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Context

NIST Post-quantum competition
• First NIST post-quantum standards: 2022

• 2 lattice-based signatures (Dilithium, Falcon)
• a hash-based signature (SPHINCS+)

• Additional signature round targeting efficiency
• 11 among 40 based on multivariate polynomial systems
• 7 among 11 multivariate schemes are based on UOV

Our approach
Study UOV to derive results on schemes related to UOV.
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Building cryptography from (quantum-)hard problems

Multivariate Quadratic Problem - MQ(n, m, q)
Find a solution (if any) x ∈ Fn

q to a system of m quadratic
equations in n variables

P(x) = 0 ∈ Fm
q

Multivariate Quadratic Cryptography
A multivariate signature scheme is defined by a key pair (P, S):

• The public key P is an instance of MQ(n, m, q), n > m.
• The secret key S enables, for all t ∈ Fm

q , to efficiently find
x ∈ Fn

q s.t. P(x) = t
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UOV: Original formulation

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]
Secret key: - m quadratic polynomials xT Fix ∈ Fq[x1, . . . , xn]

linear in x1, . . . , xm.
- invertible change of variables A.

Public key: m quadratic polynomials xT Pix.
P = F ◦ A = (AT F1A, . . . , AT FmA)

A

Public key

Secret key

Figure 1: UOV key pair in F257
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q is a signature for message t ∈ Fm
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UOV: Alternative formulation

Characterisation of the secret key [Kipnis, Shamir 1998]
Trapdoor: linear subspace O ⊂ Fn

q of dimension m such that

O ⊂ V (I)

Observation
The first m columns of the secret matrix A−1 form a basis of O.

Cryptanalysis: Key recovery
Find a basis of O with less than 2λ logical gates.

Security level I III V
Classical gates 2143 2207 2272
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Contributions

One vector to full key recovery in polynomial time [P. 2023]
From one vector in O, return a basis of O in polynomial time.

Singular points of UOV and UOV+̂ [P. 2024]

• Existence and dimension of singular locus of V (I).
• Faster computation of singular points of UOV+̂.

Subfield attack on QR-UOV+̂ [P. 2024]

Identified a weakness in a structured variant of UOV+̂submitted
to the additional NIST call for signature schemes :

• Broken on a laptop in 0.3s, 1.35s, 0.56s (level I, III, V ).

6/17



Contributions

One vector to full key recovery in polynomial time [P. 2023]
From one vector in O, return a basis of O in polynomial time.

Singular points of UOV and UOV+̂ [P. 2024]
• Existence and dimension of singular locus of V (I).

• Faster computation of singular points of UOV+̂.

Subfield attack on QR-UOV+̂ [P. 2024]

Identified a weakness in a structured variant of UOV+̂submitted
to the additional NIST call for signature schemes :

• Broken on a laptop in 0.3s, 1.35s, 0.56s (level I, III, V ).

6/17



Contributions

One vector to full key recovery in polynomial time [P. 2023]
From one vector in O, return a basis of O in polynomial time.

Singular points of UOV and UOV+̂ [P. 2024]
• Existence and dimension of singular locus of V (I).
• Faster computation of singular points of UOV+̂.

Subfield attack on QR-UOV+̂ [P. 2024]

Identified a weakness in a structured variant of UOV+̂submitted
to the additional NIST call for signature schemes :

• Broken on a laptop in 0.3s, 1.35s, 0.56s (level I, III, V ).

6/17



Contributions

One vector to full key recovery in polynomial time [P. 2023]
From one vector in O, return a basis of O in polynomial time.

Singular points of UOV and UOV+̂ [P. 2024]
• Existence and dimension of singular locus of V (I).
• Faster computation of singular points of UOV+̂.

Subfield attack on QR-UOV+̂ [P. 2024]
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to the additional NIST call for signature schemes 1:
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Singular points

y2 = x3 − 3x + 2 in R2 x2 − y2z2 + z3 in R3

Singular points: line (x=z=0)

(from [Cox, Little, O’Shea])

Definition
Let I = ⟨p1, . . . , pm⟩ be an ideal of K[x1, . . . , xn].
x ∈ V (I) \ {0} is singular if JacP(x) has rank less than n − m.

JacP(x) =
(

∂

∂xj
pi(x)

)
∈ K[x1, . . . , xn]m×n
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Structured equations yield a structured Jacobian

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]
Secret key F : m quadratic equations xT Fix linear in x1, . . . , xm.

Secret Jacobian
The Jacobian of F(x) has a special shape:

JacF (x) =


1 m m + 1 n

J1 J2



Where J1 ∈ Fq[xm+1, . . . , xn]m×m and J2 ∈ Fq[x1, . . . , xn]m×n−m.
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Singular points leak the trapdoor

Singular points in O
If x ∈ O, then x ∈ V (I)

and

JacF (x) =


1 m m + 1 n

0 J2(x)



Determinantal ideal
Sing(V (I)) ∩ O is defined by a determinantal ideal noted Jm−1.

Jm−1 = ⟨MaxMinors(J2(x))⟩

Dimension of the singular locus
Under a genericity assumption, [FSS13]1 yields

dim (Sing(V (I)) ∩ O) = 3m − n − 1 > 0

1
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Computing singular points

P is the UOV public key: m quadratic polynomials in n variables

Modeling singular points

1 Minors modeling: M(P) :


x ∈ Fn

q

P(x) = 0
MaxMinors(JacP(x)) = 0

2 Bihomogeneous modeling: B(P) :


x ∈ Fn

q, y ∈ Fm
q

P(x) = 0
yT JacP(x) = 0

These systems may be solved with Gröbner bases computations.
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10/17



Computing singular points

P is the UOV public key: m quadratic polynomials in n variables

Modeling singular points

1 Minors modeling: M(P) :


x ∈ Fn

q

P(x) = 0
MaxMinors(JacP(x)) = 0

2 Bihomogeneous modeling: B(P) :


x ∈ Fn

q, y ∈ Fm
q

P(x) = 0
yT JacP(x) = 0

These systems may be solved with Gröbner bases computations.
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A good surprise in the grevlex Gröbner basis

Gröbner basis
The Gröbner bases we obtain are special: they contain linear
polynomials.

Figure 2: First 30 polynomials (out of 320) in a grevlex Gröbner basis
for the system B(P), m = 7, n = 17, q = 251 obtained with msolve.
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Are Gröbner bases overkill for this problem?

Self-diagnosis
If one or more of the below applies to you:

• I am terrified by polynomial systems!
• I have been traumatized by the F4/F5 algorithms!
• I really really love linear algebra!
• I want to break some crypto in the next 5 minutes!

Then the following may be of interest.

Motivation
Small field: Gröbner basis computation improved by enumeration.
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An enumerative approach

Bihomogeneous modeling

x ∈ Sing(V (I)) ⇐⇒


x ∈ Fn

q, y ∈ Fm
q

P(x) = 0
yT JacP(x) = 0

The [Kipnis, Shamir ’98] attack computes singular points

x ∈ Sing(V (I)) ⇐⇒


x ∈ Fn

q, y ∈ Fm
q

P(x) = 0

x ∈ ker
(

P−1
m

m−1∑
i=1

yiPi − ymIn
)

=⇒ x is an eigenvector of P−1
m

m−1∑
i=1

yiPi .
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Kipnis-Shamir revisited

Kipnis-Shamir attack [Kipnis, Patarin, Goubin 1999]

x is an eigenvector of P−1
m

m−1∑
i=1

yiPi and x ∈ V (I).

Expected cost [P. 2024]
If dim Sing(V (I)) = d , find Fq-rational singular points by
enumerating all (y1, . . . , ym−1) ∈ Fm−1

q in time O(qm−1−dmn2)

What did we bring to the table ?

• Highlight heuristics and limits of Kipnis-Shamir.
• Gröbner bases attack works if solutions are not Fq-rational
• Framework enables attacks on “perturbed” keys

=⇒ we can attack other schemes.
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The +̂ perturbation

UOV+̂ [Faugère, Macario-Rat, Patarin, Perret 2022]
Take a UOV secret key, replace t equations by uniformly random
equations, and mix the equations.

UOV UOV+̂

P = F ◦ A P = S ◦ F̂ ◦ A

Methodology of the security analysis

Let P be a UOV+̂public key defining an ideal I = ⟨p1, . . . , pm⟩.
O ̸⊂ V (I), therefore key attacks on UOV+̂ must invert S.

Motivation
This methodology justifies an aggressive choice of parameters for
improved efficiency compared with UOV.
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New attack on VOX/UOV+̂

Singular points attack and asymptotic result [P. 2024]

Singular points of F̂ ◦ A leak the trapdoor without inverting S:
Our attack requires O(q2tnω) operations versus claimed q3t .

For parameters submitted to NIST for VOX3:

Parameters I III V
Target (classical gates) 2143 2207 2272

This work (classical gates) 2121 2167 2221

3 [Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]
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Thank you for your attention!

One vector to full key recovery in polynomial time [P. 2023]
From one vector in O, return a basis of O in polynomial time.

Singular points of UOV and UOV+̂ [P. 2024]
• V (I) has a large singular locus.
• Singular points of UOV+̂ yield faster attacks.
• One vector to full key recovery on UOV+̂ in O(qtnω).

Recap of the attack
• Find a weakness using determinantal ideals.
• Solve bihomogeneous polynomial systems.
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Singular points of UOV and UOV+̂ [P. 2024]
• V (I) has a large singular locus.
• Singular points of UOV+̂ yield faster attacks.
• One vector to full key recovery on UOV+̂ in O(qtnω).

Subfield attack on QR-UOV+̂ [P. 2024]

Weakness in a structured variant of UOV+̂ submitted to NIST:

• Broken on a laptop in 0.3s, 1.35s, 0.56s (level I, III, V ).
• Attack new parameters by factoring the degree of extension.
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UOV: Signing process

Signing
A signature for the message t ∈ Fm

q is a vector x ∈ Fn
q such that

1 ≤ i ≤ m,Gi(x) = ti

• Alice signs: y solution of G(A−1y) = t linear in y1, . . . , ym.

Sample ym+1, . . . , yn uniformly at random and solve a square
linear system.
Alice returns x = A−1y

• Bob verifies: checks that for 1 ≤ i ≤ m, Gi(x) = ti .

Alice

(A, F ) G

Bob

x = Sign(G(t))

x ∈ Fn
q

t ∈ Fm
q

G(x) ?= t
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UOV: Signing process

Signing
A signature for the message t ∈ Fm

q is a vector x ∈ Fn
q such that

1 ≤ i ≤ m,Gi(x) = ti

• Alice signs: y solution of G(A−1y) = t linear in y1, . . . , ym.
Sample ym+1, . . . , yn uniformly at random and solve a square
linear system.
Alice returns x = A−1y

• Bob verifies: checks that for 1 ≤ i ≤ m, Gi(x) = ti .

Hash-and-sign
In practice, t = H(M), M ∈ {0, 1}∗



UOV: Parameters

Figure 3: Modern UOV[Beullens, Chen, Hung, Kannwischer, Peng, Shih,
Yang 2023]
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