Computing Generic Fibers of Polynomial Ideals Using FGLM and Hensel Lifting

Jérémy Berthomieu² and Rafael Mohr^{1,2}

Journées Nationales de Calcul Formel 2024 06.03.2024

PP

Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

¹RPTU Kaiserslautern-Landau ²Sorbonne Université Paris

Introduction

What we are doing

$$\begin{cases} f_1(x_1,\ldots,x_n,\mathbf{z}) \\ \vdots \\ f_m(x_1,\ldots,x_n,\mathbf{z}) \end{cases}$$

polynomial system in $\mathbf{K}[x_1, \ldots, x_n, \mathbf{z}]$

 $\mathbf{z} := \{z_1, \ldots, z_d\}, d = \dim$

projection to z-space dominant

What we are doing

Generic Fiber: Ideal $\langle f_1, \ldots, f_m \rangle$ in $\mathbf{K}(\mathbf{z})[\mathbf{x}]$

$$\begin{cases} f_1(x_1, \dots, x_n, \mathbf{z}) \\ \vdots \\ f_m(x_1, \dots, x_n, \mathbf{z}) \end{cases} \xrightarrow{h_1(x_1, x_2, \dots, x_n, \mathbf{z}) \\ h_2(x_2, \dots, x_n, \mathbf{z}) \\ \vdots \\ h_n(x_n, \mathbf{z}) \end{cases}$$
polynomial system in $\mathbf{K}[x_1, \dots, x_n, \mathbf{z}]$
reduced LEX Gröbner Basis
 $\mathbf{z} := \{z_1, \dots, z_d\}, d = \dim$ in $\mathbf{K}(\mathbf{z})[x_1, \dots, x_n]$

projection to z-space dominant

What we are doing

Generic Fiber: Ideal $\langle f_1, \ldots, f_m \rangle$ in $\mathbf{K}(\mathbf{z})[\mathbf{x}]$

$$\begin{cases} f_1(x_1,\ldots,x_n,\mathbf{z}) \\ \vdots \\ f_m(x_1,\ldots,x_n,\mathbf{z}) \end{cases} \longrightarrow \begin{cases} h_1(x_1,x_2,\ldots,x_n,\mathbf{z}) \\ h_2(x_2,\ldots,x_n,\mathbf{z}) \\ \vdots \\ h_n(x_n,\mathbf{z}) \end{cases}$$

polynomial system in $\mathbf{K}[x_1, \ldots, x_n, \mathbf{z}]$

$$\mathbf{z} := \{z_1, ..., z_d\}, d = \dim$$

reduced LEX Gröbner Basis in $\mathbf{K}(\mathbf{z})[x_1, \dots, x_n]$

projection to z-space dominant

classically: computed using elimination orderings

Shape position: Solutions parametrized by a hypersurface.

Shape position: Solutions parametrized by a hypersurface.

Factors of $h_2 \Rightarrow$ Components of Curve!

Shape position: Solutions parametrized by a hypersurface.

Factors of $h_2 \Rightarrow$ Components of Curve!

Rational Parametrization

$$\begin{cases} h'_n(y, \mathbf{z}) x_1 - g_1(y, \mathbf{z}) &= 0 \\ &\vdots \\ h'_n(y, \mathbf{z}) x_n - g_n(y, \mathbf{z}) &= 0 \\ h_n(y, \mathbf{z}) &= 0 \end{cases}$$

geometric resolution

 $y = \sum \alpha_i x_i$ primitive element

 $h_n, g_i \in k(\mathbf{z})[T], h_n$ squarefree

• e.g. (Lecerf 00), (Giusti, Lecerf, Salvy 01), (Lecerf 03), (Schost 03)

- e.g. (Lecerf oo), (Giusti, Lecerf, Salvy 01), (Lecerf 03), (Schost 03)
- **complexity**: polynomial in some degree assoc. to system

- e.g. (Lecerf oo), (Giusti, Lecerf, Salvy 01), (Lecerf 03), (Schost 03)
- **complexity**: polynomial in some degree assoc. to system
- encoded in Noether position except for (SCHOST 03)

- e.g. (LECERF OO), (GIUSTI, LECERF, SALVY O1), (LECERF O3), (SCHOST O3)
- complexity: polynomial in some degree assoc. to system
- encoded in Noether position except for (SCHOST 03)
- Hensel lifting: "imitates" Newton iteration

- e.g. (Lecerf oo), (Giusti, Lecerf, Salvy 01), (Lecerf 03), (Schost 03)
- complexity: polynomial in some degree assoc. to system
- encoded in Noether position except for (SCHOST 03)
- Hensel lifting: "imitates" Newton iteration

Key Difference:

geometric vs. ideal-theoretic viewpoint

- e.g. (Lecerf oo), (Giusti, Lecerf, Salvy 01), (Lecerf 03), (Schost 03)
- complexity: polynomial in some degree assoc. to system
- encoded in Noether position except for (SCHOST 03)
- Hensel lifting: "imitates" Newton iteration

Key Difference:

geometric vs. ideal-theoretic viewpoint

For example: Computing Generic Fibers

↔ Primary Decomposition

Computation of Whitney stratifications as in (Helmer 23)

The Zero-dimensional Case

No parameters

 $\begin{cases} f_1(x_1,\ldots,x_n) \\ \vdots \\ f_m(x_1,\ldots,x_n) \end{cases}$

 $\dim(I) = o \Leftrightarrow \mathbf{K}[\mathbf{x}]/I$ finite dim. **K**-vector space

DRL GB

FGLM: use this mechanism to get LEX GB!

FGLM: use this mechanism to get LEX GB!

for example: $h_n(x_n) \sim \text{linear relation between NF's of } x_n^k, k = 0, 1, \dots$

Our Algorithm (Case $z = \{z\}$)

$$\begin{cases} f_1(x_1,\ldots,x_n,z) \\ \vdots \\ f_m(x_1,\ldots,x_n,z) \end{cases}$$

Strategy: FGLM + Hensel Lifting

Strategy: FGLM + Hensel Lifting

(PAUER 92), (ARNOLD 03), (WINKLER 88), (SCHOST, ST-PIERRE 23)

 δ = degree of rational fraction coefficients

$$\boxed{\text{DRL GB}} \xrightarrow{O^{\sim}(\delta(n-1)D^3) \text{ arit. ops.}}_{\text{using quadratic lifting}} \xrightarrow{\text{LEX GB of gen. fiber}}_{\text{to precision } \delta}$$

Given: DRL GB for f_1, \ldots, f_m . **Need** (for lifting steps): DRL GB's for $f_1, \ldots, f_m, z - a$ and $f_1, \ldots, f_m, (z - a)^2 \ldots$

Need (for lifting steps): DRL GB's for $f_1, \ldots, f_m, z - a$ and $f_1, \ldots, f_m, (z - a)^2$...

$$n = m, f_1, \ldots, f_n$$
 generic \Rightarrow this step is free!

Need (for lifting steps): DRL GB's for $f_1, \ldots, f_m, z - a$ and $f_1, \ldots, f_m, (z - a)^2$...

$$n = m, f_1, \dots, f_n \text{ generic} \Rightarrow \text{this step is free!}$$

$$f$$
staircase for $f_1, \dots, f_n, (z - a)^k = \text{``truncated'' staircase of } f_1, \dots, f_n$

Need (for lifting steps): DRL GB's for $f_1, \ldots, f_m, z - a$ and $f_1, \ldots, f_m, (z - a)^2$...

Need (for lifting steps): DRL GB's for $f_1, \ldots, f_m, z - a$ and $f_1, \ldots, f_m, (z - a)^2$...

But: In more general case, needed DRL GB's are *highly non-free*, no nice staircase structure...

Incorporating Tracers (TRAVERSO 89)

Recall: We needed GB's for $f_1, \ldots, f_m, z - a$ and $f_1, \ldots, f_m, (z - a)^2$...

•••

...

...

... Same complexity for lifting h_1, \ldots, h_c !

...

Some Preliminary Experiments & Perspectives

	Our Algorithm	msolve ¹ , using elim. orders
Polynomial System	Timing (in s)	Timing (in s)
ED(3,3)	121.34	-
M2	152.81	6.54
М3	3.11	-
PS(2,10)	5.56	1251.94
PS(2,12)	120.10	-
Sing(2,10)	3.04	4.25
SOS(6,4)	114.88	11366.36
SOS(6,5)	120.1	<u>a</u> -
RD(3)	3.31	0.11
RD(4)	9.77	28.72
RD(5)	385.31	2277.56

¹(Berthomieu, Eder, Safey El Din 21)

	Our Algorithm	msolve ¹ , using elim. orders
Polynomial System	Timing (in s)	Timing (in s)
ED(3,3)	121.34	-
M2	152.81	6.54
M3	3.11	-
PS(2,10)	5.56	1251.94
PS(2,12)	120.10	-
Sing(2,10)	3.04	4.25
SOS(6,4)	114.88	11366.36
SOS(6,5)	120.1	<u>-</u>
RD(3)	3.31	0.11
RD(4)	9.77	28.72
RD(5)	385.31	2277.56

¹(Berthomieu, Eder, Safey El Din 21)

	Our Algorithm	msolve ¹ , using elim. orders
Polynomial System	Timing (in s)	Timing (in s)
ED(3,3)	121.34	-
M2	152.81	6.54
M3	3.11	-
PS(2,10)	5.56	1251.94
PS(2,12)	120.10	-
Sing(2,10)	3.04	4.25
SOS(6,4)	114.88	11366.36
SOS(6,5)	120.1	<u>-</u>
RD(3)	3.31	0.11
RD(4)	9.77	28.72
RD(5)	385.31	2277.56

naive implementation without tracers and structured linear algebra!

¹(Berthomieu, Eder, Safey El Din 21)

	Our Algorithm	msolve ¹ , using elim. orders
Polynomial System	Timing (in s)	Timing (in s)
ED(3,3)	121.34	-
M2	152.81	6.54
M3	3.11	-
PS(2,10)	5.56	1251.94
PS(2,12)	120.10	-
Sing(2,10)	3.04	4.25
SOS(6,4)	114.88	11366.36
SOS(6,5)	120.1	<u>-</u>
RD(3)	3.31	0.11
RD(4)	9.77	28.72
RD(5)	385.31	2277.56

naive implementation without tracers and structured linear algebra!

¹(Berthomieu, Eder, Safey El Din 21)

	Our Algorithm	msolve ¹ , using elim. orders
Polynomial System	Timing (in s)	Timing (in s)
ED(3,3)	121.34	-
M2	152.81	6.54
M3	3.11	-
PS(2,10)	5.56	1251.94
PS(2,12)	120.10	-
Sing(2,10)	3.04	4.25
SOS(6,4)	114.88	11366.36
SOS(6,5)	120.1	<u>-</u>
RD(3)	3.31	0.11
RD(4)	9.77	28.72
RD(5)	385.31	2277.56

naive implementation without tracers and structured linear algebra!

¹(Berthomieu, Eder, Safey El Din 21)

• Investigate probability of success, maximal number of lifting steps? (SCHOST 03)

- Investigate probability of success, maximal number of lifting steps? (SCHOST 03)
- Specialized variants of FGLM (FAUGÈRE, MOU 17), (NEIGER, SCHOST 20), (BERTHOMIEU, NEIGER, SAFEY EL DIN 22)...

- Investigate probability of success, maximal number of lifting steps? (SCHOST 03)
- Specialized variants of FGLM (FAUGÈRE, MOU 17), (NEIGER, SCHOST 20), (BERTHOMIEU, NEIGER, SAFEY EL DIN 22)...
- Computing generic fibers of colon ideals following (BERTHOMIEU, EDER, SAFEY EL DIN 23)

- Investigate probability of success, maximal number of lifting steps? (SCHOST 03)
- Specialized variants of FGLM (FAUGÈRE, MOU 17), (NEIGER, SCHOST 20), (BERTHOMIEU, NEIGER, SAFEY EL DIN 22)...
- Computing generic fibers of colon ideals following (BERTHOMIEU, EDER, SAFEY EL DIN 23)
- Implementation in msolve (with tracers and structured linear algebra)!

- Investigate probability of success, maximal number of lifting steps? (SCHOST 03)
- Specialized variants of FGLM (FAUGÈRE, MOU 17), (NEIGER, SCHOST 20), (BERTHOMIEU, NEIGER, SAFEY EL DIN 22)...
- Computing generic fibers of colon ideals following (BERTHOMIEU, EDER, SAFEY EL DIN 23)
- Implementation in msolve (with tracers and structured linear algebra)!

Thank you!