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Context

NIST Post-quantum competition

® First NIST post-quantum standards: 2022

® 2 |attice-based signatures (Dilithium, Falcon)
® a hash-based signature (SPHINCS+)

® Additional signature round targeting efficiency

® 11 among 40 based on
® 7 among 11 multivariate schemes are based on

Our approach

Study UQOV to derive results on schemes related to UOV.
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Building cryptography from (quantum-)hard problems

Multivariate Quadratic Problem - MQ(n, m, q)

Find a solution (if any) x € Fy to a system of m
equations in n variables

P(x) =0€eFy
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Building cryptography from (quantum-)hard problems

Multivariate Quadratic Problem - MQ(n, m, q)

Find a solution (if any) x € I to a system of m

equations in n variables

P(x) =0€eFy

Multivariate Quadratic Cryptography
A multivariate signature scheme is defined by a key pair (P, S):

® The P is an instance of MQ(n, m, q), n > m.

® The S enables, for all t € ]qu, to find
xelFgst P(x)=t
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UOV: Original formulation

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]
Secret key: - m quadratic polynomials x7 Fix € Fy[xi, ..., Xn]
linear in xq,...,Xm.

- invertible change of variables A.

Secret key

Figure 1: UOV key pair in Fps7
4/17



UOV: Original formulation

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]

Secret key: - m quadratic polynomials x7 Fix € Fy[xi, ..., Xn]
linear in xq,...,Xm.
- invertible change of variables A.
Public key: m quadratic polynomials x P;x.
P=FoA=(ATHA,...,ATF,A)

Secret key Public key

Figure 1: UOV key pair in Fps7
4/17



UOV: Original formulation

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]

Secret key: - m quadratic polynomials x” Fix € Fqlxi,. .., Xn]
in X,...,Xm.
- invertible change of variables A.
Public key: m quadratic polynomials x P;x.
P=FoA=(ATHA,...,ATF,A)

Naming conventions and parameters

With I = (p1(x),..., pm(x)), define the

V() ={x e F;,P(x) = 0}

4/17
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Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]

Secret key: - m quadratic polynomials x” Fix € Fqlxi,. .., Xn]
in X,...,Xm.
- invertible change of variables A.
Public key: m quadratic polynomials x P;x.
P=FoA=(ATHA,...,ATF,A)

Naming conventions and parameters

With I = (p1(x),..., pm(x)), define the :
V() ={x e F;,P(x) = 0}

x€Fgisa for message t € Fy if P(x) = t.
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UOV: Alternative formulation

Characterisation of the secret key [Kipnis, Shamir 1998]

Trapdoor: linear subspace O C Fg of dimension m such that

O c V()
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UOV: Alternative formulation

Characterisation of the secret key [Kipnis, Shamir 1998]

Trapdoor: linear subspace O C Fg of dimension m such that

O c V()

The first m columns of the secret matrix A~ form a basis of O.

Cryptanalysis: Key recovery

Find a basis of O with less than 2* logical gates.

Security level I [l V
0143 | 9207 | 9272

Classical gates

5/17



Contributions

One vector to full key recovery in polynomial time

From one vector in O, return a basis of O in polynomial time.
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Contributions

One vector to full key recovery in polynomial time

From one vector in O, return a basis of O in polynomial time.

Singular points of UOV and uov+

o and of singular locus of V/(/).

® Faster computation of singular points of UOV+.

Subfield attack on QR-UOV4

Identified a weakness in a structured variant of UOV+submitted

to the additional NIST call for signature schemes *:

® Broken on a laptop in 0.3s,1.35s,0.56s (level /, /1, V).

1 [Cogliati, Faugeére, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]

6/17



Contributions

Singular points of UOV and uov+

o and of singular locus of V/(/).

® Faster computation of singular points of UOV+.

6/17



Singular points

y?2 =x3—-3x+2in R? x? —y?22 + 7% in R3

(from [Cox, Little, O'Shea])
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Singular points

O

y?2 =x3—-3x+2in R? x? —y?22 + 7% in R3
Singular point: (1,0) Singular points: line (x=z=0)
(from [Cox, Little, O'Shea])

Definition
Let I = (p1,..., pm) be an ideal of K[xq, ..., x,].
x € V(I)\ {0} is singular if Jacp(x) has rank less than n — m.

0
Jacp(x) = <<9><-pi(x)> € Klxi, ..., xa] ™"
! 7/17
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Structured equations yield a structured Jacobian

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]

Secret key F: m quadratic equations x T F;x in X1,...,Xm.

Secret Jacobian

The Jacobian of F(x) has a special shape:

Where and J € Fglxq, ..., xp]™*"~™.
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Singular points leak the trapdoor

Singular points in O

If x € O, then x € V(/) and

Jacr(x) =

Determinantal ideal
Sing(V/(1)) N O is defined by a noted Jpm—1.
JIm-1 = (MaxMinors(J2(x)))

Dimension of the singular locus
Under a assumption, [FSS13]! yields

dim (Sing(V(/))NO)=3m—n—1>0
lFaugére, Safey El Din, Spaenlehauer, 2013, Theorem 10
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Computing singular points

P is the UOV public key: m quadratic polynomials in n variables

Modeling singular points
x €y
@ Minors modeling: M(P): { P(x) =0
MaxMinors(Jacp(x)) = 0
xeFg,yelF?
@® Bihomogeneous modeling: B(P) : { P(x) =0
yTJacp(x) =0

These systems may be solved with computations.
10/17



A good surprise in the grevlex Grobner basis

The Grobner bases we obtain are : they contain linear

polynomials.
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Figure 2: First 30 polynomials (out of 320) in a grevlex Grébner basis
for the system B(P),m =7,n = 17,q = 251 obtained with msolve.
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A good surprise in the grevlex Grobner basis

Grobner basis

The Grobner bases we obtain are : they contain linear
polynomials.

X1 + 69%x12 + 62*x13 + 36*x14 + 99*x15 - 41
X2 - 72%x12 + 110*x13 + 10*x14 + 90*x15 + 102
X3 + 43*x12 - 76*x13 - 75*x14 - 67*x15 - 117
x4 + 37%x12 + 49*x13 + 8*x14 - 47*x15 + 115
X5 4 92%x12 + 30%x13 - 117*x14 + 107*x15 + 51
X6 - 20*x12 + 41*x13 - 14*x14 - 81*x15 + 104
X7 + 112%x12 - 94%x13 - 33*x14 - 40*x15 + 16
X8 - 13*x12 - 51*x13 - 89*x14 + 39*x15 - 48
X9 + 63*x12 - 117%x13 - 18*x14 + 94*x15 - 50
x10 + 91%x12 - 19%x13 - 124*x14 + 28%x15 + 22
74*x12 + 9*x13 17#x14 + 4*x15 + 36

Figure 2: First 30 polynomials (out of 320) in a grevlex Grébner basis
for the system B(P),m =7,n = 17,q = 251 obtained with msolve.
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Are Grobner bases overkill for this problem?

Self-diagnosis

If one or more of the below applies to you:

| am terrified by polynomial systems!
| have been traumatized by the F4/F5 algorithms!
| really really love linear algebra!

| want to break some crypto in the next 5 minutes!

Then the following may be of interest.
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Self-diagnosis

If one or more of the below applies to you:

| am terrified by polynomial systems!
| have been traumatized by the F4/F5 algorithms!
| really really love linear algebra!

| want to break some crypto in the next 5 minutes!
Then the following may be of interest.

Motivation

Small field: Grobner basis computation improved by
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An enumerative approach

Bihomogeneous modeling

xelkgyelky
x € Sing(V(l)) <= {P(x)=0
y € ker (JacP(x)T)
The [Kipnis, Shamir '98] attack computes singular points 2
xelgyelky
x € Sing(V(l)) — {P(x)=0
x € ker (Pm1 77211 yiPi — }/mln)

m—1
—> x is an of P13 yiP.
i=1

?[Luyten 2023], [Castryck, Beullens 2023]
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Kipnis-Shamir revisited

Kipnis-Shamir attack [Kipnis, Patarin, Goubin 1999]
m—1
X is an of P13 yiPiand x € V(I).
i=1

Expected cost

If dim Sing(V/(/)) = d, find [Fy-rational singular points by
all (y1,.-.,¥Ym-1) € F?‘l in time O(g™~*~9mn?)

What did we bring to the table ?

® Highlight heuristics and limits of Kipnis-Shamir.

® Grobner bases attack works if solutions are not F4-rational

® Framework enables attacks on “ " keys
— we can attack other schemes.
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The + perturbation

uov+ [Faugére, Macario-Rat, Patarin, Perret 2022]
Take a UOV secret key, replace t equations by

, and mix the equations.
uov uov+

P—FoA|P=SoFoA

Methodology of the security analysis

Let P be a UOVj“puinc key defining an ideal I = (p1,...,Pm)-
O ¢ V(I), therefore key attacks on UOV* must invert S.

Motivation

This methodology justifies an for
improved efficiency compared with UOV.
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New attack on VOX/UOV+

Singular points attack and asymptotic result

Singular points of F o A leak the trapdoor

Our attack requires O(g%:n“) operations versus claimed g3t

g [Cogliati, Faugeére, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]
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New attack on VOX/UOV+

Singular points attack and asymptotic result

Singular points of F o A leak the trapdoor

Our attack requires O(g%:n“) operations versus claimed g3t

For parameters submitted to NIST for VOX3:

Parameters [ Il V
2143 2207 2272

Target (classical gates)

This work (classical gates) || 2121 | 2167 | 2221

g [Cogliati, Faugeére, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]
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Thank you for your attention!

One vector to full key recovery in polynomial time

From one vector in O, return a basis of O in polynomial time.

Singular points of UOV and uov+

e V(/) has a singular locus.
® Singular points of uov+ yield faster attacks.
e One vector to full key recovery on UOV in O(g*n%).

Recap of the attack

® Find a weakness using

® Solve
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Thank you for your attention!

One vector to full key recovery in polynomial time

From one vector in O, return a basis of O in polynomial time.

Singular points of UOV and uov+

e V(/) has a singular locus.

® Singular points of uov+ yield faster attacks.

® One vector to full key recovery on UOVT in O(qg'n%).
Subfield attack on QR-UOV*
Weakness in a of UOV submitted to NIST:

® Broken on a laptop in 0.3s, 1.35s, 0.56s (level /, /1, V).

® Attack new parameters by the degree of extension.
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UQOV: Signing process

Signing
A for the message t € F¢ is a vector x € g such that
1<i<mGi(x)=t
e Alice signs: y solution of G(A~1ly) =t linear in y1,...,ym.
Sample ymi1, ..., yn uniformly at random and solve a square
linear system.
Alice returns x = A1y

® Bob verifies: checks that for 1 < i < m, G;(x) = t;.

Hash-and-sign

In practice, t = H(M), M € {0,1}*



UOV: Parameters

NIST |pk| |sk| |cpk|  |sig+salt]

SL " m Fy (bytes) (bytes) (bytes) (bytes)

ov-Ip 1 112 44 Fas6 278432 237912 43576 128
ov-Is 1 160 64 Fi6 412160 348720 66 576 96
ov-III 3 184 72 Fosg | 1225440 1044 336 189 232 200
ov-V 5 244 96 Fase | 2869440 2436720 446992 260

Figure 3: Modern UOV|[Beullens, Chen, Hung, Kannwischer, Peng, Shih,
Yang 2023]
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Multivariate Post-Quantum Zoo at NIST

VOX
[TUov}—{uov

uov+

UOV Family

The UOV family
® "Multi-layer structure”: Rainbow
® MAYO: key size/signature size trade-off.
® Structured keys: QR-UQOV, VOX, SNOVA
® "Noisy" public key to increase security: uov+, vox
® Formal security proof: T-UOV, PrUOV
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