III, V).

1 [Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]

Contributions

Singular points of UOV and UOV ${ }^{\hat{+}}$

- Existence and dimension of singular locus of $V(I)$.
- Faster computation of singular points of $\mathrm{UOV}^{\hat{+}}$.

Singular points

$y^{2}=x^{3}-3 x+2$ in \mathbb{R}^{2}

$$
x^{2}-y^{2} z^{2}+z^{3} \text { in } \mathbb{R}^{3}
$$

(from [Cox, Little, O'Shea])

Singular points

Singular points

$$
y^{2}=x^{3}-3 x+2 \text { in } \mathbb{R}^{2}
$$

Singular point: $(1,0)$

$$
x^{2}-y^{2} z^{2}+z^{3} \text { in } \mathbb{R}^{3}
$$

Singular points: line ($x=z=0$) (from [Cox, Little, O'Shea])

Singular points

$$
y^{2}=x^{3}-3 x+2 \text { in } \mathbb{R}^{2}
$$

Singular point: $(1,0)$

Singular points: line $(x=z=0)$ (from [Cox, Little, O'Shea])

Definition

Let $I=\left\langle p_{1}, \ldots, p_{m}\right\rangle$ be an ideal of $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
$\boldsymbol{x} \in V(I) \backslash\{0\}$ is singular if $\operatorname{Jac}_{\mathcal{P}}(\boldsymbol{x})$ has rank less than $n-m$.

Singular points

$$
y^{2}=x^{3}-3 x+2 \text { in } \mathbb{R}^{2}
$$

Singular point: $(1,0)$

Singular points: line $(x=z=0)$ (from [Cox, Little, O'Shea])

Definition

Let $I=\left\langle p_{1}, \ldots, p_{m}\right\rangle$ be an ideal of $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
$\boldsymbol{x} \in V(I) \backslash\{0\}$ is singular if $\operatorname{Jac}_{\mathcal{P}}(\boldsymbol{x})$ has rank less than $n-m$.

$$
\operatorname{Jac}_{\mathcal{P}}(x)=\left(\frac{\partial}{\partial x_{j}} p_{i}(x)\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{m \times n}
$$

Structured equations yield a structured Jacobian

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]
Secret key \mathcal{F} : m quadratic equations $\boldsymbol{x}^{T} F_{i} \boldsymbol{x}$ linear in x_{1}, \ldots, x_{m}.

Structured equations yield a structured Jacobian

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]
Secret key \mathcal{F} : m quadratic equations $\boldsymbol{x}^{T} F_{i} \boldsymbol{x}$ linear in x_{1}, \ldots, x_{m}.

Secret Jacobian

The Jacobian of $\mathcal{F}(\boldsymbol{x})$ has a special shape:

Structured equations yield a structured Jacobian

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]
Secret key \mathcal{F} : m quadratic equations $\boldsymbol{x}^{T} F_{i} \boldsymbol{x}$ linear in x_{1}, \ldots, x_{m}.

Secret Jacobian

The Jacobian of $\mathcal{F}(\boldsymbol{x})$ has a special shape:

Where $J_{1} \in \mathbb{F}_{q}\left[x_{m+1}, \ldots, x_{n}\right]^{m \times m}$ and $J_{2} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]^{m \times n-m}$.

Singular points leak the trapdoor

Singular points in \mathcal{O}
 If $\boldsymbol{x} \in \mathcal{O}$, then $\boldsymbol{x} \in V(I)$

Singular points leak the trapdoor

Singular points in \mathcal{O}
 If $\boldsymbol{x} \in \mathcal{O}$, then $\boldsymbol{x} \in V(I)$ and
 $$
\operatorname{Jac}_{\mathcal{F}}(\boldsymbol{x})=\left[\begin{array}{ll} & J_{2}(\boldsymbol{x}) \end{array}\right]
$$

Singular points leak the trapdoor

Singular points in \mathcal{O}

If $x \in \mathcal{O}$, then $x \in V(I)$ and

$$
\begin{gathered}
\operatorname{Jac}_{\mathcal{F}}(\boldsymbol{x})=\left[\begin{array}{cc}
0 & J_{2}(\boldsymbol{x}) \\
& \\
1 \cdots \cdots m & m+1 \cdots \cdots \cdots
\end{array}\right]
\end{gathered}
$$

Determinantal ideal

$\operatorname{Sing}(V(I)) \cap \mathcal{O}$ is defined by a determinantal ideal noted \mathcal{J}_{m-1}.

$$
\mathcal{J}_{m-1}=\left\langle\operatorname{MaxMinors}\left(\mathrm{J}_{2}(\mathrm{x})\right)\right\rangle
$$

Singular points leak the trapdoor

Singular points in \mathcal{O}

If $\boldsymbol{x} \in \mathcal{O}$, then $\boldsymbol{x} \in V(I)$ and

$$
\operatorname{Jac}_{\mathcal{F}}(\boldsymbol{x})=\left[\begin{array}{cc}
0 & J_{2}(\boldsymbol{x}) \\
& \left.\begin{array}{cc}
\\
1 \cdots m m & m+1 \cdots \cdots
\end{array}\right]
\end{array}\right.
$$

Determinantal ideal

Sing $(V(I)) \cap \mathcal{O}$ is defined by a determinantal ideal noted \mathcal{J}_{m-1}.

$$
\mathcal{J}_{m-1}=\left\langle\operatorname{MaxMinors}\left(\mathrm{J}_{2}(\mathrm{x})\right)\right\rangle
$$

Dimension of the singular locus

Under a genericity assumption, [FSS13] ${ }^{1}$ yields

$$
\operatorname{dim}(\operatorname{Sing}(V(I)) \cap \mathcal{O})=3 m-n-1>0
$$

${ }^{1}$ Faugère, Safey El Din, Spaenlehauer, 2013, Theorem 10

Computing singular points

\mathcal{P} is the UOV public key: m quadratic polynomials in n variables

Computing singular points

\mathcal{P} is the UOV public key: m quadratic polynomials in n variables

Modeling singular points

(1) Minors modeling: $\mathcal{M}(\mathcal{P}):\left\{\begin{array}{l}x \in \mathbb{F}_{q}^{n} \\ \mathcal{P}(x)=0 \\ \text { MaxMinors }(\operatorname{Jac} \mathcal{P}(x))=0\end{array}\right.$

Computing singular points

\mathcal{P} is the UOV public key: m quadratic polynomials in n variables

Modeling singular points

(1) Minors modeling: $\mathcal{M}(\mathcal{P}):\left\{\begin{array}{l}x \in \mathbb{F}_{q}^{n} \\ \mathcal{P}(x)=0 \\ M a x M i n o r s(\operatorname{Jac} \mathcal{P}(x))=0\end{array}\right.$

Computing singular points

\mathcal{P} is the UOV public key: m quadratic polynomials in n variables

Modeling singular points

(1) Minors modeling: $\mathcal{M}(\mathcal{P}):\left\{\begin{array}{l}\boldsymbol{x} \in \mathbb{F}_{q}^{n} \\ \mathcal{P}(\boldsymbol{x})=0 \\ \operatorname{MaxMinors}(\operatorname{Jac} \mathcal{P}(x))=0\end{array}\right.$

Computing singular points

\mathcal{P} is the UOV public key: m quadratic polynomials in n variables

Modeling singular points

(1) Minors modeling: $\mathcal{M}(\mathcal{P}):\left\{\begin{array}{l}x \in \mathbb{F}_{q}^{n} \\ \mathcal{P}(x)=0 \\ M a x M i n o r s(\operatorname{Jac} \mathcal{P}(x))=0\end{array}\right.$
(2) Bihomogeneous modeling: $\mathcal{B}(\mathcal{P}):\left\{\begin{array}{l}x \in \mathbb{F}_{q}^{n}, y \in \mathbb{F}_{q}^{m} \\ \mathcal{P}(x)=0 \\ \boldsymbol{y}^{\top} \operatorname{Jac} \mathcal{P}(x)=0\end{array}\right.$

Computing singular points

\mathcal{P} is the UOV public key: m quadratic polynomials in n variables

Modeling singular points

(1) Minors modeling: $\mathcal{M}(\mathcal{P}):\left\{\begin{array}{l}x \in \mathbb{F}_{q}^{n} \\ \mathcal{P}(x)=0 \\ M a x M i n o r s(\operatorname{Jac} \mathcal{P}(x))=0\end{array}\right.$
(2) Bihomogeneous modeling: $\mathcal{B}(\mathcal{P}):\left\{\begin{array}{l}\boldsymbol{x} \in \mathbb{F}_{q}^{n}, \boldsymbol{y} \in \mathbb{F}_{q}^{m} \\ \mathcal{P}(x)=0 \\ \boldsymbol{y}^{\top} \operatorname{Jac} \mathcal{P}(\boldsymbol{x})=0\end{array}\right.$

Computing singular points

\mathcal{P} is the UOV public key: m quadratic polynomials in n variables

Modeling singular points

(1) Minors modeling: $\mathcal{M}(\mathcal{P}):\left\{\begin{array}{l}x \in \mathbb{F}_{q}^{n} \\ \mathcal{P}(x)=0 \\ M a x M i n o r s(\operatorname{Jac} \mathcal{P}(x))=0\end{array}\right.$
(2) Bihomogeneous modeling: $\mathcal{B}(\mathcal{P}):\left\{\begin{array}{l}x \in \mathbb{F}_{q}^{n}, \boldsymbol{y} \in \mathbb{F}_{q}^{m} \\ \mathcal{P}(\boldsymbol{x})=0 \\ y^{\top} \operatorname{Jac}(x)=0\end{array}\right.$

Computing singular points

\mathcal{P} is the UOV public key: m quadratic polynomials in n variables

Modeling singular points

(1) Minors modeling: $\mathcal{M}(\mathcal{P}):\left\{\begin{array}{l}x \in \mathbb{F}_{q}^{n} \\ \mathcal{P}(x)=0 \\ M a x M i n o r s(\operatorname{Jac} \mathcal{P}(x))=0\end{array}\right.$
(2) Bihomogeneous modeling: $\mathcal{B}(\mathcal{P}):\left\{\begin{array}{l}x \in \mathbb{F}_{q}^{n}, y \in \mathbb{F}_{q}^{m} \\ \mathcal{P}(x)=0 \\ \boldsymbol{y}^{T} \operatorname{Jac}_{\mathcal{P}}(\boldsymbol{x})=0\end{array}\right.$

These systems may be solved with Gröbner bases computations.

A good surprise in the grevlex Gröbner basis

Gröbner basis

The Gröbner bases we obtain are special: they contain linear polynomials.

A good surprise in the grevlex Gröbner basis

Gröbner basis

The Gröbner bases we obtain are special: they contain linear polynomials.

Figure 2: First 30 polynomials (out of 320) in a grevlex Gröbner basis for the system $\mathcal{B}(\mathcal{P}), m=7, n=17, q=251$ obtained with msolve.

A good surprise in the grevlex Gröbner basis

Gröbner basis

The Gröbner bases we obtain are special: they contain linear polynomials.

Figure 2: First 30 polynomials (out of 320) in a grevlex Gröbner basis for the system $\mathcal{B}(\mathcal{P}), m=7, n=17, q=251$ obtained with msolve.

A good surprise in the grevlex Gröbner basis

Gröbner basis

The Gröbner bases we obtain are special: they contain linear polynomials.

Figure 2: First 30 polynomials (out of 320) in a grevlex Gröbner basis for the system $\mathcal{B}(\mathcal{P}), m=7, n=17, q=251$ obtained with msolve.

Are Gröbner bases overkill for this problem?

Self-diagnosis

If one or more of the below applies to you:

- I am terrified by polynomial systems!
- I have been traumatized by the F4/F5 algorithms!
- I really really love linear algebra!
- I want to break some crypto in the next 5 minutes!

Then the following may be of interest.

Are Gröbner bases overkill for this problem?

Self-diagnosis

If one or more of the below applies to you:

- I am terrified by polynomial systems!
- I have been traumatized by the F4/F5 algorithms!
- I really really love linear algebra!
- I want to break some crypto in the next 5 minutes!

Then the following may be of interest.

Motivation

Small field: Gröbner basis computation improved by enumeration.

An enumerative approach

Bihomogeneous modeling

$$
x \in \operatorname{Sing}(V(I)) \Longleftrightarrow\left\{\begin{array}{l}
x \in \mathbb{F}_{q}^{n}, y \in \mathbb{F}_{q}^{m} \\
\mathcal{P}(x)=0 \\
y^{\top} \operatorname{Jac}_{\mathcal{P}}(x)=0
\end{array}\right.
$$

An enumerative approach

Bihomogeneous modeling

$$
x \in \operatorname{Sing}(V(I)) \Longleftrightarrow\left\{\begin{array}{l}
\boldsymbol{x} \in \mathbb{F}_{q}^{n}, \boldsymbol{y} \in \mathbb{F}_{q}^{m} \\
\mathcal{P}(\boldsymbol{x})=0 \\
\boldsymbol{y}^{\top} \operatorname{Jac}_{\mathcal{P}}(\boldsymbol{x})=0
\end{array}\right.
$$

The [Kipnis, Shamir '98] attack computes singular points ${ }^{2}$

$$
x \in \operatorname{Sing}(V(I)) \Longleftrightarrow\left\{\begin{array}{l}
x \in \mathbb{F}_{q}^{n}, \boldsymbol{y} \in \mathbb{F}_{q}^{m} \\
\mathcal{P}(x)=0 \\
x \in \operatorname{ker}\left(P_{m}^{-1} \sum_{i=1}^{m-1} y_{i} P_{i}-y_{m} I_{n}\right)
\end{array}\right.
$$

${ }^{2}$ [Luyten 2023], [Castryck, Beullens 2023]

An enumerative approach

Bihomogeneous modeling

$$
x \in \operatorname{Sing}(V(I)) \Longleftrightarrow\left\{\begin{array}{l}
x \in \mathbb{F}_{q}^{n}, y \in \mathbb{F}_{q}^{m} \\
\mathcal{P}(x)=0 \\
y^{\top} \operatorname{Jac}_{\mathcal{P}}(x)=0
\end{array}\right.
$$

The [Kipnis, Shamir '98] attack computes singular points ${ }^{2}$

$$
x \in \operatorname{Sing}(V(I)) \Longleftrightarrow\left\{\begin{array}{l}
x \in \mathbb{F}_{q}^{n}, y \in \mathbb{F}_{q}^{m} \\
\mathcal{P}(x)=0 \\
x \in \operatorname{ker}\left(P_{m}^{-1} \sum_{i=1}^{m-1} y_{i} P_{i}-y_{m} I_{n}\right)
\end{array}\right.
$$

${ }^{2}$ [Luyten 2023], [Castryck, Beullens 2023]

An enumerative approach

Bihomogeneous modeling

$$
x \in \operatorname{Sing}(V(I)) \Longleftrightarrow\left\{\begin{array}{l}
x \in \mathbb{F}_{q}^{n}, y \in \mathbb{F}_{q}^{m} \\
\mathcal{P}(x)=0 \\
y \in \operatorname{ker}\left(\operatorname{Jac}(x)^{T}\right)
\end{array}\right.
$$

The [Kipnis, Shamir '98] attack computes singular points ${ }^{2}$

$$
x \in \operatorname{Sing}(V(I)) \Longleftrightarrow\left\{\begin{array}{l}
x \in \mathbb{F}_{q}^{n}, \boldsymbol{y} \in \mathbb{F}_{q}^{m} \\
\mathcal{P}(x)=0 \\
x \in \operatorname{ker}\left(P_{m}^{-1} \sum_{i=1}^{m-1} y_{i} P_{i}-y_{m} I_{n}\right)
\end{array}\right.
$$

${ }^{2}$ [Luyten 2023], [Castryck, Beullens 2023]

An enumerative approach

Bihomogeneous modeling

$$
x \in \operatorname{Sing}(V(I)) \Longleftrightarrow\left\{\begin{array}{l}
x \in \mathbb{F}_{q}^{n}, y \in \mathbb{F}_{q}^{m} \\
\mathcal{P}(x)=0 \\
y \in \operatorname{ker}\left(\operatorname{Jac}_{\mathcal{P}}(x)^{T}\right)
\end{array}\right.
$$

The [Kipnis, Shamir '98] attack computes singular points ${ }^{2}$

$$
\begin{gathered}
x \in \operatorname{Sing}(V(I)) \Longleftrightarrow\left\{\begin{array}{l}
x \in \mathbb{F}_{q}^{n}, \boldsymbol{y} \in \mathbb{F}_{q}^{m} \\
\mathcal{P}(x)=0 \\
x \in \operatorname{ker}\left(P_{m}^{-1} \sum_{i=1}^{m-1} y_{i} P_{i}-y_{m} I_{n}\right)
\end{array}\right. \\
\Longrightarrow x \text { is an eigenvector of } P_{m}^{-1} \sum_{i=1}^{m-1} y_{i} P_{i} .
\end{gathered}
$$

${ }^{2}$ [Luyten 2023], [Castryck, Beullens 2023]

Kipnis-Shamir revisited

Kipnis-Shamir attack
[Kipnis, Patarin, Goubin 1999]
\boldsymbol{x} is an eigenvector of $P_{m}^{-1} \sum_{i=1}^{m-1} y_{i} P_{i}$ and $\boldsymbol{x} \in V(I)$.

Kipnis-Shamir revisited

Kipnis-Shamir attack

[Kipnis, Patarin, Goubin 1999]

$$
\boldsymbol{x} \text { is an eigenvector of } P_{m}^{-1} \sum_{i=1}^{m-1} y_{i} P_{i} \text { and } \boldsymbol{x} \in V(I) \text {. }
$$

Expected cost

If $\operatorname{dim} \operatorname{Sing}(V(I))=d$, find \mathbb{F}_{q}-rational singular points by
enumerating all $\left(y_{1}, \ldots, y_{m-1}\right) \in \mathbb{F}_{q}^{m-1}$ in time $O\left(q^{m-1-d} m n^{2}\right)$

Kipnis-Shamir revisited

Kipnis-Shamir attack

[Kipnis, Patarin, Goubin 1999]

$$
\boldsymbol{x} \text { is an eigenvector of } P_{m}^{-1} \sum_{i=1}^{m-1} y_{i} P_{i} \text { and } x \in V(I) \text {. }
$$

Expected cost

If $\operatorname{dim} \operatorname{Sing}(V(I))=d$, find \mathbb{F}_{q}-rational singular points by enumerating all $\left(y_{1}, \ldots, y_{m-1}\right) \in \mathbb{F}_{q}^{m-1}$ in time $O\left(q^{m-1-d} m n^{2}\right)$

What did we bring to the table ?

- Highlight heuristics and limits of Kipnis-Shamir.

Kipnis-Shamir revisited

Kipnis-Shamir attack

[Kipnis, Patarin, Goubin 1999]

$$
\boldsymbol{x} \text { is an eigenvector of } P_{m}^{-1} \sum_{i=1}^{m-1} y_{i} P_{i} \text { and } x \in V(I) \text {. }
$$

Expected cost

If $\operatorname{dim} \operatorname{Sing}(V(I))=d$, find $\mathbb{F}_{q^{-}}$rational singular points by enumerating all $\left(y_{1}, \ldots, y_{m-1}\right) \in \mathbb{F}_{q}^{m-1}$ in time $O\left(q^{m-1-d} m n^{2}\right)$

What did we bring to the table ?

- Highlight heuristics and limits of Kipnis-Shamir.
- Gröbner bases attack works if solutions are not $\mathbb{F}_{q^{-}}$-rational

Kipnis-Shamir revisited

Kipnis-Shamir attack

[Kipnis, Patarin, Goubin 1999]

$$
\boldsymbol{x} \text { is an eigenvector of } P_{m}^{-1} \sum_{i=1}^{m-1} y_{i} P_{i} \text { and } \boldsymbol{x} \in V(I) \text {. }
$$

Expected cost

If $\operatorname{dim} \operatorname{Sing}(V(I))=d$, find \mathbb{F}_{q}-rational singular points by enumerating all $\left(y_{1}, \ldots, y_{m-1}\right) \in \mathbb{F}_{q}^{m-1}$ in time $O\left(q^{m-1-d} m n^{2}\right)$

What did we bring to the table ?

- Highlight heuristics and limits of Kipnis-Shamir.
- Gröbner bases attack works if solutions are not $\mathbb{F}_{q^{-}}$-rational
- Framework enables attacks on "perturbed" keys
\Longrightarrow we can attack other schemes.

UOV ${ }^{\hat{+}} \quad$ [Faugère, Macario-Rat, Patarin, Perret 2022]

Take a UOV secret key, replace t equations by uniformly random equations, and mix the equations.

The ${ }^{\hat{+}}$ perturbation

UOV ${ }^{\hat{+}} \quad$ [Faugère, Macario-Rat, Patarin, Perret 2022]

Take a UOV secret key, replace t equations by uniformly random equations, and mix the equations.

UOV	$\mathrm{UOV}^{\hat{+}}$
$\mathcal{P}=\mathcal{F} \circ A$	$\mathcal{P}=\mathcal{S} \circ \hat{\mathcal{F}} \circ A$

The ${ }^{\hat{}}$ perturbation

UOV ${ }^{\hat{+}} \quad$ [Faugère, Macario-Rat, Patarin, Perret 2022]

Take a UOV secret key, replace t equations by uniformly random
equations, and mix the equations.

UOV	$\mathrm{UOV}^{\hat{+}}$
$\mathcal{P}=\mathcal{F} \circ A$	$\mathcal{P}=\mathcal{S} \circ \hat{\mathcal{F}} \circ A$

Methodology of the security analysis

Let \mathcal{P} be a UOV^{+}public key defining an ideal $I=\left\langle p_{1}, \ldots, p_{m}\right\rangle$.
$\mathcal{O} \not \subset V(I)$, therefore key attacks on $\mathrm{UOV}^{\hat{+}}$ must invert \mathcal{S}.

The ${ }^{\hat{}}$ perturbation

UOV ${ }^{\hat{+}} \quad$ [Faugère, Macario-Rat, Patarin, Perret 2022]

Take a UOV secret key, replace t equations by uniformly random equations, and mix the equations.

UOV	UOV $^{\hat{+}}$
$\mathcal{P}=\mathcal{F} \circ A$	$\mathcal{P}=\mathcal{S} \circ \hat{\mathcal{F}} \circ A$

Methodology of the security analysis

Let \mathcal{P} be a $\mathrm{UOV}^{\hat{+}}$ public key defining an ideal $I=\left\langle p_{1}, \ldots, p_{m}\right\rangle$.
$\mathcal{O} \not \subset V(I)$, therefore key attacks on $\mathrm{UOV}^{\hat{+}}$ must invert \mathcal{S}.

Motivation

This methodology justifies an aggressive choice of parameters for improved efficiency compared with UOV.

New attack on VOX/UOV ${ }^{\hat{+}}$

Singular points attack and asymptotic result

Singular points of $\hat{\mathcal{F}} \circ A$ leak the trapdoor without inverting \mathcal{S} : Our attack requires $\mathbf{O}\left(\boldsymbol{q}^{2 t} \boldsymbol{n}^{\omega}\right)$ operations versus claimed $\boldsymbol{q}^{3 t}$.

3 [Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]

New attack on VOX/UOV ${ }^{\hat{+}}$

Singular points attack and asymptotic result

Singular points of $\hat{\mathcal{F}} \circ A$ leak the trapdoor without inverting \mathcal{S} : Our attack requires $\boldsymbol{O}\left(\boldsymbol{q}^{2 t} \boldsymbol{n}^{\omega}\right)$ operations versus claimed $\boldsymbol{q}^{3 t}$.

For parameters submitted to NIST for VOX ${ }^{3}$:

Parameters	I	III	V
Target (classical gates)	2^{143}	2^{207}	2^{272}
This work (classical gates)	$\mathbf{2}^{121}$	$\mathbf{2}^{167}$	$\mathbf{2}^{221}$

3 [Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]

Thank you for your attention!

One vector to full key recovery in polynomial time
From one vector in \mathcal{O}, return a basis of \mathcal{O} in polynomial time.
Singular points of UOV and UOV ${ }^{\hat{+}}$

- $V(I)$ has a large singular locus.
- Singular points of $\mathrm{UOV}^{\hat{+}}$ yield faster attacks.
- One vector to full key recovery on $\mathrm{UOV}^{\hat{+}}$ in $O\left(q^{t} n^{\omega}\right)$.

Recap of the attack

- Find a weakness using determinantal ideals.
- Solve bihomogeneous polynomial systems.

Thank you for your attention!

One vector to full key recovery in polynomial time [P. 2023]
From one vector in \mathcal{O}, return a basis of \mathcal{O} in polynomial time.
Singular points of UOV and UOV ${ }^{\hat{+}}$

- $V(I)$ has a large singular locus.
- Singular points of $\mathrm{UOV}^{\hat{+}}$ yield faster attacks.
- One vector to full key recovery on $\mathrm{UOV}^{\hat{+}}$ in $O\left(q^{t} n^{\omega}\right)$.

Subfield attack on QR-UOV ${ }^{\hat{+}}$

Weakness in a structured variant of UOV ${ }^{\hat{+}}$ submitted to NIST:

- Broken on a laptop in $\mathbf{0 . 3 s , 1 . 3 5 s , 0 . 5 6 s}$ (level I, III, V).
- Attack new parameters by factoring the degree of extension.

Bonus

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}
$$

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}
$$

- Alice signs: \boldsymbol{y} solution of $G\left(A^{-1} y\right)=t$ linear in y_{1}, \ldots, y_{m}.

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}
$$

- Alice signs: \boldsymbol{y} solution of $G\left(A^{-1} y\right)=t$ linear in y_{1}, \ldots, y_{m}. Sample y_{m+1}, \ldots, y_{n} uniformly at random and solve a square linear system.
Alice returns $x=A^{-1} y$

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}
$$

- Alice signs: \boldsymbol{y} solution of $G\left(A^{-1} y\right)=t$ linear in y_{1}, \ldots, y_{m}.

Sample y_{m+1}, \ldots, y_{n} uniformly at random and solve a square linear system.
Alice returns $\boldsymbol{x}=A^{-1} y$

- Bob verifies: checks that for $1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}$.

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}
$$

- Alice signs: \boldsymbol{y} solution of $G\left(A^{-1} y\right)=t$ linear in y_{1}, \ldots, y_{m}. Sample y_{m+1}, \ldots, y_{n} uniformly at random and solve a square linear system.
Alice returns $\boldsymbol{x}=A^{-1} y$
- Bob verifies: checks that for $1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}$.

Hash-and-sign

In practice, $\boldsymbol{t}=\mathcal{H}(M), M \in\{0,1\}^{*}$

UOV: Parameters

	NIST SL	n	m	\mathbb{F}_{q}	\mid pk \mid (bytes)	\mid sk \mid (bytes)	\mid cpk \mid (bytes)	\mid sig+salt \mid (bytes)
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237912	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348720	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044336	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436720	446992	260

Figure 3: Modern UOV[Beullens, Chen, Hung, Kannwischer, Peng, Shih, Yang 2023]

Multivariate Post-Quantum Zoo at NIST

Multivariate Post-Quantum Zoo at NIST

DME-Sign

Biscuit

The UOV family

- "Multi-layer structure": Rainbow

Multivariate Post-Quantum Zoo at NIST

DME-Sign

Biscuit

The UOV family

- "Multi-layer structure": Rainbow
- MAYO: key size/signature size trade-off.

Multivariate Post-Quantum Zoo at NIST

DME-Sign

Biscuit

The UOV family

- "Multi-layer structure": Rainbow
- MAYO: key size/signature size trade-off.
- Structured keys: QR-UOV, VOX, SNOVA

Multivariate Post-Quantum Zoo at NIST

DME-Sign

Biscuit

The UOV family

- "Multi-layer structure": Rainbow
- MAYO: key size/signature size trade-off.
- Structured keys: QR-UOV, VOX, SNOVA
- "Noisy" public key to increase security: UOV ${ }^{\hat{+}}, \mathrm{VOX}$

Multivariate Post-Quantum Zoo at NIST

DME-Sign

Biscuit

The UOV family

- "Multi-layer structure": Rainbow
- MAYO: key size/signature size trade-off.
- Structured keys: QR-UOV, VOX, SNOVA
- "Noisy" public key to increase security: UOV ${ }^{\hat{+}}, \mathrm{VOX}$
- Formal security proof: T-UOV, PrUOV

